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Abstract. Mapping sea ice in the Arctic is essential for mar-
itime navigation, and growing vessel traffic highlights the ne-
cessity of the timeliness and accuracy of sea ice charts. In
addition, with the increased availability of satellite imagery,
automation is becoming more important. The AutoICE Chal-
lenge investigates the possibility of creating deep learning
models capable of mapping multiple sea ice parameters au-
tomatically from spaceborne synthetic aperture radar (SAR)
imagery and assesses the current state of the automatic-sea-
ice-mapping scientific field. This was achieved by providing
the tools and encouraging participants to adopt the paradigm
of retrieving multiple sea ice parameters rather than the cur-

rent focus on single sea ice parameters, such as concentra-
tion. The paper documents the efforts and analyses, com-
pares, and discusses the performance of the top-five partic-
ipants’ submissions. Participants were tasked with the devel-
opment of machine learning algorithms mapping the total sea
ice concentration, stage of development, and floe size using a
state-of-the-art sea ice dataset with dual-polarised Sentinel-
1 SAR images and 22 other relevant variables while using
professionally labelled sea ice charts from multiple national
ice services as reference data. The challenge had 129 teams
representing a total of 179 participants, with 34 teams de-
livering 494 submissions, resulting in a participation rate of
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26.4 %, and it was won by a team from the University of Wa-
terloo. Participants were successful in training models capa-
ble of retrieving multiple sea ice parameters with convolu-
tional neural networks and vision transformer models. The
top participants scored best on the total sea ice concentration
and stage of development, while the floe size was more diffi-
cult. Furthermore, participants offered intriguing approaches
and ideas that could help propel future research within auto-
matic sea ice mapping, such as applying high downsampling
of SAR data to improve model efficiency and produce better
results.

1 Introduction

Effective navigation in the cold and remote polar regions re-
quires timely and high-resolution sea ice charts detailing con-
temporary local ice conditions to circumnavigate or traverse
safely and quickly. Therefore, sea ice charts are an indispens-
able information infrastructure ensuring the transportation of
goods and people and supporting activities such as tourism
and fishing. The diminishing Arctic sea ice (Perovich et al.,
2020) enables new activities, such as shipping avenues us-
ing the northern trade routes or resource prospecting. The
Arctic could offer quicker connections between the Atlantic
and Pacific oceans, with the potential for time and cost sav-
ings (Bekkers et al., 2017). Research indicates that ice condi-
tions will become increasingly dynamic; therefore, it is con-
tinuously vital to monitor maritime activities (Boutin et al.,
2020). Another use case for high-resolution ice information
is assimilation into weather and climate models for improved
performance as sea ice acts as an intermediate medium be-
tween the ocean and the atmosphere, reducing interaction.
These models often rely on coarse-resolution sea ice prod-
ucts, e.g. OSI SAF (OSI SAF, 2017), produced by EUMET-
SAT and based on passive microwave radiometry, and could
thus benefit from the higher spatial resolution offered by the
SAR (synthetic aperture radar)-based sea ice maps.

1.1 Context

Arctic sea ice is charted by professional sea ice analysts of
national ice services worldwide, such as the Greenland Ice
Service at the Danish Meteorological Institute (DMI) and
the Canadian Ice Service. The charting process follows the
SIGRID-3 standard developed by the International Ice Chart-
ing Working Group (IICWG) for the World Meteorological
Organisation (IICWG, 2010). Over the years, the origin of
input data has ranged from airborne campaigns to satellite
measurements with multitudes of instruments. The vastness
and remoteness of the Arctic pose monitoring challenges that
have made satellite observations the universal approach, of-
fering wide coverage, cost savings, and a high update fre-
quency compared to other monitoring options, such as air-

