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Abstract 13 

Concerns exist about the viability of food security across Europe due to multiple, potentially adverse drivers. These include 14 

economic, political and climate forcing factors, all of which require quantification. Here, we focus on the climate forcing, and 15 

in particular, the soil moisture change component which crucially determines water availability for crop uptake. We estimate 16 

future soil moisture levels at 34 sites of the UK COsmic-ray Soil Moisture Observing System (COSMOS-UK) network. We do 17 

this by combining three platforms: the Joint UK Land Environment Simulator (JULES) land surface model, field-scale soil 18 

moisture observations from the COSMOS-UK stations and 2.2 km convection-permitting UK Climate Projections (UKCP18). 19 

We use COSMOS-UK data to optimise key soil moisture-related parameters in the JULES model, based on its performance in 20 

the contemporary period. We then force the calibrated model with UKCP18 data to produce future soil moisture estimates. We 21 

evaluate the modelled soil moisture for an average soil depth between 0 and 35 cm to match the depth of soil moisture 22 

observations. Our main conclusions concern future soil moisture droughts which we compare with equivalent events in the 23 

historical period, 1982-2000. We find that on average across all sites, there is an increase in the frequency of future extreme 24 

soil moisture drought events of duration above 90 days. In 2062-2080, such frequency increase of between 0.1 and 0.6 events 25 

per year (equivalent to at least 2 and up to 12 additional events in a 20-year period) is expected. We also show that, in 2062-26 

2080, there is an increased risk of high or more intense soil moisture drought conditions in months between May and November, 27 

with months between June and October being at especially high risk. The UKCP18 data corresponds to a high-emissions future 28 

described by the RCP8.5 scenario. 29 

Keywords: Soil Moisture, Climate Change, Convection-Permitting, Food Security, Data Assimilation, Soil Moisture 30 

Droughts, Cosmic-Ray Neutron Sensing 31 

 32 

1. Introduction 33 

Recent years have seen hotter and drier summer periods in 34 

the UK (Met Office 2022; Turner et al 2021). Prolonged 35 

periods of reduced rainfall and increased evaporative 36 

demand can lead to exceptional drying of soils. Such 37 

drying happened, for instance, in the summer of 2022 as 38 

recorded at the UK COsmic-ray Soil Moisture Observing 39 

System (COSMOS-UK) network sites (UKCEH 2022). 40 

These types of events limit the available water a plant can 41 

access via roots impacting its growth and development 42 

(Gavrilescu 2021). Very dry conditions may therefore 43 

cause soil moisture droughts (Dai 2011) posing risks to 44 

agricultural yields and raising concerns about future food 45 

security (Scott 2022). Water resource management must 46 

account for this, should more water be required for 47 

agricultural needs or new adaptation strategies be 48 

considered. 49 

As atmospheric Greenhouse Gases (GHGs) rise, climate 50 

will change, and further intensification of hot and dry 51 
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summers is expected in the UK (Christidis et al 2020; 1 

