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A B S T R A C T

With global temperatures, populations and ecological stressors expected to rise, hydrological droughts are
projected to have progressively severe economic and environmental impacts. As a result, hydrological drought
forecasting systems have become increasingly important water resource management tools for mitigating these
impacts. However, high frequency behaviours in meteorological or atmospheric conditions often limit the lead
times of hydrological drought forecasts to seasonal timescales, either through poorer performance of multi-year
meteorological forecasts or the lack of multi-year lags in atmosphere-hydrology systems. By contrast, low fre-
quency behaviours in regionally important teleconnection systems (such as the North Atlantic Oscillation, NAO)
offer a novel way to forecast hydrological drought at longer lead times. This paper shows that, by using a data-
driven modelling approach, long-term behaviours within the NAO can be skilful predictors of hydrological
drought conditions at a four-year forecasting horizon. Multi-year semi-periodic patterns in the NAO were used to
forecast regional groundwater drought coverage in the UK (proportion of groundwater boreholes in drought),
with the greatest forecast performance achieved for longer duration droughts, and for hydrogeological regions
with longer response times. Model errors vary from 14 % (proportion of boreholes, (MAE)) in flashy hydrological
regions or short droughts (<3 months), to 2 % for longer duration droughts (>8 months). Model fits of r2 up to
0.8 were produced between simulated and recorded regional drought coverage. As such our results show that
teleconnection indices can be a skilful predictor of hydrological drought dynamics at multi-year timescales,
opening new opportunities for long-lead groundwater drought forecasts to be integrated within existing drought
management strategies in Europe and beyond.

1. Introduction

Drought hazards that can affect all regions of the world can cause
considerable damage to economies and ecosystems. Hydrological
drought (where river or groundwater systems display prolonged periods
of below-average water levels) can exhibit a large spatial domain and/or
extend across multiple seasons, resulting in chronic impacts to water
supply, aquatic ecosystems and food supply chains (Hasan et al., 2019;
van Loon, 2015). Climate change has already intensified hydrological
droughts in some regions (Cammalleri et al., 2020; Barker et al., 2019)
and is expected to further exacerbate the severity and spatial footprint
(coverage) of drought under future climate change scenarios (Peña-
Angulo et al., 2022). Combined with increased water demand through
population growth, this means that proactive water management is an

utmost priority in many countries (Barker et al, 2019; Wilhite et al.,
2000).

Forecasting systems for drought are a critical part of proactive water
resource management (Nandgude et al., 2023; Ascott et al., 2021). For
instance, they can estimate a range of dynamic drought characteristics
(e.g., intensity, onset, spatial extent) before they are likely to occur,
making them valuable tools in operational drought response (Fung et al.,
2020). Dynamic drought forecasting can be broadly split into process-
based and statistical approaches, often depending on the scale at
which they are used. Process-based methods seek to replicate locally
important hydrological processes; using forecasted meteorological var-
iables and a hydrological model to estimate catchment-scale drought
response (Sutanto et al., 2020). For decision making at a strategic or
regional scale, more generalised drought information is required, such
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as aggregated or classified drought metrics (e.g., SPEI or SGI) that
indicate whether or not a region will be in a drought condition (Tijde-
man et al., 2022). In these cases, statistical forecasts are commonly used
(Alawsi et al., 2022). These rely on a statistical relationship between
indicator variables (i.e., predictors) and drought metrics, and require
either forecasted indicators or lagged indicator-metric relationships to
forecast regionalised drought characteristics. Indicators can be
measured values (such as sea level pressure) or calculated tele-
connection indices (such as the Nort Atlantic Oscillation Index (NAOI) or
Southern Oscillation Index (SOI), which represent large portions of
oceanic or atmospheric variability (Hurrell et al., 2003; Bridgman and
Oliver, 2014). However, the stochastic nature of atmospheric and
weather behaviour typically limits the performance of meteorological
forecasts beyond a seasonal timescale (Toth and Buizza, 2019; Svensson
and Hannaford, 2019; Sutanto et al., 2020), as well as the presence of
indicator-drought relationships at lags beyond a seasonal timescale. As
such, both process-based and statistical drought forecasts are often
limited to seasonal (or sub-seasonal) lead times, in contrast to existing
drought management strategies which typically operate on multi-year
cycles of strategy development. Therefore, the current lack of multi-
year hydrological drought forecasting capability inhibits many proac-
tive drought management strategies, such as abstraction restrictions or
catchment transfers (Wendt et al., 2021; Steinemann, 2006).

Recent hydroclimate research has highlighted that multi-year be-
haviours in teleconnection index time series may be stronger indicators
for recorded hydrological drought, in some regions, when compared to
monthly or winter-averaged indices (Rust et al., 2022). These latent
relationships are typically strongest in hydrological systems that are
most sensitive to long-term changes in meteorological variables, such as
groundwater or groundwater-driven streamflow (Liesch and Wunsch,
2019; Neves et al., 2019; Baulon et al 2022a; Massei et al, 2010). In NW
Europe, strong relationships have been found between multi-year semi-
periodic behaviours in the NAO and groundwater drought coverage, at
multi-year lags (Rust et al., 2022). This is in contrast to seasonal lags
which are typically identified when assessing NAO-hydrology systems
using monthly or winter-averaged data (e.g., Wedgbrow et al., 2002;
Demirel et al., 2013). Multi-year lags in atmosphere-hydrology systems
offer a novel way to forecast hydrological drought at multi-year time-
scales. However, the relationship between semi-periodic behaviours in
the NAO and hydrological variables in NW Europe is highly non-
stationary, posing a challenge to the application of these relationships
for drought forecasting (Rust et al, 2022). Furthermore, the lack of a
modelled relationship has precluded, in part, the investigation of control
linkages between semi-periodic patterns in the NAO and drought be-
haviours across different hydrogeological systems. For instance, the in-
fluence of constructive or deconstructive interference between periodic
behaviours in the NAO and other atmospheric systems (Holman et al.,
2011, Jin and Kirtman, 2010). In this paper, we term these behaviours as
semi-periodic as they are, at least in part, emergent properties from red-
noise processes within the atmosphere and, as such, are not true peri-
odicities (Hurrell et al., 2003).