borne campaigns. However, optical imagery is unreliable for
sea ice monitoring due to a dependency on sunlight (absent
during the Arctic winter) and cloud cover, which can be in-
distinguishable from sea ice. Despite these challenges, when
available, optical imagery is still used in operational sea ice
charting. The Advanced Microwave Scanning Radiometer 2
(AMSR2) instrument on board the JAXA GCOM-W1 offers
brightness temperature measurements with daily coverage of
the Arctic at a resolution on the order of 35 km× 62 km to
3 km× 5 km per pixel (frequency dependent, 6.925–89 GHz)
(Kasahara et al., 2012), which is insufficient for use in tac-
tical navigation. Instead, active microwave systems like syn-
thetic aperture radar (SAR) measurements are the backbone
of sea ice charting, with occasional supplements from other
instruments (Saldo et al., 2021, manual). SAR offer par-
ticularly versatile measurements, with a pixel spacing finer
than 100 m, independent of sun illumination and cloud cover.
One challenge with SAR data is interpretability as the radar
backscatter depends on surface properties, including rough-
ness, and different surfaces can appear to be similar. Further-
more, open water and sea ice can resemble one another in
their electromagnetic-texture appearance (Jackson and Apel,
2004). To provide accurate ice charts, professional ice ana-
lysts manually interpret and draw charts based on their in-
depth experience and knowledge using geographical infor-
mation system (GIS) software. However, this manual analy-
sis is resource- and time-consuming, constraining the num-
ber of daily charts and coverage to the personnel commit-
ments. Naturally, this motivates the development of fully or
partially automatic tools that can provide more detailed and
consistent information for a wider area, delivered in near-real
time.

1.2 Other relevant works

The interest in automating the retrieval of sea ice information
from SAR imagery has been present for decades, with early
contributions including the usage of texture features as input
to support vector machines and other early neural-network
types (Zakhvatkina et al., 2017; Karvonen, 2014, 2004). Con-
temporary attempts highlight deep learning, particularly se-
mantic image segmentation, with convolutional neural net-
works (CNNs) being a primary contender to provide a reli-
able and precise automatic alternative. An initial study was
published by Wang et al. (2016), with additional entries by
Wang et al. (2017a, b) and a continuation by Cooke and
Scott (2019), highlighting the validity of the approach to map
the total sea ice concentration (SIC) in Canada. However,
in these early studies, network complexity and data quantity
and coverage can be considered to be limiting factors.

In 2020, an initial version of an open-source deep learning
dataset was launched, namely the Automated Sea Ice Prod-
uct (ASIP) Dataset (ASID-v1) (Malmgren-Hansen et al.,
2020). In connection, initial model results using the dataset
were published in Malmgren-Hansen et al. (2021) using a
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custom-built CNN architecture, highlighting early work on
the data fusion of SAR and AMSR2 to map the SIC using
a regression-based optimisation approach. These models re-
sulted from the first attempts to apply large datasets of hun-
dreds of gigabytes for training and emphasised obstacles that
became foundations for further model development. For ex-
ample, in Heidler et al. (2021), the authors emphasised the
importance of a larger receptive field to improve the perfor-
mance of the model developed in Malmgren-Hansen et al.
(2021).

The European Space Agency’s (ESA’s) project AI4Arctic
continued the efforts of the ASIP project. It produced the sec-
ond version of the dataset, ASID-v2, in 2021 (Saldo et al.,
2021), which became a part of the ESA AI-Ready Earth
Observation (AIREO) datasets and led to new CNN-related
works such as Tamber et al. (2022) and the AI4SeaIce ar-
ticle series (Stokholm et al., 2022; Kucik and Stokholm,
2022, 2023; Stokholm et al., 2023) that has investigated mul-
tiple facets of mapping the SIC and approaches to represent-
ing it in an optimisation setting. A new study in Wulf et al.
(2024) explores data fusion of SAR and passive microwave
radiometry to map SIC on a pan-Arctic scale. Other notable
sea-ice-mapping literature entries include those of Radhakr-
ishnan et al. (2021), utilising curriculum learning, and de Ge-
lis et al. (2021), applying the U-Net architecture and under-
lined obstacles associated with ambiguous SAR signatures
and the interest of large receptive fields. In parallel, other
efforts include the ExtremeEarth project (Koubarakis et al.,
2021) with its polar use case, such as that seen in Khaleghian
et al. (2021b), focusing on the sea ice type. In addition, there
have been several other attempts to map sea ice types in SAR
imagery using deep-learning-based approaches, such as in
Boulze et al. (2020); Khaleghian et al. (2021b); Liu et al.
(2021); Lyu et al. (2022); Jiang et al. (2022); Kortum et al.
(2022); Guo et al. (2023). Other literature entries have at-
tempted sea ice floe mapping, such as in Chen et al. (2020);
Nagi et al. (2021), and discriminating between open water
and sea ice in individual pixels (Khaleghian et al., 2021a;
Wang et al., 2023; Rogers et al., 2024). What is common
in these past entries is the focus on the retrieval of single sea
ice parameters. The winners of the AutoICE Challenge docu-
ment their models’ capabilities in the retrieval of multiple sea
ice parameters and perform an ablation study on the model
input parameters in Chen et al. (2024a) using the AI4Arctic
Challenge dataset. Furthermore, the authors in Chen et al.
(2024b) have shown that detailed SIC maps can be obtained
by training models with sea ice charts. Many challenges and
advancements within the broader scope of Earth observation
and artificial intelligence are highlighted in Tuia et al. (2023).