Hanlon et al 2021). The 2018 UK Climate Projections 2 

(UKCP18) provide a mechanism to assess future climate in 3 

the UK at global (60 km), regional (12 km) and local (2.2 4 

km) spatial scales (Kendon et al 2019; Lowe et al 2018). 5 

The latest 2.2 km projections offer a step change in climate 6 

prediction capability as they include local representations 7 

of the convective storm processes (Kendon et al 2021). 8 

Hence, they capture features of rainfall patterns, storms and 9 

their intensity and duration (Chen et al 2021; Kendon et 10 

al 2017; Kent et al 2022). Changes in rainfall 11 

characteristics may strongly influence soil moisture 12 

profiles, which in turn may impact crop growth. 13 

There already exist studies concerning future soil 14 

moisture predictions in the UK. Work presented in Kay et 15 

al (2022) uses a 1 km grid hydrological model forced by 16 

regional UKCP18 data to predict future soil moisture 17 

across the UK. It finds significant increases in the spatial 18 

occurrence of low soil moisture levels, along with later soil 19 

wetting dates. Rudd et al (2019) also use a grid-based 20 

hydrological model forced by a large ensemble of regional 21 

climate projections for the UK obtained from the 22 

weather@home2 system. The results show increased 23 

severity of soil moisture droughts in the future. The report 24 

of Kendon et al (2019) uses directly the local (and 25 

regional) UKCP18 data to drive the Joint UK Land 26 

Environment Simulator (JULES) land surface model for 27 

soil moisture estimation. Its findings point to increased 28 

future soil moisture stress, especially in the South East of 29 

England, with September being the driest month. 30 

On the broader spatial scale, Grillakis (2019) uses a soil 31 

moisture index (SMI) to show increased severity of future 32 

soil moisture droughts in Europe. Samaniego et al (2018) 33 

use a multi-model climate ensemble to drive two 34 

hydrological and two land surface models for soil moisture 35 

drought evaluation. The authors find that an increase in the 36 

global mean temperature from 1.5 K to 3 K increases the 37 

drought area by 40% (±24%) in Europe. 38 

The above studies look at soil moisture averaged over a 39 

depth of 1 m or, in the case of Kay et al (2022) and Rudd 40 

et al (2019), over a soil column which depth can vary from 41 

a few centimetres to several metres. They typically use 42 

regional or global climate data except for the report of 43 

Kendon et al (2019) which uses convection-permitting 44 

model (CPM) UKCP18 data. Although these works 45 

provide valuable new understanding, critically, none of 46 

them use available soil moisture observations to calibrate 47 

and assess the underlying hydrological or land surface 48 

model. 49 

In E. Cooper et al (2021), field-scale soil moisture 50 

observations from 16 sites of the COSMOS-UK network 51 

(H. M. Cooper et al 2021) are assimilated into the JULES 52 

model. Here, we combine this approach, of calibrating the 53 

JULES model against COSMOS-UK data, with CPM 54 

projections to generate better constrained future soil 55 

moisture estimates.  56 

Specifically, 57 

• We estimate soil moisture at 34 COSMOS-UK sites in 58 

three time periods: 1982-2000, 2022-2040 and 2062-59 

2080, with future periods following the RCP8.5 high-60 

emissions scenario. We do this by merging the JULES 61 

land surface model, COSMOS-UK field-scale soil 62 

moisture observations and the 2.2 km CPM UKCP18 63 

data. 64 

• We investigate the implications for soil moisture 65 

droughts by looking at the frequency of the drought 66 

events and how they affect individual months. 67 

We evaluate the modelled soil moisture for an average 68 

value over a depth between 0 and 35 cm as guided by the 69 

COSMOS-UK observation depth. Although rooting zones 70 

of some UK crops can reach one metre or more, most, such 71 

as wheat, oat and barley, have majority of their roots in the 72 

upper 30 cm (Fan et al 2016). Knowledge of moisture in 73 

the topmost layers of soil is especially relevant in the early 74 

plant growth stages when all roots occupy shallower 75 

depths. 76 

2. Methods 77 

2.1 COSMOS-UK observations 78 

COSMOS-UK is the UK’s state-of-the-art in situ soil 79 

moisture monitoring network (H. M. Cooper et al 2021; 80 

Evans et al 2016). Since its start in 2013, it has established 81 

51 observation stations spread across the UK, with the 82 

majority located in the South.  83 

The primary product measured at the sites is soil 84 

moisture obtained using the Cosmic-Ray Neutron Sensing 85 

(CRNS) method (Zreda et al 2012). The measurement has 86 

a horizontal footprint of approximately 12 Ha and a vertical 87 

footprint between 20 and 30 cm. The exact values of these 88 

footprints vary with soil moisture (Köhli et al 2015). 89 

Averaging spatially over micro-scale soil moisture 90 

heterogeneity (for instance macropores which are not 91 

represented in JULES) is the key benefit of using this 92 

measurement, over point sensors, for calibrating the 93 

JULES model for soil moisture estimation. 94 

Associated with this measurement technique is 95 

statistical noise, which we suppress by using a longer time-96 

average, daily soil moisture product. Alongside soil 97 

moisture, half-hourly meteorological variables necessary 98 

for driving the JULES model are also recorded at the 99 

COSMOS-UK sites (Table 1). 100 

Variable Units 

Precipitation kg m-2 s-1 

Temperature K 

Downward shortwave radiation W m-2 

Downward longwave radiation W m-2 

Specific humidity kg kg-1 

Wind speed m s-1 

Pressure Pa 
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Table 1. Meteorological variables and their units required for 1 