Increasing availability of hydrometeorological data has driven recent
developments in hydrological modelling towards statistical approaches
that are less concerned with representing a systematic relationship and,
instead, leverage a range of available data to explain hydrological
behaviour (Papacharalampous et al., 2019). These are often called data-
driven approaches. Examples of these approaches for drought fore-
casting include multiple regression (e.g., Svensson et al, 2015; Ionita and
Nagavciuc, 2020), ARIMA or ARIMAX (e.g., Kim et al., 2019; Myronidis
et al., 2018, Prodhan et al., 2022) or, more recently, Machine Learning
tools such as Artificial Neural Networks (ANN) or Support Vector
Regression (SVR) (e.g., Granata and Di Nunno, 2023; Dikshit et al.,
2021). These methods take advantage of multiple explanatory variables
(either endogenous of exogenous), making them adaptable to systems
that exhibits strong seasonal or periodic components, or where non-
stationarities are dominant (Yaseen et al., 2015). Here, we propose a

novel approach, taking advantage of data-driven methods, to use multi-
year lags between semi-periodic behaviours in the NAO and ground-
water response to forecast groundwater drought characteristics at new
multi-year timescales.

The aim of this study is to evaluate the potential of semi-periodic
behaviours in the NAO for forecasting groundwater drought coverage
at multi-year timescales, using data-driven approaches. We define
drought coverage as the proportion of boreholes, within a region,
experiencing a drought response. Drought response criteria are
described in the methods section. The aim will be achieved by meeting
the following research objectives:

1. Identify and quantify semi-periodic behaviours in groundwater
drought coverage series that covary with the NAOI, across a range of
hydrogeological regions.

2. Develop and apply a data-driven modelling approach to use semi-
periodic behaviours in the NAOI to forecast drought coverage at
multi-year timescales.

3. Evaluate the performance of drought forecasts against existing
forecasting systems.

2. Data and methods

2.1. Groundwater data

Monthly groundwater level data has been taken from the National
Groundwater Level Archine (NGLA) for 136 observation boreholes
(OBHs), with record lengths of more than 20 years and data gaps no
longer than 24 months. While monthly level data were used to calculate
drought events, the main analysis was undertaken on annually sum-
marized data, meaning a data gap of no more than two points. The
boreholes cover all the major aquifers in the UK (Allen et al., 1997) and a
range of unconfined and confined aquifers and have been categorised
into groups based on generalised hydrogeological properties and
behaviour. These are Chalk (74 sites), Limestone (12 sites), Oolite (12
sites), Sandstone (31 sites). Given the spatially heterogenous response of
the Chalk aquifer to droughts (Marchant and Bloomfield, 2018), Chalk
sites were subdivided into four groups based on aquifer region: East
Anglian basin (17 sites), Lincolnshire basin (8 sites), Southern basin (21
sites) and Thames and Chiltern basin (28 sites) (Allen et al., 1997;
Marchant and Bloomfield, 2018). Fig. 1a shows the distribution of OBHs
used in this study, with all regions’ record lengths centred around 50
years. Fig. 1b shows the number of active OBHs over time, with most
boreholes, across the hydrogeological regions, active from the 1980s.
Fig. 1c shows the location of all OBHs used in this study.

2.2. North Atlantic Oscillation Index

We used the calculated winter-time (DJFM) North Atlantic Oscilla-
tion Index (NAOI) (station based) calculated by the National Centre for
Atmospheric Research (NCAR) (Hurrell, 1995). Station-based NAOI has
been shown to appropriately capture the control of the NAO on mete-
orological variables during winter months (West et al., 2019).

3. Methods

3.1. Data Pre-Processing

In this study we use the continuous and cross-wavelet transforms to
quantify semi-periodic behaviours within groundwater drought series
and within the NAOI.

Only records with a data length of 20 years or greater have been
taken forward in this study, to ensure that all sites have sufficient data to
quantify (as a minimum) the strength of the dominant ~7- to ~8-year
cycle which has been detected in water resources in previous research
(e.g., Rust et al., 2022, Liesch and Wunsch, 2019).

W. Rust et al.
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For all groundwater level records, gaps of 2 years or less were infilled
to a monthly time step using a cubic spline. For time series with a gap
greater than 2 years, the longest period of continuous record either side
of the gap, that still met the minimum record length of 20 years, was
used as the final record. Finally, all records were detrended using a 3rd
order polynomial to remove any long-term trends and maximise the
detection of periodic behaviours. This follows the approaches of other
applications of the wavelet transform for geophysical datasets (e.g., Kuss
and Gurdak, 2014, Hanson et al., 2004).

Data was only assessed after 1960 given the few numbers of OBHs
active before this time, and up to 2023.