1.3 Objective of the AutoICE Challenge

The objective of the AutoICE challenge was to advance state-
of-the-art sea ice parameter retrieval from SAR data with an
increased capacity to derive more robust and accurate auto-

mated sea ice maps and to show that models can retrieve mul-
tiple sea ice parameters. In parallel, this provides an oppor-
tunity to assess the current state of the scientific field. Fur-
thermore, the challenge has provided a common reference
dataset that can be used as a benchmark for comparisons of
future model developments.

The field of automatic sea ice mapping has been hastily
improving over the past years. However, what has been com-
mon in many of the past literature entries listed here is the
focus on single sea ice parameters, either the SIC or type,
and the regional focus on individual ice services, i.e. Cana-
dian, Greenlandic, or Norwegian. Sea ice charts are a treasure
trove of expert-labelled training data extending over multi-
ple years and covering vast areas. To propel the automatic-
sea-ice-mapping research field towards retrieving multiple
sea ice parameters with data from a wider regional area and
across national borders, the Artificial Intelligence For Earth
Observation (AI4EO) AutoICE Challenge was designed. The
challenge aimed to engage and encourage students, sea ice
experts, and machine learning practitioners to develop mod-
els capable of automatically mapping sea ice and generating
new ideas and methods. In addition, the challenge provides
a common reference benchmark to support further compar-
isons in future model developments within the community.
Participants were tasked with mapping three sea ice parame-
ters that are all important in describing the composition of the
sea ice cover relevant to navigation, as well as to weather and
climate models. The first of these parameters is SIC, which
represents the ratio of sea ice to open water and is the primary
descriptor of the sea ice charts. SIC helps ships identify areas
of sea ice and the marginal ice zone. The second parameter is
the stage of development (SOD), which is the type of sea ice
and is a proxy for the age of the ice, which, in turn, is a proxy
for the thickness. The parameter supports decision-making
regarding which areas of the ice can be broken by what type
of ship. The final ice parameter is the floe size (FLOE), which
characterises the size of ice flakes/floes and aids in deter-
mining areas of ice leads and the degree to which the ice
is broken into smaller floes. This paper summarises the Au-
toICE challenge, the AI4Arctic Sea Ice Challenge dataset,
the tools provided to the participants, and the evaluation of
submissions. In addition, the results of the top-five partic-
ipants are analysed and compared, and the outcome of the
AutoICE Challenge and the state of the automatic-sea-ice-
mapping research field are discussed, highlighting avenues
for future work.

1.4 Article breakdown

Initially, the setup is presented in Sect. 2, including the eval-
uation criteria and the tools available to the participants. This
is followed by Sect. 3, describing the challenge data provided
by the organisers. Afterwards, in Sect. 4, an overview of the
participation rate is presented, together with the final chal-
lenge results. Three of the top five teams summarise their
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solutions in Sect. 5. This is followed by comparing scene ex-
amples from the test dataset in Sect. 6. Finally, the challenge
is discussed and concluded in Sects. 7 and 8, highlighting
key takeaways and future directions of research to advance
the state of the art in automatic sea ice mapping.

2 Challenge setup

An external panel of experts in AI and sea ice charting was
appointed to help design and evaluate the challenge. The ex-
pert panel members included two sea-ice-charting experts
appointed by the International Ice Charting Working Group
(IICWG) and representing universities and research insti-
tutes. The expert panel participated in a dedicated workshop
hosted by the organisers to discuss submission evaluation
metrics and setups, etc.