driving the JULES land model. 2 

2.1.1 COSMOS-UK site selection 3 

We calibrate the JULES model at 26 sites using soil 4 

moisture observations from one selected full year at each 5 

location (one site-year). The site-year selection (Suppl. 6 

Section S1.1) is mostly based on strict completeness 7 

criteria for precipitation data, recognising its importance as 8 

a primary driver of soil moisture variations. We also avoid 9 

peatland sites, as our modelling methodology is designed 10 

for mineral soils, and woodland sites, as CRNS soil 11 

moisture estimates are known to be less accurate there. 12 

The future predictions of soil moisture are then 13 

performed at 34 sites: 25 calibration sites and nine extra 14 

(non-calibration) sites of direct prediction. For the non-15 

calibration sites, we select the remaining non-peatland and 16 

non-woodland sites. We also exclude one of the calibration 17 

sites (hence leaving 25) due to the presence of particularly 18 

large biases there when assessing the model (Section 19 

2.3.1). Figure 1 shows a map of the full set of 35 sites and 20 

Suppl. Section S1.2 explains their vegetation 21 

characteristics. 22 

 23 

Figure 1. Map of COSMOS-UK sites used in this study. Each 24 

location is marked with the standard COSMOS-UK identifying 25 

site code. The places of calibration (also used for forward 26 

projections) are marked as blue dots and sites of forward 27 

projections only as green dots. The site labelled in red is used for 28 

calibration, but not forward projections due to the presence of 29 

large soil moisture biases in the modelled data (Section 2.3.1). 30 

2.2 The JULES Land Surface Model 31 

The JULES model simulates physical land surface 32 

processes and quantities, including soil moisture (Best et al 33 

2011). The model solves the Darcy-Richards equation to 34 

represent water movement between four soil layers: 0-10 35 

cm, 10-35 cm, 35-100 cm and 100-300 cm. The amount of 36 

water retained in the layers depends on soil hydraulic 37 

characteristics which are related to easier-to-measure soil 38 

properties, such as soil texture, via pedotransfer functions 39 

(PTFs) (Van Looy et al 2017). A well calibrated set of 40 

PTFs ensures a better representation of the physical 41 

processes necessary for soil moisture estimation. 42 

We run the JULES standalone model, for 1D 43 

simulations, in a configuration described in Cooper et al 44 

(2022) which closely matches the RAL3M configuration, a 45 

recent update on the Regional Atmosphere and Land 46 

configuration RAL1 (Bush et al 2020). We source soil 47 

textures for the selected COSMOS-UK sites from the 48 

Harmonized World Soil Database (HWSD) (Fischer et al 49 

2008). These soil textures are considered constant over the 50 

entire 300 cm depth. 51 

2.3 Calibration of the JULES model with 52 

COSMOS-UK observations 53 

We use methodology from E. Cooper et al (2021) to 54 

optimise 12 parameters of Cosby PTFs using the 55 

COSMOS-UK soil moisture observations, thereby 56 

improving JULES soil moisture outputs. The PTF 57 

parameters are common to all studied soil types. We use 58 

the LaVEnDAR four-dimensional ensemble variational 59 

data assimilation framework (Pinnington et al 2021; 60 

Pinnington et al 2020) which here minimises a cost 61 

function with two terms: the difference between the 62 

modelled and observed soil moisture, and the difference 63 

between prior and posterior values of the 12 PTF 64 

parameters. These two terms are weighted by their 65 

corresponding errors: observation error and that of the prior 66 

PTF parameters respectively. The method therefore 67 

considers both prior parameter and observational 68 

uncertainties and combines them within the cost function. 69 

Here, we assume a 10% error on the prior PTF parameters 70 

and inflated uncorrelated observation errors of 50% of the 71 

mean soil moisture value at each site as described in E. 72 

Cooper et al (2021). The high observation error includes 73 

contributions from instrument error and, crucially, 74 

representativity error between the modelled and measured 75 

soil moisture (Waller et al 2018).  76 

To produce the modelled soil moisture for the PTF 77 

parameter optimisation, we first perform a model spin-up 78 

at each of the 26 selected sites for one year preceding the 79 
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calibration year (Suppl. Table S1). We repeat the spin-up 1 

process twice so that it is equivalent to three years of spin-2 

up. Here, we use the hourly ERA5-Land data (Muñoz 3 

Sabater 2019) for all driving variables listed in Table 1 4 

due to the incompleteness of the COSMOS-UK 5 

observations for the required sites and years. We convert 6 

the hourly ERA5-Land drivers to half-hourly values to 7 

match the temporal resolution used in our main 8 

simulations. We note that either hourly or half-hourly 9 

resolutions would be suitable given that we use daily mean 10 

soil moisture values in our analysis. We move from the 11 

spin-up period to the simulation period on 1st January when 12 

soil is likely close to saturation, which reduces the effect of 13 

any biases between the driving meteorology.  14 

We then force the JULES model with the half-hourly 15 

COSMOS-UK observations (Table 1), for the selected 16 

calibration year at each site, to estimate soil moisture at 17 

four depth layers listed in Section 2.2. For comparison with 18 

observations, we apply depth weightings to the different 19 

modelled soil moisture layers to correspond to the 20 

measurement depth (Suppl. Section S1.4). We then input 21 

the resulting modelled daily soil moisture, alongside soil 22 

moisture observations and the prior PTF parameters, into 23 

the data assimilation algorithm to produce a single 24 

posterior set of PTF parameters which we later also use for 25 

non-calibration sites. Details of COSMOS-UK and ERA5-26 

Land data processing are given in Suppl. Section S1.3. 27 

Figure 2 (blue) shows a schematic of the calibration 28 

protocol. The prior and posterior PTF parameters are listed 29 

in Suppl. Table S4.30 

 31 

 32 

Figure 2. Schematic of the protocol for generating historical and future soil moisture estimates (for periods 1982-2000, 2022-2040 and 2062-33 

2080). Blue boxes indicate stages of the JULES model calibration. Red boxes refer to final future soil moisture predictions given the calibrated 34 

JULES model which is forced by UKCP18 data. The top-right panel is an output from JULES, for a representative site (COSMOS-UK code 35 

“FINCH”), showing observational data and JULES predictions before and after calibration (i.e. Prior and Posterior respectively). 36 

Abbreviation “met” stands for “meteorological” and notation “a x b site-years” denotes b years at each of the a sites. We note that while we 37 

initially consider 35 sites for the future predictions (blue boxes to the right), in the final analysis (red boxes), we use 34 sites due to the 38 

presence of a large soil moisture bias in the modelled data for one of the sites. 39 

2.3.1 JULES model assessment 40 

We assess the modelled soil moisture at all 26 calibration 41 

sites and the nine non-calibration sites. We use two 42 

continuous years of COSMOS-UK observations, where 43 

possible, to compare the measured and modelled daily soil 44 

moisture. In the case of calibration sites, this includes the 45 

calibration year. We use biases between the modelled 46 

output and the observations, and the corresponding 47 

unbiased root-mean-square errors as metrics to assess the 48 

model (Suppl. Section S1.6). When comparing soil 49 

moisture predictions using prior and posterior PTFs to 50 

observations, there is an improvement in both metrics for 51 
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most of the sites following data assimilation (Suppl. Table 1 