3.2. Calculation of drought and drought coverage

Many different drought definitions and metrics have been proposed
in existing literature, including threshold-based measures (e.g., Peters
2003; Sutanto and Van Lanen 2021), and standardized measures (e.g.,
Standardized Groundwater Index (Bloomfield and Marchant, 2013)).
For strategic planning purposes, existing measures are often summarized
to regional levels (Tijdeman et al., 2022) which can introduce errors or
biases (such as sensitivity to outliers). As such, this paper targets a
regional-scale relationship by utilizing the coverage drought metric (i.e.,
proportion of boreholes within a region that exceed a groundwater
threshold or meet some other condition), proposed by Rust et al.,
(2022).

A range of drought conditions were selected to measure both drought
intensity (from mild water stress to more severe drought) and duration

at each OBH. For interpretability, a percentile threshold approach was
used to define these drought conditions. For drought intensity; these
conditions are where a local minima in monthly GWL fall; 1) between
20th and 10th percentile of GWL at that OBH; 2) between 10th and 5th
percentile and 3) below the 5th percentile. For drought duration,
coverage has been calculated where GWL is below the 20th percentile
for 1) less than 3 consecutive months, 2) between 3 and 8 consecutive
months, and 3) more than 8 consecutive months. Duration conditions
have been based on the least severe intensity (20th percentile) to
maximise the number of conditions met. A final drought measure, which
captures any droughts, has been calculated as the proportion of bore-
holes that experience a GWL below their 20th percentile in each year.
For each region and for each drought condition, the drought coverage
series is then calculated as the proportion of boreholes within that re-
gion that exhibited the drought condition, in any month of the year. A
minimum of 5 boreholes per region were used in the analysis to ensure a
stable calculation of the proportion of boreholes within a region in a
drought condition.

3.3. Quantification of periodic behaviours

We identify key semi-periodic behaviours (or components) in the
drought coverage time series using the continuous wavelet transform
(CWT) and their covariance with similar behaviours in the NAOI using
the cross-wavelet transform (XWT). By assessing both of these, we
identify NAO-driven periodic components in drought coverage series
that have the greatest impact on overall drought coverage behaviour.

Fig. 1. Metadata for the groundwater level boreholes used in this study, showing a. the record lengths for each OBH, b. the number of OBHs in operation over time
and c. the location of the OBHs, all classified by hydrogeological region.

W. Rust et al.
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The wavelet transform is a method for frequency decomposition that is
commonly used for assessing periodic behaviours within geophysical
datasets (e.g., Kuss and Gurdak, 2011; Velasco et al., 2015), has been
previously used to detect periodic behaviours shared between atmo-
spheric processes and hydrological records in Europe (e.g., Lorenzo-
Lacruz et al, 2022; Rust et al, 2022), and in particular has been used
successfully as a pre-processing step for hydrological modelling (e.g.,
Massei et al 2017; Wu et al 2021; Hadi and Tombul, 2018). The Morlet
wavelet was favoured over other candidates due to its good definition
across the time and frequency domains, with a wavenumber of 6
(Tremblay et al. 2011; Holman et al. 2011; Rosch & Schmidbauer,
2018)). A period range of between 2 and 24 years was selected to cap-
ture major semi-periodic behaviours previously identified in European
hydrometeorological variables, e.g., rainfall (Massei et al., 2007; Rust et
al, 2019); streamflow (Massei et al 2010), and groundwater level (Liesch
and Wunsch, 2019; Neves et al., 2019; Rust et al., 2022; Baulon et al,
2022a).

Significance testing has been conducted using 1000 monte-carlo
generated series of the same length and with the same AR1 coeffi-
cient, using an ARIMA model. AR1 was calculated using the partial
autocorrelation function. Significant powers are therefore representa-
tive of periodicities that cannot be explained by entirely a red noise
process. The 95 % CI is used.

In this study we have employed the CWT over other wavelet trans-
forms (such the Discrete Wavelet Transform, or maximum-overlap
discrete wavelet transform) since the CWT allows for identification
and reconstruction of behaviours along a continuous frequency range,
whereas discrete versions are limited to lumped, dyadic frequency bands
which may limit the precision of identifiable frequency behaviours
within the NAOI and drought series. However, a potential limitation of
the CWT is the presence of edge-effect which introduce uncertainties in
the frequency estimation at the start and end of the analysed signal.
Here, the impact of edge-effects was minimized by transforming the
entire historical record as a pre-processing step before subsetting data to
emulate a real-time forecast (See Modelling Framework in section 3.4).

3.4. Rolling lag correlation

To develop the modelling framework, it was necessary to understand
the range of lags between the NAOI and the drought coverage series, for
key semi-periodic components identified at the previous step. This was
achieved by undertaking a moving-window lag (Pearson’s) correlation.
Within a rolling 16-year window, cross-correlation coefficients were
calculated for lags between 0 and 9 years, for the preceding 16 years
record. This identifies the dominant lag between semi-periodic compo-
nents of the NAOI and drought coverage series at each year on record.
Only positive lags (groundwater components responding after NAO
components) were identified.

3.5. Modelling framework

3.5.1. Modelling summary
We develop a modelling framework here to use key reconstructed

semi-periodic components of the NAOI to forecast drought coverage
series. These components, identified in the NAOI and drought series
using the continuous wavelet transform (see Quantification of peri-
odic behaviours section), were approximately 8-year and approxi-
mately 16-years in period length (see Results Section). The modelling
framework is based on the assumption that these two key semi-periodic
components within the drought coverage series, when composited,
capture the majority of variance in the original drought coverage series
(Rust et al, 2019).

The modelling framework comprises two parts, summarised here and
expanded upon below.

1- Exogenous model which forecasts semi-periodic components of
drought coverage series using reconstructed components of the NAOI
as exogenous variables. A separate instance of this model is used for
the 8-year and 16-year components. Forecasted values of the drought
series 8-year and 16-year components are combined to produce a
forecasted composite semi-periodic component series of drought
coverage.