The challenge was designed to cater to a large audience
by providing manageable resources and a clear and pur-
poseful objective. Participants were given a state-of-the-art
dataset, the ASID Challenge dataset (Buus-Hinkler et al.,
2022a), to train their models. The dataset encompasses re-
motely sensed data from multiple sensors, geographical in-
formation, and atmospheric and land surface quantities from
reanalysis models to encourage diverse data fusion method-
ologies. The dataset spanned multiple years and charts from
multiple national ice services (Canada and Greenland). Two
versions of the dataset were prepared, an unaltered (raw) ver-
sion and a ready-to-train (RTT) version, to cater to the ease
of getting started while simultaneously allowing those who
prefer fully customised model-training setups to pursue their
ideas. The scenes were divided into 513 for training (Buus-
Hinkler et al., 2023a, b) and 20 for testing (Buus-Hinkler
et al., 2022b, c). Participants could not access the testing
scenes’ sea ice charts to prevent overfitting to the set dur-
ing training. The testing scenes contained all ice classes in
the training dataset. They were selected to represent vari-
ous sea ice SAR signatures. with charts from the Canadian
and Greenland ice services from January 2018 to Decem-
ber 2021.

Participants were also provided with get-started tools con-
sisting of software created by the organisers to help get
started, as well as training models for the challenge with
the RTT dataset. In addition, computing resources through
the Polar Thematic Exploitation Platform (PolarTEP) were
available to participants. The challenge was hosted on the
ESA-funded AI4EO.eu challenge platform, introducing the
challenge design and rules, links to the dataset and tools, and
a submission portal with an associated leader board, where
participants could compare their results to those of other
teams. The competition launched on 23 November 2022 and
closed on 17 April 2023.

2.1 Metrics and final evaluation

To submit a solution, participants produced maps of the three
sea ice parameters at an 80 m pixel spacing and uploaded
them to the AI4EO.eu platform portal. The platform back-
end computed a score based on a comparison to the reference
data and provided the score to the teams. A public and pri-
vate score was calculated. The public score was calculated
based on 10 of the 20 test scenes, and the private score was
calculated based on all 20 scenes. The (team’s best) public
score was shown on the leader board. In contrast, the private
score was withheld from the participants until the competi-
tion’s closure and was used as the final ranking of the teams
to prevent overfitting to the test dataset.

The participants’ test set solutions were evaluated based
on a weighted sum of three metrics, one for each of the three
sea ice parameters. The SIC score was evaluated using the
R2 coefficient. R2 captures the regression aspect of sea ice
concentrations (inter-class relationship, i.e. 10 % SIC being
closer to 20 % than 30 %) and can be expressed as a percent-
age. It is formulated as follows:

R2
= 1−

∑Npixel
i=1 (ytrue

i − y
pred
i )2∑Npixel

i=1 (ytrue
i − ŷ

true)2
, (1)

where ytrue
i is the true ith pixel, ŷtrue

i is the mean true pixel
value, and ypred

i is the predicted class of the ith pixel.
The SOD and FLOE parameters were both evaluated using

the F1 score. SOD and FLOE categories, as opposed to SIC,
are not directly linked; thus, a classification-oriented metric
was deemed to be suitable for this evaluation. F1 is the har-
monic mean of each class’s precision and recall metrics. The
F1 score for each ice parameter considers the dataset’s sea
ice class imbalance by accounting for the number of pixels
for each class. The F1 score can further be expressed as a
percentage and is formulated as follows:

F1= 2
precision · recall

precision+ recall
,

where precision=
TP

TP+FP
,

and recall=
TP

TP+FN
. (2)

Here, TP is the number of true positives, FP is the number of
false positives, and FN is the number of false negatives.

The three sea ice parameter scores were combined into one
final score using a weighting scheme. With input from the
expert panel, the final score emphasised SIC and SOD over
FLOE as FLOE was deemed to be less important for the ice
service and users by the ice-charting experts. The weights
were 2/5 for both SIC and SOD, and it was 1/5 for FLOE.
For the metric calculations, pixels that did not contain a sea
ice class, e.g. land, were discounted.
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2.2 Get-started tools

To increase the accessibility of the challenge, get-started
tools with Python functions and three notebooks were pre-
pared by the organisers. One notebook served as a the-
matic and data exploration introduction. Another provided
a model-training setup implemented in PyTorch and, finally,
a notebook to produce a test solution. In addition, a simple
U-Net model implemented in PyTorch provided a common
starting point for participants. These files and notebooks of-
fer examples of how to carry out model-training experiments
but were not required to be used.

3 The AI4Arctic Sea Ice Challenge Dataset

The AI4Arctic Sea Ice Challenge Dataset (ASID Challenge)
includes 533 co-located and georeferenced scenes between
January 2018 and December 2021 distributed across the
Canadian and Greenlandic Arctic, as illustrated in Fig. 1. In
this section, the data variables are examined briefly. Please
see the official dataset manual in Buus-Hinkler et al. (2022a)
for more details. Each scene contains sea ice chart reference
data, SAR images, passive microwave radiometry measure-
ments, and numerical weather prediction parameters. The
following subsections describe these data sources and a pre-
pared and ready-to-train dataset.