S5). For the posterior PTFs, most of the sites show negative 2 

soil moisture biases, indicating an overall underestimation 3 

of the modelled soil moisture. We note that one of the 4 

calibration sites, Lizard (LIZRD), has a very significant 5 

model bias and therefore we exclude it from the future soil 6 

moisture analysis, leaving 34 sites in total for the future 7 

runs. 8 

2.4 Future soil moisture runs with the local 2.2 9 

km UKCP18 data 10 

The local 2.2 km UKCP18 are very high spatial resolution 11 

numerical simulations consisting of 12 ensemble members. 12 

These simulations are generated by nesting the CPM 13 

(HadREM3-GA705) within 12 members of the regional 14 

model (HadREM3-RA11M), which is nested within 12 15 

members of the global climate model (HadGEM3-16 

GC3.05). The same CPM structure and parameterisation 17 

are used for all 12 simulations of the local UKCP18. 18 

However, parameterisations in regional and global models 19 

differ between the ensemble members. The ensemble, 20 

therefore, captures uncertainties due to alternative 21 

parameter values describing the climate system and due to 22 

interannual natural variability. The main advantage of the 23 

CPM is that it allows the explicit representation of 24 

convective storms, resulting in better estimates of the 25 

statistical structure of localised, hourly rainfall. The CPM-26 

generated data covers three time periods: 1st December 27 

1980 to 30th November 2000 (1981-2000), 1st December 28 

2020 to 30th November 2040 (2021-2040) and 1st 29 

December 2060 to 30th November 2080 (2061-2080). Each 30 

modelled month consists of 30 days, and the two future 31 

periods follow the high-emissions scenario RCP8.5. We 32 

note that new transient simulations have data for periods 33 

2001-2020 and 2041-2060 (Kendon et al 2023), but this 34 

was not the case during the time of producing the results. 35 

We use the whole ensemble of the local UKCP18 data 36 

released in July 2021 with rectified calculations removing 37 

earlier errors in the representation of graupel. We select 38 

meteorological variables required to drive the JULES 39 

model, nearest to the selected stations, and convert them to 40 

match the ones in Table 1 (Suppl. Section S1.8.1). We 41 

then individually bias correct all 12 ensemble members 42 

during the period 1981-2000 using the long-term, 43 

observation-based, daily CHESS meteorological data 44 

gridded at 1 km resolution (Robinson et al 2020) (Suppl. 45 

Section S1.8.2). We apply the bias correction to past and 46 

future UKCP18 data and ensure that all driving variables 47 

are at an hourly resolution (Suppl. Section S1.8.3). The 48 

first year of driving data (for each period, site and ensemble 49 

member) is used for the calibrated JULES model spin-up 50 

and, therefore, is not included in the final analysis. We 51 

perform the model spin-up three times and move to the 52 

simulation period on 1st January. The remaining years of 53 

each period are then used to drive the calibrated JULES 54 

model (Section 2.3) and produce 12 realisations of daily 55 

soil moisture at 34 sites for the three time periods (Figure 56 

2, red). Given the dry model biases (Suppl. Table S5) 57 

present in the contemporary period, we also consider a 58 

second scenario of bias-corrected soil moisture (Section 59 

2.5.4). We note that each of the time periods ends on 29th 60 

rather than 30th November due to our model configuration. 61 

We use an average of the top two modelled soil moisture 62 

layers, up to 35 cm in total, as this approximately 63 

corresponds to the CRNS depth. We apply weightings of 64 

10/35 and 25/35 for layers 0-10 cm and 10-35 cm 65 

respectively to account for the two different layer 66 

thicknesses. 67 

2.5 Data analysis 68 

We analyse the generated soil moisture data in the context 69 

of plant water stress (PWS) which we use to identify soil 70 

moisture droughts. A plant experiences water stress when 71 

the fraction of available water (𝐹𝐴𝑊), accessible via roots, 72 

falls below a certain threshold, commonly defined as 0.5 73 

(Allen et al 1998; Grillakis 2019; Hunt et al 2009). It is 74 

based on findings of (Baier 1969) which shows that 75 

evapotranspiration is soil water-limited below this 76 

threshold. We choose this generic threshold for our fixed 77 

soil depth as a guide for the future PWS impact. With this, 78 

we calculate a daily soil moisture index (𝑆𝑀𝐼) (Hunt et al 79 

2009) defined as 80 

𝑆𝑀𝐼 = −5 + 10𝐹𝐴𝑊 (1) 81 

and  82 

𝐹𝐴𝑊 =
𝜃−𝜃𝑊𝑃

𝜃𝐹𝐶−𝜃𝑊𝑃
,  (2) 83 

where 𝜃 is the soil water content, 𝜃𝐹𝐶  is the field capacity 84 

(FC) and 𝜃𝑊𝑃 is the permanent wilting point (PWP). We 85 

define PWP and FC as the soil water contents at a soil 86 

matric potential of -1500 kPa and -33 kPa respectively 87 

(Kirkham 2014). 𝑆𝑀𝐼 values decreasing from zero 88 

indicate increasing PWS up to PWP (when 𝐹𝐴𝑊 = 0 and so 89 

𝑆𝑀𝐼 = −5). We apply three 𝑆𝑀𝐼 bands to categorize the 90 

intensity of different stress levels (Table 2). 91 

Plant Water Stress Category SMI range 

Less intense/ moderate  −2 < 𝑆𝑀𝐼 ≤ 0 

High/ severe  −4 < 𝑆𝑀𝐼 ≤ −2 

Extreme 𝑆𝑀𝐼 ≤ −4 

Table 2. Plant water stress categories. 92 

An alternative to the PWS index is a statistical index 93 

(Samaniego et al 2013; Sheffield et al 2004) which 94 

quantifies drought relative to the climatology of a given 95 

location with a recommendation of at least 30 years of 96 
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historical data (Mckee et al 1993). We choose the PWS 1 