2- Endogenous model which uses a historical regression between the
composited 8- and 16-year components of the drought coverage se-
ries, and original feature space drought series to rescale the fore-
casted composite semi-periodic series back into the original drought
coverage units (proportion of boreholes in drought).

3.5.2. Exogenous model

3.5.2.1. Moving window regression. As mentioned previously, the time-
lag between semi-periodic behaviours in the NAOI and in ground-
water level has been shown to be non-stationary (Rust et al., 2022). To
account for this, we build an adaptive approach using a moving-window
regression between reconstructed components (8- and 16-years) from
the NAOI and drought coverage series. For each year on record, a
regression is built using the previous 16 years’ values from the recon-
structed semi-periodic components, therefore representing an updated
lagged relationship. A window length of 16 years was selected, as this
captures two cycles of the dominant 8-year, and one of the secondary 16-
year cycle. Additionally, given the time-varying lag, a lagged regression
would produce an intermittent or non-constant forecast horizon which
would limit the utility of the forecasting system. Therefore, we use a
combination of distributed lag models (DLaMs) and the autoregressive
properties of NAOI semi-periodic components to produce forecasted
values of drought coverage at a fixed lead time.

3.5.2.2. Autoregressive properties of NAOI reconstructed LF components.
The reconstructed 8- and 16-year semi-periodic components from the
NAOI have strong autocorrelations at half-period time lags (4-years and
8-years respectively) (see SM Fig. 1). As an autoregressive property,
these are r2 = 0.9 at the 4-year lag in the 8-year cycle, and r2 = 0.7 for
the 8-year lag in the 16-year cycle (r2 values were calculated by the
square of Pearson’s r for the total length of NAOI record used in this
study; 1960 – 2023). As such, we use the n-4 and n-8 values of the
NAOI’s reconstructed 8- and 16-year components (respectively) to
extend the systematic lag between NAOI and drought coverage com-
ponents. This provides a minimum forecast horizon of 4-years for in the
8-year cycle, and 8-year in the 16-year cycle. Since both 8 and 16-year
components are used to produce a composite semi-periodic series, we
take the maximum overlap of a 4-year forecast.

3.5.2.3. Distributed lag models. The minimum 4-year lag provided by
the autoregressive properties of the NAOI’s semi-periodic behaviours
are in addition to the systematic lags between the NAOI and drought
coverage. These lags are captured using a distributed lag model (DLaM).
DLaMs represent a relationship between a dependent variable and
various lagged values of an independent variable. As such, they are
particularly useful in representing lagged relationships with persisting
temporal patterns (such as periodic or semi-periodic behaviours)
(Rushworth et al., 2013; Lu et al., 2022). Here, we use DLaMs to capture
the influence of NAOI semi-periodic behaviours on drought coverage, at
between zero and 5-year lags. While there were few instances of
calculated lags greater than 5 years (<5%, see SM Fig. 1), a maximum of
5-year was selected to ensure there were sufficient data within each 16-
year window. Within each windowed instance of the DLaM, unnecessary
coefficients (for instance, those with a non-significant impact on the
regression) were not removed as it was not necessary to produce a
generalized model − each windowed instance of the DLaM was only be
used for one forecast.

W. Rust et al.
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The general DLaM formula is given by:

Yt = a+ β0Xt + β1Xt− 1 + β2Xt− 2 + βnXt− n + ∊t (1)

Yt is the dependent variable at time t. Xt,Xt− 1,Xt− 2,…,Xt− n are the in-
dependent variable values at time t and its lags (previous time periods).
α is the intercept term. β0,β1,β2,…,βn are the coefficients for the inde-
pendent variable and its lags. ∊t is the error term at time t. n is the
number of lag periods included in the model.

3.5.3. Endogenous model
The Endogenous model converts the forecasted composite semi-

periodic components into an estimate of the drought coverage (orig-
inal feature space), utilizing the historical relationship between these
two endogenous variables. Since no time-varying lag was expected be-
tween composite semi-periodic components and drought coverage
values (due to their internal relationship), an expanding window
regression has been used (starting at 16 years, to align with the first
instance of the rolling-window regression from the Exogenous model). A
DLaM was used again in this component to capture any constant lagged
response to semi-periodic behaviours within the drought coverage se-
ries. In addition, two lags from the drought coverage series are included
within the DLaM to capture antecedent conditions in the drought series.
This can be considered representing the forcing of semi-periodic com-
ponents on the in-year mean and trend of the drought coverage series.

3.6. Model performance testing

In existing drought forecasting literature, two types of model per-
formance metrics are typically used. Statistical measures (such as r2,
root mean square error, or mean absolute error (MAE)) are often used to
evaluate the performance of statistical forecasts, since predicted vari-
ables from these systems can be either real-world or constructed vari-
ables (such as SGI; Marchant and Bloomfield, 2018), and are often non-
continuous (e.g., Svensson et al., 2015; Prudhomme et al., 2017).
Conversely, dynamic or continuous forecasts of real-world variables
(such as groundwater level in MacKay et al., 2019) are assessed on their
likelihood to capture the occurrence of a ‘drought’ or ‘non-drought’,
based on a chosen drought classification; comparing historical and
recorded drought occurrences using probabilistic measures such as
ROCC or Brier Score. The modelling approach presented here is based on
forecasting a constructed drought measure (proportion of in-region
boreholes in drought) and as such probabilistic performance measures
are not appropriate. R2 and MAE have been used.