3.1 Sea ice charts – reference data

Sea ice charts describe the local ice conditions at the time
of acquisition of the input satellite imagery based on pro-
fessional interpretations of SAR images and are represented
distinctly as polygons of relatively homogeneous areas of
sea ice, steered by the common guidelines outlined in the
SIGRID-3 standard but still being subject to individual inter-
pretation. There is a natural limitation as to how many details
and polygons the ice analysts can manually draw within the
chosen scale and coverage of the ice map. At the same time,
there is a focus on safety and not delaying the information
provided to the users more than necessary. Therefore, the
polygons’ boundaries are very accurately drawn but cover
large areas with a subsequent low effective resolution. Un-
derstandably, manual production cannot relay ice informa-
tion with a level of detail that matches the high-resolution
and multidimensional electromagnetic SAR textures.

Studies have suggested that the SIC between ice analysts
can vary by, on average, 20 % and, in worst cases, by up to
60 % (Karvonen et al., 2015). Similarly, low SICs (10 %–
30 %) can be overestimated, while middle SIC classes (50 %–
60 %) can exhibit a wide spread with high variability (Cheng
et al., 2020). Additionally, the marginal ice zone typically re-
ceives more attention during the analysis as these areas see
higher maritime activity (Saldo et al., 2021, manual). Despite
these uncertainties, pixels in the sea ice charts are treated as
equally valid.

The sea ice charts used in the challenge dataset are either
produced by the Canadian Ice Service (CIS) or the Green-
land Ice Service at DMI, illustrated in Fig. 1 in red and blue,
respectively, with a lighter colour indicating more scenes.
Each chart is temporally and geographically matched with
a Sentinel-1 image within 5 or 15 min of the time stamp
of the DMI and CIS ice charts. The original ice chart data
are contained in an Esri shapefile format, projected to the
Sentinel-1 SAR geometry and rasterised to a map match-
ing the pixel spacing of the SAR image with polygon IDs
and an associated ice information look-up table. In the RTT
dataset version, the ice chart was converted into three maps,
one for SIC, SOD, and FLOE, using the ice codes defined in
the SIGRID-3 convention. SIC is converted into 11 classes
from 0 %–100 % in discrete increments of 10 %. The SOD
is divided into six classes: open water, new ice, young ice,
thin first-year ice (FYI), thick FYI, and old ice. FLOE is
converted into seven classes: open water; cake ice; small,
medium, big, and vast floes; and bergs. Some of these classes
result from merging multiple approximate ice codes, as high-
lighted in the dataset manual (Buus-Hinkler et al., 2022a). In
addition, as the SOD and FLOE are given as partial SOD
or FLOE concentrations, there may be multiple categories of
SOD or FLOE mixed within each ice polygon without the
exact location being provided. To select the SOD or FLOE
class while minimising ambiguity, the SOD or FLOE class
must be dominant. Here, we defined an SOD or FLOE class
as being dominant if the associated partial concentration is
at least 65 %. Therefore, there are numerous polygons where
a total SIC exists but where the polygon does not have an
associated SOD and/or FLOE. Despite this effort, multiple
classes may still be mixed in each polygon. An ice chart con-
version Python script was provided for participants wishing
to use the raw dataset. The three sea ice parameter maps as-
sociated with Fig. 2 are illustrated in Fig. 3, shown in the
original SAR measurement geometry. In this example, there
are polygons without a dominant SOD and FLOE, which are
shown as white – similarly to land or areas with no measure-
ment values.

3.2 Synthetic aperture radar

The primary data source is the two-channel, dual-polarised
(HH and HV) Sentinel-1 C-band SAR with a centre fre-
quency of 5.410 GHz. The utilised data product is the level-1,
ground-range-detected, medium-resolution image acquired
in the extra-wide operational mode (Torres et al., 2012). The
SAR image has been noise-corrected using the algorithm de-
scribed in Korosov et al. (2022). In addition, the SAR inci-
dence angles and a pixel-wise distance-to-land map are in-
cluded. The closest temporally overlapping SAR images in
relation to the ice chart in Fig. 2 and ice parameters in Fig. 3
are illustrated in Fig. 4 in the original SAR geometry.
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Figure 1. Overview of the 513 training scenes in the AI4Arctic Sea Ice Challenge Dataset. Red and blue squares illustrate scenes with ice
charts from the Canadian and Greenland ice services, respectively. Increasingly bright colours indicate a larger number of charts.