index since we have 19 years of historical data, and it 2 

directly relates to the agricultural quantity of interest based 3 

on FC and PWP parameters obtained from the calibrated 4 

JULES model. To address the danger of making our 5 

drought predictions overly extreme given the present dry 6 

bias, we also consider a second soil moisture scenario with 7 

dry biases removed (Section 2.5.4). These two scenarios 8 

provide an upper and lower limit for the final drought 9 

analysis results. 10 

2.5.1 Soil moisture drought events 11 

We define a soil moisture drought event at a given site as a 12 

time interval when 𝑆𝑀𝐼 is continuously below or equal to 13 

zero, allowing positive 𝑆𝑀𝐼 values for intervals of at most 14 

five days after the event starts. Each drought event is 15 

characterised by the average 𝑆𝑀𝐼 value over the event 16 

duration and the total duration. Where the average 𝑆𝑀𝐼 17 

value of an event falls within the 𝑆𝑀𝐼 range in Table 2, the 18 

event is assigned the corresponding stress severity 19 

category. For instance, if the average 𝑆𝑀𝐼 value is -3, the 20 

event is categorised as a high/ severe drought event. 21 

Additionally, we also assign three event duration 22 

categories, up to 30 days, between 31 and 90 days, and 23 

above 90 days. 24 

2.5.2 Frequency of soil moisture drought events 25 

For each site 𝑠, ensemble member 𝑘 and UKCP18 time 26 

period 𝑇 (1982-2000, 2022-2040 and 2062-2080), we 27 

count the number of drought events, 𝑛𝑇_𝑠𝑘, of a given 28 

category. An average frequency of an event (per year, per 29 

site) for each 𝑇 and 𝑘 can then be computed as 30 

𝐹𝑇_𝑘 =
∑ 𝑛𝑇_𝑠𝑘𝑠

𝑁𝑆𝑁𝑌
,  (3) 31 

where 𝑁𝑆 = 34 is the number of sites and 𝑁𝑌 = 19 is the 32 

number of years in a time period 𝑇. We note that 𝐹𝑇_𝑘 can 33 

be higher than one because more than one event of a given 34 

category can occur within one year. When comparing 35 

future 𝐹𝑇_𝑘 with the past period, we use an absolute 36 

frequency difference, 𝐷𝑇_𝑘, defined as 37 

𝐷𝑇_𝑘 = 𝐹𝑇_𝑘 − 𝐹𝑃𝑎𝑠𝑡_𝑘, (4) 38 

where subscript ‘Past’ refers to the past period 1982-2000. 39 

We choose absolute as opposed to relative differences to 40 

avoid dividing by very small numbers due to some 41 

historical events being rare. 42 

2.5.3 High stress months and their probability 43 

A high stress month is defined as a month with 𝑆𝑀𝐼 ≤ −2 44 

(Table 2) for a total of at least 16 days in this month. 45 

For each month 𝑚 (January to December), site 𝑠, 46 

ensemble member 𝑘 and time period 𝑇, we count the 47 

number of high stress months (𝑛𝑇_𝑚𝑠𝑘). The probability 48 

that a month is classified as a high stress month across all 49 

sites, for each 𝑇 and 𝑘 is 50 

𝑝𝑇_𝑚𝑘 =
∑ 𝑛𝑇_𝑚𝑠𝑘𝑠

𝑁𝑆𝑁𝑌
 . (5) 51 

Similarly to Eqn. 4, we use absolute probability 52 

differences to compare future 𝑝𝑇_𝑚𝑘 with the past period,  53 

𝐷′𝑇_𝑚𝑘 = 𝑝
𝑇_𝑚𝑘

− 𝑝
𝑃𝑎𝑠𝑡_𝑚𝑘

. (6) 54 

2.5.4 Uncertainty analysis 55 

The metrics of interest in this study are frequency of 56 

drought events (Section 2.5.2, Eqns. 3 and 4) and 57 

probability of high stress months (Section 2.5.3, Eqns. 5 58 

and 6). The corresponding uncertainty analysis considers 59 

both climate model and land surface model uncertainties. 60 

For the climate model uncertainty, we calculate a given 61 

metric for each of the 12 soil moisture simulations which 62 

vary due to the variations in the UKCP18 ensemble. We 63 

then consider a range between the minimum and maximum 64 

values of the resulting 12 metric values. For the land 65 

surface model uncertainty, we consider results derived 66 

using two scenarios: soil moisture output from the 67 

calibrated JULES model (𝜃′) and that same output with 68 

biases removed as a post-processing stage after running the 69 

model (𝜃). They are defined as 70 

𝜃𝑇_𝑠𝑘 = 𝜃′𝑇_𝑠𝑘 − 𝑏𝑠, (7) 71 

where 𝑇 is the UKCP18 time period, 𝑠 is site, 𝑘 is the 72 

ensemble member and 𝑏𝑠 is the site-specific model bias 73 

calculated in the contemporary period with respect to field-74 

scale soil moisture observations (given in Suppl. Table S5 75 

and defined in Eqn. S16 of Suppl. Section S1.6). We use 76 

the bias-corrected soil moisture scenario alongside the non-77 

bias-corrected version to address how the negative (dry) 78 

model bias present at most of the sites may impact our 79 

drought conclusions. It provides a more conservative 80 

drought analysis given the observations, and we treat both 81 

scenarios as feasible. We note that we only bias correct 82 

sites with a negative model bias as correcting for positive 83 

biases often resulted in unrealistically low soil moisture 84 

values in the future. It also further provides a scenario with 85 

wetter soils. 86 

Combining soil moisture simulations resulting from the 87 

climate model and land surface model uncertainties, we 88 

obtain 12 x 2 simulations. Our final results of changes in 89 

drought event frequency (Eqn. 4) and high stress month 90 

probability (Eqn. 6) are expressed as the upper and lower 91 

limits of the values derived from the 24 simulations. 92 

3 Results 93 

The aggregated future changes in soil moisture and 94 

precipitation, with respect to the historical period, are 95 

plotted in Figure 3. On average, across all 34 sites and 12 96 

ensemble members, a decrease in soil moisture is expected, 97 

especially in the summer, late spring and early autumn. 98 
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This is consistent with an average decrease in precipitation 1 