For each year on record, the modelling framework produces a four-
year ahead forecast of drought coverage. In order to test model perfor-
mance, each of the 1-year, 2-year, 3-year and 4-year forecasts were
concatenated together into four new and separate time series. Model
performance was tested using performance metrics (Mean Absolute
Error (MAE) and coefficient of determination (r2)) which were calcu-
lated comparing each of these n-year forecast series with the observed
drought coverage series.

Fig. 2. Global Wavelet and cross-wavelet powers showing the strength of semi-periodic components across each Hydrogeology region and for each drought
type series.

W. Rust et al.
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Mean absolute error is given by:

MAE =
1
n
∑n

i=1
|xi − yi| (2)

where x represented the recorded values and y represents the predicted
values.

R2 was calculated as the square of the Pearson’s r between the
recorded and predicted drought coverage values.

4. Results

4.1. Cross wavelet transform

Fig. 2 shows the global wavelet powers (black) and cross-wavelet
power with the NAOI (red) across all drought coverage series and
across each region (including all records). Wavelet powers are a repre-
sentation of the strength of different (semi-)periodic components within
the drought coverage series. Cross-wavelet power is analogous to
covariance in the frequency domain between NAOI and drought
coverage. Significant wavelet and cross-wavelet powers (>95th CI) are
in bold.

Drought coverage can be characterized by key semi-periodic com-
ponents at the 6- to 10-year range (approximately centred on the 8
years), and at the 14 to 20-year range (approximately centred on 16
years). This is the case across different drought conditions and each
hydrogeological region. In most instances, where wavelet powers are
significant in the drought series, there is also a significant covariance
with the NAOI, suggesting that the NAO is driving these increases in
wavelet power at these frequency bands.

Across the All Records group, all drought conditions show a signifi-
cant 8-year and a strong 16-year component, except for the shortest
duration (<3 months) which shows no clear 8-year or 16-year compo-
nents, and instead exhibits a shorter approximate 6-year component.
Only the Any Drought, 10th-5th %ile and < 8 months duration condi-
tions show a significant 16-year component. All conditions except for
the <3 months and <8 months series show a significant covariance with
the NAOI at the 8-year period length. No conditions show a significant
covariance at a 16-year component, however all drought conditions
show increased cross-wavelet power at a 16-year component suggesting
a wide-spread influence.

Drought coverage series in the East Anglian Chalk, Thames / Chiltern
Chalk and Sandstone regions are characterised by strong 8-year cycles
and 16-year components. With the exception of the <3-month droughts
in the East Anglian Chalk, and the <8 month series in the Sandstone, all
8-year components are significant. Significance of the 16-year compo-
nent is variable across the drought regions, except for Sandstone which
shows significant 16-year components in all drought series except the
<5th %ile series. Significant covariance with the NAOI is also found at
the 8-year component for these regions, with significant 16-year
covariance more often found in the Thames / Chiltern Chalk and
Sandstone regions.

The Lincolnshire Chalk, Southern Chalk and Oolite can be charac-
terised by strong and significant 8-year components and variable 16-
year component strength. For instance, the Lincolnshire Chalk and
Oolite show weak 16-year components for all but a few drought series (e.
g., <8 month and >8 month in the Chalk and 10th-5th %ile and >8-
month drought series in the Oolite). Whereas the Southern Chalk shows
more consistent, yet still weak, 16-year component. Significant covari-
ance between drought series in the Southern Chalk and the NAOI are
typically found where there are also significant components in the
drought series.

Finally, the Limestone is characterised by variable 8-year and 16-
year components, while either can be strong and significant across the
different drought series. For instance, the Any Drought, and all the in-
tensity drought series can be characterised by weak 8-year components,

but strong and significant 16-year components. Conversely across the
duration series there is considerable variance. For instance, the <3-
month series show no clear semi-periodic components, the <8-month
series shows a strong and significant 8-year but no 16-year components,
while the >8-month drought series shows strong and significant 8-year
and 16-year component.

Finally, while most of the drought series show varying characteristics
(as described above), the shortest drought series (<3 months) typically
shows least consistency in the wavelet spectra and often shows a greater
power at higher frequencies. This drought coverage series (<3 months
duration) also exhibits little significant covariance with the NAOI.

4.2. Forecasted drought coverage series

Forecasted drought coverage drought series at 1- through 4-year lead
times have been displayed in Figs. 3–5 for selected drought coverage
series. These are Any Drought, <5%ile droughts and >8-month duration
droughts, to capture all droughts, the most severe droughts and the
longest droughts, respectively. Forecasted time series are shown for all
drought coverage series in the supplementary materials. Model error
(MAE) and fit (r2) are also displayed for each forecast horizon. Metrics
have been calculated in forecasted data after 1990 to allow comparison
with shorter records (such as the Limestone region).

Fig. 3 shows the forecasted values for the Any Drought coverage
series, which represents droughts where groundwater level fell below
the 20th %ile in any year. While this is a broad characterisation of
drought, the drought coverage series show strong variance over time
often between ~10 % to ~90 % of resources, suggesting that this cap-
tures an important mode of drought behaviour across the hydro-
geological regions.