3.3 Passive microwave radiometry

The challenge dataset also contains overlapping level-1b
brightness temperatures measured with the AMSR2 passive
microwave radiometer on board the JAXA GCOM-W satel-
lite. The maximum time difference between the acquisition
time of the Sentinel-1 image and the overlapping AMSR2
swath is 7 h. The AMSR2 measurements are resampled to
the Sentinel-1 geometry to the coordinates of every 50× 50
(2 km) pixel using a Gaussian weighted interpolation for each
polarisation (vertical and horizontal) and frequency (6.9,
7.3, 10.7, 18.7, 23.8, 36.5, 89.0 GHz). Examples of AMSR2
measurements corresponding to the ice maps in Fig. 3 and
the SAR data in Fig. 4 are illustrated in Fig. 5. Auxiliary
AMSR2 variables include the AMSR2 swath names of the
used AMSR2 level-1b product(s), AMSR2 swath numbers
(relevant when mosaicking multiple swaths), and the time
delay(s) between AMSR2 and Sentinel-1.

3.4 Numerical weather prediction parameters

Several numerical weather prediction parameters from the
ERA5 (ECMWF Reanalysis v5) are included (Hersbach
et al., 2023). The parameters are resampled to the Sentinel-
1 geometry in the same manner as the AMSR2 brightness
temperatures using a Gaussian weighted interpolation. The
parameters are illustrated in Fig. 6 and encompass the 2 m
air and skin temperature, the total column water vapour and

cloud liquid water, and the eastward and northward 10 m
wind components rotated to account for the Sentinel-1 flight
direction.

3.5 Ready-to-train (RTT) dataset version

Some preprocessing choices were already made for the par-
ticipants for the RTT dataset version. To reduce the barrier of
entry, the original 40 m pixel spacing (∼ 10000×10000 pix-
els) in the SAR (and ice charts, etc.) data was downsampled
to 80 m (∼ 5000× 5000 pixels). The participants were also
required to deliver sea ice maps in this pixel spacing. The
SAR image, distance-to-land map, and incidence angle data
were downsampled using a 2× 2 averaging kernel, whereas
ice charts were reduced spatially using a 2× 2 max ker-
nel. This is followed by an alignment of masks (NaN val-
ues) across the data, except for the sub-gridded variables,
e.g. AMSR2 data, and the SOD and FLOE polygons with
no dominant ice code. Afterwards, the scenes were standard-
scaled using the mean and standard deviation of all train-
ing data within each data channel. Finally, pixels without ice
chart values were replaced with the values 2 and 255 in the
SAR images and ice charts, respectively. This was carried
out to represent non-data or masked pixels and to enable the
discounting of these pixels during loss optimisation and the
computation of the evaluation metrics.
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Figure 2. Manually produced sea ice chart from the Greenland Ice Service containing polygons with an associated ice “egg code” describing
ice conditions. The image is depicted in geographical coordinates. Greenland Strait, southeastern Greenland. The scene was acquired on
March 25, 2018.

Figure 3. SIC, SOD, and FLOE maps from the ice chart in Fig. 2. White pixels are masked areas from either no information, land, or
ambiguous polygons with no dominant ice class for the respective parameter. The colour code is slightly different than in Fig. 2. The images
are depicted in the original SAR geometry.

4 Participation and submission results

The competition received good traction from a diverse set of
stakeholders ranging from academics, students and industry.
Figure 7 illustrates (a) the total number of registered teams
(multiple users can be within each team) over the course of
the competition, (b) the total number of team submissions,
and (c) the total number of submissions per week. The com-
petition saw a continuous influx of users with fewer registra-
tions towards the end of the competition. At the end of the
competition, a total of 129 teams and 179 associated users

had registered. Participants started delivering their test set so-
lutions around halfway through the competition, with a peak-
ing submission rate of around two-thirds of the way through
the competition and a spike in submissions nearing the clos-
ing date. In total, 494 test solutions were submitted from 34
different teams.

4.1 Submission results

The top-performing teams are listed in Table 1, showcasing
the combined final private score, as well as the private score
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Figure 4. HH and HV SAR images corresponding to the ice chart illustrated in Figs. 2 and 3 in σ0 dB backscatter values and depicted in the
SAR acquisition geometry.