during this time of year and may also be partly due to an 2 

increase in evapotranspiration due to higher temperatures. 3 

In the winter, future precipitation is, on average, higher 4 

than in the past period which reduces the negative soil 5 

moisture changes. The following subsections show how 6 

these soil moisture changes affect the frequency of soil 7 

moisture drought events and PWS intensity in individual 8 

months. 9 

3.1 Frequency of soil moisture drought events 10 

Figure 4 summarises the evolution of soil moisture 11 

drought events for different intensity and duration 12 

categories, cumulatively across all sites (Eqn. 3) and 13 

ensemble members. For all three intensity levels (less 14 

intense/ moderate, high/ severe and extreme, panels a-c), 15 

there is an average decline or a very small increase of the 16 

short-term (1-30 days) and medium-term (31-90 days) 17 

events in a changed future climate. We note, however, that 18 

the uncertainty on this finding is large. Such decreases or 19 

very gentle increases can be expected because lower-20 

intensity and shorter-duration events evolve into higher-21 

intensity and longer-duration events under the rising GHGs 22 

(scenario RCP8.5). This is shown in Figure 4c, where 23 

extreme events above 90 days increase significantly in the 24 

future. These long-term events will likely spread over most 25 

of the driest season replacing medium-duration events. 26 

This result is of particular policy concern as under the 27 

considered uncertainties (Section 2.5.4), an increase of 28 

between 0.1 and 0.6 per year is expected in the frequency 29 

of extreme events above 90 days in 2062-2080 (Table 3). 30 

This is equivalent to at least two and up to 12 additional 31 

events in a 20-year period. When considering the soil 32 

moisture scenario with modelled negative biases removed 33 

(right-hand bars of Figure 4c), such a drought event is 34 

expected to occur every 4.5 years. 35 

With the impact implications of long-duration drought 36 

conditions likely to be of most interest to climate 37 

adaptation planning, we disaggregate geographically the 38 

frequency of extreme drought events for durations above 39 

90 days. This is shown in Figure 5 as the difference 40 

between ensemble-average frequencies in periods 2062-41 

2080 and 1982-2000. In the case of soil moisture without 42 

bias correction (Figure 5a), 27 sites are projected to have 43 

frequency increases above 0.15 per year (equivalent to an 44 

extra three events in a 20-year period) in 2062-2080. In the 45 

wetter, bias corrected case (Figure 5b), 13 sites show such 46 

frequency increases. In the bias corrected scenario, we see 47 

that most of the increases occur in the highly populated 48 

South East, East of England and East Midlands regions. 49 

However, we note that the number of sites in the other 50 

regions is relatively small. 51 

3.2 Probability of high stress months 52 

Figure 6 shows probabilities of individual months being 53 

classified as high stress months, cumulatively across all 54 

sites (Eqn. 5) and ensemble members. These probabilities 55 

peak in July, August and September for the past and future 56 

time periods. Relative to the past period, the risk of high 57 

(or more intense) drought conditions increases 58 

significantly for months between June and September in 59 

2022-2040 and between May and November in 2062-2080. 60 

Here, we only select months where the maximum value of 61 

the historical period is lower than the minimum value of a 62 

future period. In the far future, of particular concern are 63 

months between June and October which see especially 64 

significant absolute increases with respect to the 65 

considered uncertainties and against a high baseline risk 66 

(1982-2000). For the simulations with bias correction, the 67 

probability increase for August and September would, on 68 

average, lead to high stress months more than every second 69 

year increasing the risk of multi-year droughts, and slower 70 

recovery of water resources. Months May and November 71 

are also alarming as these see large proportional increases, 72 

but with respect to a relatively low historical baseline. 73 

Table 3 lists the expected minimum and maximum 74 

absolute probability increases between periods 2062-2080 75 

and 1982-2000 for months between May and November. 76 

4 Discussion 77 

Our results project an increased frequency of future long 78 

duration, extreme soil moisture drought events. This 79 

finding is broadly consistent with other analyses also 80 

reporting more severe future soil moisture droughts in the 81 

UK (Grillakis 2019; Kendon et al 2019; Rudd et al 82 

2019), but here with the added benefit of direct knowledge 83 

of soil moisture features gained from COSMOS-UK data. 84 

Our projected increases in future probabilities of high (or 85 

more intense) plant water stress between May and 86 

November imply that these months will increasingly 87 

experience exceptionally dry soils. Such dry soils in 88 

autumn will delay the effect of subsequent wetting days, 89 

agreeing with Kay et al (2022).  90 
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 1 

Figure 3. Projected changes in the modelled soil moisture and the UKCP18 precipitation for future time periods, 2022-2040 (labelled as 2 

2030) and 2062-2080 (labelled as 2070). The changes are presented as differences with respect to the past time period 1982-2000 (labelled 3 

as 1990). To obtain the plots, for each COSMOS-UK site (Figure 1) and each UKCP18 ensemble member, interannual means (of precipitation 4 

or soil moisture) across years of each future time period are calculated, followed by differencing between the future and past time periods. 5 

The differences are averaged across all 34 sites and then aggregated across the 12 ensemble members by: averaging (thick continuous lines) 6 

and minimising and maximising (spreads of the 12 values for each day). The black horizontal dashed lines mark y-values of zero in each 7 

subplot. 8 

 9 
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 1 

 2 

Figure 4. Frequency of soil moisture drought events averaged over sites, ensemble members and years for different intensity (subplots a-c, 3 

see Section 2.5.1) and duration regimes (different colour shades). Each subplot contains information for three time periods, 1982-2000 4 