The forecasted 20th %ile drought coverage values fit well with low
errors across all the regions, however the errors and fits across the
Southern Chalk and East Anglian Chalk regions indicate reduced per-
formance in these areas. As expected, the 1-year forecast typically shows
the greatest performance. In order of error in the 1-year forecast, the
best forecasts were achieved in the Sandstone region (MAE = 0.11, r2 =

0.73); followed by All Records (MAE = 0.11, r2 = 0.65), Thames /
Chiltern Chalk (MAE = 0.13, r2 = 0.72), Southern Chalk (MAE = 0.13,
r2 = 0.60), Lincolnshire Chalk (MAE = 0.14, r2 = 0.69), Oolite (MAE =

0.15, r2 = 0.53), Limestone (MAE = 0.15, r2 = 0.41) and East Anglian
Chalk (MAE = 0.19, r2 = 0.51). Across all regions, the 10- to 15-years at
the start of the forecasted records is typically noisy, particularly within
the 2-, 3-, and 4-year forecasts. This is likely due to the lower number of
active OBHs in these year ranges. There is also a notable period of
decreased model performance between 1980 and 1990 across the re-
cords that cover that period, within the >1 year forecasts, likely due to
the step-change in lag between NAO and groundwater semi-periodic
behaviours identified at this time period by Rust et al, (2022). Beyond
this, there is good alignment between all forecast horizons, which
typically capture the general trends (e.g., peaks and troughs) in drought
coverage well.

Fig. 4 shows the forecasted drought coverage series for severe
droughts, where groundwater level fell below the 5th %ile level. Error
and fit across this drought series is typically reasonable although model
performance appears less than for the Any Drought series in Fig. 3. In
order of error in the 1-year forecast, the best forecasts were achieved in
the Sandstone (MAE = 0.07, r2 = 0.58), followed by All Records (MAE =

0.09, r2 = 0.59), Thames / Chiltern Chalk (MAE = 0.10, r2 = 0.64),
Southern Chalk (MAE = 0.13, r2 = 0.58), Oolite (MAE = 0.13, r2 =

0.55), Limestone (MAE = 0.14, r2 = 0.40), Lincolnshire Chalk (MAE =

0.15, r2 = 0.56) and finally East Anglian Chalk (MAE = 0.15, r2 = 0.56).
Beyond 1990, forecasted series typically fit recorded series well, with
the exception of 2011 and 2022 which show spikes in drought coverage
that is underpredicted in the EA Chalk, Lincs. Chalk, South Chalk,
Limestone and Oolite regions. Also, the model over predicts drought
coverage for the period 2003 to 2008. This is most pronounced in the
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Lincolnshire Chalk region which shows no recorded drought response
for this period.

Finally, Fig. 5 shows the forecasted drought coverage series for
droughts that lasted for 8 consecutive months or more. The model per-
formed best for this drought type across all regions. In order of error in
the 1-year forecast, the best forecasts were achieved in the Southern
Chalk (MAE = 0.02, r2 = 0.69), followed by Oolite (MAE = 0.04, r2 =

0.77), All Records (MAE = 0.06, r2 = 0.79), Thames / Chiltern Chalk
(MAE = 0.08, r2 = 0.82), Sandstone (MAE = 0.08, r2 = 0.74), Limestone
(MAE = 0.08, r2 = 0.64), Lincolnshire Chalk (MAE = 0.10, r2 = 0.81),
and East Anglian Chalk (MAE = 0.10, r2 = 0.78). All forecasts (across
forecast horizons) were below an error of 0.15 and exhibited an r2
greater than 0.5. The period 2003 – 2008 also showed overpredicted
drought coverage, but this was less notable than for other drought
metrics, with the exception of the Lincolnshire Chalk, which was

forecast to exhibit a drought response, but this was not apparent in the
recorded drought series.

5. Discussion

5.1. Multi-year NAOI patterns as predictors of drought coverage across
different hydrogeologies

Numerous hydroclimate studies have speculated that (semi-)periodic
behaviours in teleconnection systems (such as the NAO) may be used to
predict hydrological behaviour or provide foresight of extremes such as
drought (Rust et al., 2022, Baulon et al 2022b, Lorenzo-Lacruz et al.,
2022, Neves et al., 2019; Liesch and Wunsch, 2019). The results pre-
sented in this study confirm, for the first time, that multi-year semi-
periodic behaviours in the NAO can be used to forecast hydrological

Fig. 3. Forecasted drought coverage for any recorded drought (GWL < 20th %ile). To ensure the error and fit measures (MAE and r2) are comparable between
records of different lengths, values are tabulated for forecasted values after 1990.
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drought characteristics through data-driven techniques. Furthermore,
forecasts are possible at multi-year timescales, providing a new way to
plan and prepare for hydrological drought at strategic timescales.

The use of semi-periodic NAO behaviours to explain hydrological
drought requires two assumptions. Firstly, that these NAO behaviours
are the cause of similar patterns in hydrometeorological variables. These
can be directly measured variables such as rainfall or groundwater levels
or constructed variables such as SPI or drought coverage. Secondly, that
these semi-periodic behaviours in hydrological behaviour are suffi-
ciently dominant to have a leading effect on drought development.
Many studies have focused on attributing multi-year (semi-)periodic
behaviours detected in European hydrometeorological records (such as
rainfall (Lukovič, et al., 2014; Rust et al., 2019), streamflow (Lorenzo-
Lacruz et al., 2022; Massei et al, 2010) and groundwater (Neves et al.,
2019; Rust et al., 2022) to NAO behaviours; often identifying

covariances centred around the 8-year and 16-year period lengths
(Baulon et al 2022a; Liesch and Wunsch, 2019; Rust et al., 2022; Luque-
Espinar et al., 2008). However, semi-periodic behaviours in the NAO,
and their relationship with hydrological variables, can be noisy and non-
stationary (Rust et al., 2022), leading some studies to include other at-
mospheric systems in the North Atlantic region as additional covariates
to explain the frequency structure of drought in Europe (e.g., the East
Atlantic Pattern (Holman et al., 2011; Neves et al., 2019), or Scandi-
navian Pattern (Lorenzo-Lacruz et al., 2022). Results from the Exoge-
nous Model (presented in Supplementary materials Figs. 6–19) show
that the NAO can explain over 96 % of semi-periodic behaviour in
regional drought coverage at 8- and 16-year period lengths (r2 >= 0.96
across all regions, for the 1-year forecast). This suggests that the NAO (or
more specifically, the atmospheric behaviours it represents) is the pri-
mary driver for these periodic components in hydrometeorological