Figure 5. An example of the available horizontally polarised brightness temperatures in Kelvin from the AMSR2 passive microwave ra-
diometer onboard the JAXA GCOM-W Satellite covering the scene in Fig. 2 and viewed in the same perspective as Figs. 3 and 4.

for each ice parameter and the number of submissions per
team. In the bottom row, the mean and standard deviation
(SD) of the top-five teams are included. The overall winner
of the AutoICE challenge was the combined team from the
Department of System Design Engineering at the University
of Waterloo (UW), encompassing a total of 14 people. UW
achieved a combined final score of 86.39 %. In addition, the
team scored highest on both the SIC and SOD while scor-
ing the lowest among the top-five teams on the FLOE. The
UW team consisted of post-doc, PhD, and Masters students,
who were supervised by faculty staff and were very engaged
during the competition. In total, UW submitted test solutions
from a total of seven team accounts that were all placed in the

top seven on the leader board. In total, UW submitted 170
test solutions across their team accounts, which was more
than the other four top-five teams combined.

Second place went to the team PWGSN, consisting of two
computer science Masters students and their PhD candidate
supervisor from the Warsaw University of Technology. with
a combined score of 82.48 %, the highest score on FLOE,
and a total of 42 submissions. In third place, the team crissy
scored 81.17 % with a single submission. Fourth place went
to sim, an engineer at Ubotica Technologies who submitted
seven test solutions with a score of 80.61 %. Finally, in fifth
place, jff scored 80.56 % with a total of 59 submissions. Note
that crissy and jff have not shared their affiliations.
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Figure 6. An example of the numerical weather prediction parameters including 2 m air and skin temperature, total column water vapour
and cloud liquid water, and eastward and northward 10 m wind components for the scene depicted in Fig. 2 and using the same perspective
as Figs. 3–5.

Figure 7. User challenge engagement. Panel (a) shows the total accumulated registered teams per day on the AI4EO platform. Panel (b) il-
lustrates the total accumulated submissions per day during the competition. Panel (c) highlights the number of submissions per week over
the course of the challenge.

From the top-five participants’ mean and SD ice parameter
scores in Table 1, it is clear that the SIC was the variable
that all participants scored the highest numerical percentage
on, followed by the SOD and, finally, FLOE. The SD values
appear to be highest for the SOD, though skewed by the high
UW performance. Excluding the UW SOD score, the SOD
SD would be the lowest among the three ice parameters at
1.5 compared to 1.8 and 2.4 for SIC and FLOE, respectively.

5 Top submission solutions

In the following subsections, three of the top-five teams –
UW, PWGSN, and sim teams – have contributed short de-
scriptions of their model solutions. The two remaining teams
have not provided information about their personal models.
All participants in the AutoICE Challenge were invited to
submit a full description of their solutions to the special issue
in The Cryosphere, “AutoICE: results of the sea ice classifi-
cation challenge”. In the proceeding, we refer to the individ-
ual teams describing their solutions.
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Table 1. Final ranking and scoring of the top-five participating teams, including the individual ice parameter scores; the mean ice parameter
scores across the teams, along with the standard deviation; and the total submissions for each team. Bold text indicates the highest scores and
the winning team.

Rank Team Final SIC SOD FLOE Submissions

1 University of Waterloo 86.39 % 92.02 % 88.61 % 70.70 % 170
2 PWGSN 82.48 % 89.70 % 76.94 % 79.12 % 42
3 crissy 81.17 % 85.35 % 80.26 % 74.66 % 1
4 sim 80.61 % 87.22 % 77.52 % 73.59 % 7
5 jff 80.56 % 86.68 % 77.18 % 75.10 % 59

Mean – 88.19 % ±2.66 80.10 % ±4.94 74.63 % ±3.04 –

Figure 8. The structure of the multi-task U-Net-based model, with output layers in yellow utilised by the UW team.