(labelled as 1990), 2022-2040 (labelled as 2030) and 2062-2080 (labelled as 2070) and for three time-durations. The subplots are additionally 5 

divided (left or right of vertical dashed line) into two sections which show results derived using modelled soil moisture without (left) and 6 

with (right) bias correction. Upper and lower black bars denote the maximum and minimum, respectively, across the UKCP18 ensemble. 7 

 8 

Figure 5. Maps showing frequency differences for extreme events (as defined in Section 2.5.1 and shown in Figure 4c) for periods above 9 

90 days. Presented here geographically is the difference between periods 2062-2080 (labelled as 2070) and 1982-2000 (labelled as 1990) for 10 

34 calibrated and predictive calculations at the individual COSMOS-UK sites under study. The differences are averaged across all UKCP18 11 

ensemble members. Maps on the left and right are based on JULES soil moisture without and with bias correction respectively. 12 
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 1 

Figure 6. Probability a month is classified as a high stress month across all sites and years of a given time period (Eqn. 5), averaged over the 2 

ensemble members. Upper and lower black bars indicate the maximum and minimum across the ensemble respectively. The two subplots 3 

correspond to results derived using soil moisture without and with bias correction. Each subplot contains information for three time periods, 4 

1982-2000 (labelled as 1990), 2022-2040 (labelled as 2030) and 2062-2080 (labelled as 2070). 5 

 6 

 ABSOLUTE FREQUENCY 

DIFFERENCE 

ABSOLUTE PROBABILITY DIFFERENCE 

 Extreme drought events 

(above 90 days) 

A month is classified as a high stress month 

 MAY JUN JUL AUG SEP OCT NOV 

MINIMUM 0.1 0.04 0.16 0.20 0.25 0.21 0.13 0.02 

MAXIMUM 0.6 0.29 0.61 0.53 0.44 0.48 0.51 0.21 

Table 3. Temporal comparison of two types of events between time periods 2062-2080 and 1982-2000. The events are frequency of extreme 7 

drought events above 90 days (per site, per year) and probability of a selected month being classified as a high stress month (across all sites 8 

and years of a time period). The comparison metric is frequency difference (Eqn. 4) in the former and probability difference (Eqn. 6) in the 9 

latter case. The minimum and maximum are calculated based on values obtained from 12 UKCP18 soil moisture simulations with and 12 10 

without bias-correction (24 simulations in total) (Section 2.5.4). Probabilities used to produce probability differences have range between 0 11 

and 1. 12 

 13 

Of particular note is the higher autumn stress which will 1 

affect autumn sown cereals, for instance winter wheat, at 2 

the beginning of their foundation phases, potentially 3 

reducing yields. The autumn stress may also lead to the 4 

prolongation of water-limited grazing productivity. The 5 

drought conditions in the early spring and summer will 6 

influence crops in their growing stages. Work in Slater et 7 

al (2022) finds that on average, for broad UK regions, 8 

climate change is likely to have beneficial impacts on 9 

wheat yields. Nevertheless, the authors highlight that the 10 

increased likelihood of prolonged, extreme weather will 11 

generate conditions outside of the typical current climatic 12 

envelope posing risks to future farming. 13 

Very dry soils will also have a negative impact on 14 

grasslands which are important for biodiversity and as 15 

grazing resources (Bengtsson et al 2019). The dry soils 16 

may intensify heatwaves (Miralles et al 2019) and lead to 17 

increasing wildfire risks, especially in the case of highly 18 

organic soils and peatlands. 19 

Although our modelling strategy of first optimising the 20 

PTF parameters provides an improvement in predictive 21 

capability, some features of our reparameterization may 22 
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contain compensating errors leading to the modelled soil 23 