Fig. 4. Forecasted drought coverage for droughts where GWL falls below the 5th %ile. To ensure the error and fit measures (MAE and r2) are comparable between
records of different lengths, values are tabulated for forecasted values after 1990.
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variables. Secondly, it suggests that any deviation of model performance
is due to strength of these patterns within hydrometeorological vari-
ables, rather than the suitability of semi-periodic NAO behaviours as
explanatory variables. Hydrogeological characteristics have been shown
to influence the sensitivity of water resources to long-term behaviours in
recharge signals (Bloomfield and Marchant, 2013). For instance, aqui-
fers with lower transmissivity (such as Sandstone and some Chalks
(Allen et al., 1997; Marchant and Bloomfield, 2018) may show stronger
multi-year behaviours in groundwater level as they are unable to convey
higher-frequency signals (Townley, 1995). Furthermore, Rust et al.,
(2021) shows that the strength of semi-periodic behaviours found in
rainfall vary spatially, suggesting some regions may be exposed to
stronger NAO signals in rainfall-recharge than others. These dynamics
can explain the variance in our model performance results (Figs. 3–5)
over the different hydrogeological regions. For instance, greatest model

performance is typically found in the Sandstone and Thames Chiltern
Chalk, both of which have been shown to be particularly sensitivity to
multi-year NAO behaviours (Rust et al., 2019; 2022) than more
responsive hydrogeologies (e.g., Limestone or Southern Chalk).

Long-term deficits in rainfall drive longer hydrological droughts (van
Loon, 2015). This explains why multi-year semi-periodic NAO behav-
iours were better predictors of multi-seasonal or multi-year droughts
(>8-months) than other drought conditions, since these NAO behaviours
are long-term drivers on meteorological conditions (Rust et al., 2019).
Whereas other drought categorisations (such as high severity, <5th %
ile) may be driven by both long-term and short-term deficits (Brunner
et al., 2022), for which multi-year NAO behaviours would have lower
predictive capacity. For instance, the 2011 and 2018 hydrological
droughts in Europe were characterised by long-term rainfall deficits
compounded by short-term meteorological conditions (Blauhut et al.,

Fig. 5. Forecasted drought coverage for long droughts where below the 20 %ile for 8 months or longer. To ensure the error and fit measures (MAE and r2) are
comparable between records of different lengths, values are tabulated for forecasted values after 1990.
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2022), resulting in acute intense drought. Our results show that multi-
year semi-periodic NAO behaviours can accurately predict the long-
term component of these compound droughts but may underpredict
the shorter-term dynamics. This can be seen for the <5th %ile series at
years 2011 and 2018 in Fig. 4, particularly in flashier hydrogeologies
such as the Southern Chalk, Limestone and Oolite which would be most
responsive to short-term influence (Allen et al., 1997). By contrast, the
wide-spread European drought between 1995 and 1998 was character-
ized by long-term rainfall deficits caused by persistent atmospheric
blocking (Parry et al., 2012), and as such was more typical. Multi-year
NAO behaviours captured this drought response well across both the
long duration and high intensity drought coverage series, across most of
the hydrogeological regions. This aligns well with Baulon et al (2022b)
who suggest the NAO as a driver for a ~7-year semi-periodic component
in GWL contributing to the 1995 groundwater drought in France. Within
our results, flashier catchments such as Limestone or Oolite show
reduced fits (but within 15 % error), since these catchments are less
sensitive to long-term drivers such as multi-year behaviours captured by
the NAO. This suggests that the NAO is a better predictor of drought
response in instances where long-term deficits are the prevailing
mechanism compared to shorter drought duration coverage series
(shown in the Supplementary Materials).

5.2. Predictive utility of NAO periodicities compared to other drought
forecasting methods

Existing hydrological drought forecasting approaches typically use
relationships between explanatory variables and drought metrics / hy-
drological response within original feature space or in the data’s native
domain (e.g., Ionita and Nagavcuic, 2022; Svensson et al., 2015). By
contrast, our results show that by decomposing NAO signals into peri-
odic components (thereby reducing their stochasticity), it is possible to
identify strong indicators for hydrological drought at longer lags,
enabling longer forecasts. For instance, Ionita and Nagavciuc (2020) use
a combination of predictors (including Sea level pressure, sea surface
temperature and rainfall) with lags between 1 and 6 months to forecast
river low flows at 1 month lead times, with high predictive performance
(r2 = 0.8). This is in agreement with our modelling framework, in that
multiple lagged regressors can be skilful predictors of drought metrics,
however comparison with our results highlights how the stochastic na-
ture of instantaneous meteorological variables limits systematic lags to
shorter timescales. Multiple studies have proposed methods to forecast
European drought characteristics using lagged response from hydro-
meteorological variables (including the NAO), with good forecasting
performance (normalized performance measures (such as r2) > 0.5), but
with limited lead times (typically less than 6 months) (e.g., Santos et al.,
(2014), Sutanto et al., 2020a; Svensson et al., 2015; Scaife et al., 2014;
Kingston et al., 2015; Svensson and Hannaford 2019). Sutanto et al.,
(2020b) highlights that longer drought forecast lead times can be ach-
ieved in systems with longer persistence times, demonstrated through a
comparison between hydrological and meteorological drought forecasts.
Our results align with this concept, showing that improved lead-times
can also be found in atmosphere-drought linkages at multi-annual
periodicities.

Our results show that multi-year NAO behaviours have less predic-
tive performance in flashier catchments, or for short-term flash
droughts, potentially limiting their application in certain regions or to
certain hazards (such as agricultural drought). Fast-responding catch-
ments typically exhibit a high degree of noise in their hydrological
behaviour, as they respond to fine-scale variability in meteorological
drivers (Carr and Simpson, 2018), making drought forecasting in these
regions challenging. For instance, MacKay et al., (2015), found reduced
model performance (Relative Operating Characteristics) of seasonal
groundwater drought forecasts, using a process-based modelling
approach, in quick-responding groundwater catchments when
compared with forecasts from slower-responding hydrogeological

catchments. Similarly, the UK Hydrological Outlook (a hybrid statistical
and process-based hydrological framework used for hydrological ex-
tremes forecasting in the UK, Prudhomme et al., (2017) found reduced
forecasting performance in flashier catchments (such as Limestone or
Oolite) with hindcast correlations of between r = 0.23 and 0.5 in
streamflow, at a seasonal forecasting horizon. These correlation ranges
are equivalent to an r2 of between 0.05 and 0.25. As such, despite their
reduced performance in fast-responding catchments, semi-periodic NAO
behaviours as predictors for hydrological drought may outperform some
existing forecasting systems, with the additional benefit of longer fore-
cast horizons. Another potential limitation is the reliance on a locally
stationary relationship between NAO and groundwater semi-periodic
behaviours. While the model does not require a stationary relationship
at timescales greater than 15-years (as defined by the window length),
stationarity is assumed within this timescale. The impact of this can be
seen in the forecasted time series between 1980 and 1990 where model
performance is reduced across most regions (particularly at longer
forecast horizons), likely due to a step-change in the NAO-groundwater
lag that occurred during this time for these semi-periodic behaviours
(Rust et al., 2022). The impact of these local non-stationarities may be
reduced by combining multi-year NAO behaviours with other explana-
tory variables in future applications. For instance. previous research has
shown that the performance of drought forecasting systems can be
improved by including multiple explanatory variables or regressors from
disparate systems (e.g. Wunsch et al., 2018; Svensson et al., 2015; Li et
al, 2019). Finally, if the methods used here were applied in a real-time
forecasting system, it is recommended that sensitivities of the wavelet
transform are understood further, such as the impact of edge-effect or
wavenumber on forecasting capability. For instance, Quilty and Ada-
mowski, (2018) highlight the importance of accounting for edge-effects
when using the wavelet transform in forecasting applications. While
edge-effects were minimized in this study using full historical records (as
previously discussed), corrections such as those proposed by Adamowski
(2008) may be required if the wavelet transform is applied to a real-time
system.

While there are limitations to the use of semi-periodic NAO behav-
iours as predictors for drought coverage, we show that the performance
of these predictors may be better than existing dynamic seasonal
drought forecasting systems while providing considerably longer fore-
cast horizons. Most drought management plans in Europe require water
authorities to define their drought management strategies every 5 or 6
years (Hervas-Gamez and Delgado-Ramos 2019; Rossi and Cancelliere,
2013; DEFRA, 2021). At present, dynamic hydrological forecasts are
rarely used in these plans given their limited forecast horizons, instead
favouring probabilistic approaches which do not given predictive in-
formation on water resource variability. Applying multi-annual peri-
odicities in teleconnection systems to drought forecasting has the
potential to transform current drought management practices by
providing dynamic long-lead forecasts of drought-rich and drought-poor
periods.

6. Conclusion

This paper evaluated the predictive capability of multi-year semi-
periodic behaviours in the NAO for forecasting groundwater drought
coverage at multi-year timescales. We apply a data-driven modelling
approach to forecast an 8-year and 16-year semi-periodic component of
groundwater drought coverage series (for a range of drought charac-
teristics) using matching behaviours from the NAOI. Forecasted com-
posite semi-periodic components were then converted back into original
feature space via a regression model. Through this method, we show that
NAO semi-periodic behaviours can be effective predictors of the regional
and national extent of droughts of a range of severity and duration, and
that multi-year lags in atmosphere-hydrology systems (at specific fre-
quencies) provide a novel way to forecast drought at multi-year lead
times. Performance of semi-periodic NAO behaviours as predictors for
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hydrological drought were greatest in hydrogeological regions domi-
nated by lower transmissivity and longer response times. Conversely,
model performance was lower in flashier catchments, or for short-term
droughts where short-term meteorological variability has a greater in-
fluence on hydrological behaviour. Previous studies have highlighted
that non-stationarities between multi-year semi-periodic behaviours in
the NAO and hydrological variables may preclude the use of these re-
lationships in forecasting applications, however we show here that there
is sufficient permanence within the strength of these behaviours to
generate skilful drought forecasts. At present, long-range dynamic
drought forecasts are not utilized in drought management strategies due
to limited lead times in existing drought forecasting approaches. Our
results show that teleconnection indices can be a skilful predictor of
hydrological drought dynamics at multi-year timescales, opening new
opportunities for long-lead groundwater drought forecasts to be inte-
grated within existing drought management strategies in Europe. Given
the importance of other teleconnection systems (such as El-Nino
Southern Oscillation, or Indian Ocean Dipole) for driving hydrometeo-
rological variability across multiple global regions, the methods estab-
lished in this study have the potential for worldwide application. This
could markedly enhance the global resilience to hydrological drought in
a changing climate.
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