moisture biases (Suppl. Table S5). These biases may 24 

partially be due to the provided soil textures which have 25 

not been measured at COSMOS-UK sites, but instead 26 

sourced from the HWSD. Site-specific geology, which is 27 

not considered in our JULES configuration, may also 28 

contribute towards the observed soil moisture biases. As an 29 

example, some COSMOS-UK sites, especially in southern 30 

England, have soils overlaying chalk which if not included 31 

in the JULES configuration may lead to significant 32 

differences between the modelled and measured soil 33 

moisture (Le Vine et al 2016).  34 

Another limitation is the length of observational records. 35 

We took a very cautious approach, carefully selecting sites 36 

and years where precipitation data was mostly complete. 37 

We also used two years at each site to assess the JULES 38 

model in the contemporary period for each individual 39 

location, noting that the test dataset includes one year of 40 

training data for the calibration sites. In the future, we hope 41 

there will be more long-term and complete datasets to 42 

allow non-overlapping and longer timeseries for parameter 43 

optimisation and evaluation phases. Further, as the period 44 

of record lengthens, it may be possible to use routinely the 45 

COSMOS-UK meteorological measurements, instead of 46 

CHESS data, for bias correction of climate data. This 47 

highlights the importance of maintaining high quality, 48 

complete and long-term measurement records. 49 

As noted in Koster et al (2009), modelled soil moisture 50 

depends not only on model-specific soil parameters, but 51 

also on formulations of other water balance variables such 52 

as evaporation and runoff. Due to the dependency between 53 

water balance variables, data assimilation of soil moisture 54 

observations may impact these other variables which then 55 

may affect future soil moisture predictions. To that end, 56 

comparison against observations for other water balance 57 

variables would be ideal, but since we do not have such 58 

dataset, we can only assess changes before and after model 59 

calibration. We therefore compare evaporation and runoff 60 

variables before and after data assimilation for the 61 

contemporary period (Suppl. Section S1.7). We find that 62 

overall, our data assimilation has a relatively small impact 63 

on the timeseries of both variables, especially evaporation, 64 

and the JULES-derived values of these two variables 65 

appear reasonable. We also note that the risk of 66 

compensating errors from other parts of the model affects 67 

almost every aspect of simulating climate. That said, even 68 

with the risk of compensating errors, the reduction of bias 69 

for a strategic state variable such as soil moisture will also 70 

in general improve a model’s projection of its future value 71 

(Michibata & Suzuki 2020; Zhao et al 2022). Future 72 

work could include running the optimised model at sites 73 

where other water balance observations are available, 74 

noting here that Pinnington et al (2021) reports improved 75 

sensible and latent heat fluxes when using this method, 76 

albeit for a different observation set. Additionally, authors 77 

of Cooper et al (2022) use soil parameters calibrated in this 78 

way in gridded JULES runs and evaluate modelled river 79 

flow against observations. Their findings show an 80 

improvement of modelled river flow for some gauges, but 81 

degradation of the output at other sites, so it is not 82 

conclusive. Further, an optimisation constraining multiple 83 

water balance variables is an active research area in this 84 

topic, also suggested as an outlook in Cooper et al (2022). 85 

Finally, for the climate model uncertainty, the local 86 

UKCP18 data assumes a single, high emissions scenario 87 

RCP8.5 and a single structure of the Earth System Model 88 

(ESM). The ensemble does, however, capture large-scale 89 

uncertainties due to natural climate variability and 90 

parametric uncertainties in the driving ESM. The 91 

parameters of the local UKCP18 CPM itself are not varied, 92 

however, it is an ongoing research at the UK Met Office to 93 

sample uncertainties originating from the CPM physics. 94 

5 Conclusions 95 

This study looks at future soil moisture at 34 COSMOS-96 

UK observation sites in two time periods: 1st December 97 

2021 till 29th November 2040 and 1st December 2061 till 98 

29th November 2080, with reference to the past period 1st 99 

December 1981 and 29th November 2000. For modelling 100 

soil moisture, we first calibrate the JULES model with 101 

COSMOS-UK observations and then drive the calibrated 102 

model with convection-permitting UKCP18 data. We 103 

analyse the results in the context of soil moisture droughts. 104 

We define soil moisture drought events according to their 105 

maximum plant water stress characteristics: less intense/ 106 

moderate, high/ severe and extreme (Table 2), and 107 

duration: up to 30 days, between 31 and 90 days, and above 108 

90 days.  109 

On average over the studied sites, we find a significant 110 

increase in frequency of extreme drought events above 90 111 

days in both future time periods. This is especially true in 112 

2062-2080, where an increase by a factor between 1.8 and 113 

2.8 is expected with respect to the past period. For 114 

individual sites and on average over the UKCP18 115 

ensemble, at least 16 sites show significant increases in the 116 

number of these highest severity events in the far future 117 

period. Finally, in 2022-2040, an increasing number of 118 

months between June and September experience high or 119 

more intense stress for at least 16 days. In 2062-2080, this 120 

period stretches to between May and November, with 121 

months between June and October seeing especially 122 

significant increases (Table 3). 123 

Future soil moisture modelling is an active research area 124 

(Seneviratne et al 2010). Our work is the first case study 125 

of future soil moisture predictions based on an 126 

observational soil moisture network. It is also a good 127 

example of using the CPM data in such modelling 128 

framework, with an outlook to expand the analysis to the 129 

whole UK, to better determine land impacts under future 130 

climate. 131 

Data availability statement 132 

The COMOS-UK data (up to 2022) is available through the 133 

Environmental Information Data Centre (EIDC, hosted by 134 
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UKCEH) under the Open Government License: COSMOS-135 

UK (Stanley et al 2023). The more recent data can be 136 

accessed via an API (https://cosmos-api.ceh.ac.uk/docs). 137 

The Environment Agency 15-minute rainfall data is 138 

available from the Hydrology Data Explorer 139 

(https://environment.data.gov.uk/hydrology/doc/reference140 

) under the Open Government Licence 3.0 141 

(https://www.nationalarchives.gov.uk/doc/open-142 

government-licence/version/3/). The 2.2 km Local 143 

UKCP18 data is available from the UK Met Office 144 

(https://www.metoffice.gov.uk/research/approach/collabo145 

ration/ukcp/data/index). The particular version of data we 146 

used is from a mirror of the UKCP18 data, accessed in year 147 

2022 and hosted on the JASMIN server. We used the most 148 

recent version of the CHESS-Met data, freely available 149 

from the EIDC portal 150 

(https://catalogue.ceh.ac.uk/documents/2ab15bf0-ad08-151 

415c-ba64-831168be7293). The ERA5-Land hourly data is 152 

available from the Copernicus Climate Change Service 153 

(C3S) Data Store at 154 

https://doi.org/10.24381/cds.e2161bac. JULES source 155 

code, instructions for access and running are available from 156 

the JULES FCM repository 157 

(https://code.metoffice.gov.uk/trac/jules/wiki/WaysToRun158 

Jules) which requires registration to access (https://jules-159 

lsm.github.io/). The specific configurations and namelists 160 

used to run the experiments in the paper are available at 161 

https://code.metoffice.gov.uk/trac/jules with the suite ids: 162 

u-ct670 for the optimisation and present-day runs at the 163 

calibration sites, u-cw973 for all the future runs and u-164 

cx443 for the present-day runs at the extra sites. The 165 

generated modelled soil moisture and bias-corrected 166 

UKCP18 data for the considered historical and future time 167 

periods are available at 168 

https://doi.org/10.5281/zenodo.10645188. Values of leaf 169 

area index and canopy height for COSMOS-UK sites are 170 

also included there. 171 
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