5.1 Rank 1 – University of Waterloo

To streamline our model development process, we utilised
the RTT version of the AI4Arctic Sea Ice Challenge dataset
(Buus-Hinkler et al., 2023b). To ensure consistent predic-
tions with the ice-chart-derived label maps, it is crucial to in-
crease the geographical field of view of the model. To achieve
this, we downsampled the dual-polarised SAR images, dis-
tance maps, and corresponding ice-chart-derived label maps
by a specific ratio (10 in this work). We randomly extract
patches of size 256× 256 during training from the down-
sampled SAR images. The AMSR2 and ERA5 variables are
also resampled to the same size and are interpolated within
the geographical areas covered by the patches. For validation

and testing, entire SAR scenes and distance maps are down-
scaled and combined with other upsampled variables as in-
put to the trained model. The outputs are then interpolated
back to the original size for evaluation. Table 2 lists the best
combination of input variables. Additionally, to incorporate
spatial and temporal information, we interpolate the latitude
and longitude coordinates of the Sentinel-1 SAR geographic
grid points to match the size of the input SAR image and to
add the acquisition month of each SAR scene to each pixel
to represent the time information.

Regarding the model architecture, we construct a multi-
task U-Net that simultaneously estimates three sea ice pa-
rameters, as depicted in Fig. 8. It consists of four encoder–
decoder blocks with varying numbers of filters. To generate
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Table 2. The combination of input variables that produced the highest score for the UW team.

Feature Variable description Total number
abbreviation of channels

HH, HV, IA Dual-polarisation SAR scene with inci-
dence angle information

3

DM Distance-to-land map for all pixels 1

AMSR2 subset Dual-polarisation AMSR2 brightness
temperature data in 18.7 and 36.5 GHz

4

ERA5 subset 10 m wind speed, 2 m air temperature,
total column water vapour, total column
cloud liquid water

5

Loc, time Latitude and longitude of each pixel and
scene acquisition month

3

predictions for SOD and FLOE, the output feature maps from
the final decoder are separately fed into 1×1 convolution lay-
ers, with the number of filters corresponding to the number of
classes. This generates pixel-based classification results (i.e.
segmentation). As for SIC, a regression head is added at the
end to produce SIC estimates. The model-training details, in-
cluding hyperparameter combinations that yield the best val-
idation accuracy, are specified in Table 3. We employ cosine
annealing as a learning rate schedule, which allows the model
to converge to a reasonable solution by cyclically adjusting
the learning rate. Each epoch comprises 500 iterations, with
patches randomly sampled from the training scenes in each
iteration. Through experimentation, we determine that using
the mean square error (MSE) loss for SIC and the cross-
entropy (CE) loss for SOD and FLOE achieves the highest
testing accuracy. To expedite the convergence of the three
scores, we assign a larger weight value to the CE losses rela-
tive to the MSE loss, as shown in Table 3. To ensure consis-
tency between validation and testing accuracy, we select 18
SAR scenes from the training data that closely match the ac-
quisition locations and time periods of the testing scenes, cre-
ating a separate validation set. A combined score, following
the metrics given in the competition, is calculated from the
validation set at the end of each epoch. The model parameters
are updated and saved if the current epoch’s score surpasses
all previous scores. The final saved model is employed to
generate predictions for the testing data. All experiments are
conducted on the Narval cluster of Compute Canada (Bald-
win, 2012) using an NVIDIA A100-SXM4-40GB GPU and
128 GB of memory with the PyTorch 1.12 library.

Among the submissions from over 30 teams worldwide,
the UW team’s method achieved the highest combined score
of approximately 86.4 %. In particular, it was observed that
the UW team’s method outperformed other methods on SOD
(8 percentage points higher than the following best) and SIC
scores (2 percentage points higher than the next best). As
the ice-chart-derived labels for the testing data were released

after the competition ended, a comprehensive analysis of the
experimental results will be presented in a forthcoming paper
for publication.

5.2 Rank 2 – PWGSN

For all experiments conducted during the competition, the
RTT version of the AI4Arctic Sea Ice Challenge dataset
(Buus-Hinkler et al., 2023b) was used. The data were split
into training (502 scenes) and validation (10 scenes) datasets.
An epoch was defined as an iteration over all available train-
ing scenes. During each step, one patch size of 224× 224
pixels was selected according to the undersampling proce-
dure in Fig. 9.

Each scene was divided into a grid of patches using a slid-
ing window of size 224× 224 pixels with a step of 22 pix-
els. Each patch was classified into one of the three possi-
ble classes, depending on the share of open-water pixels (s):
open water (s = 0.9), water–ice edge (0.2 5 s < 0.9), and ice
(s < 0.2).

During an epoch, patches were randomly selected from
scenes to approximately satisfy the predefined class distribu-
tion, implying that the share of ice-only patches in an epoch
should be close to some value, p, and the share of water–ice
edge patches should be close to another value, q, but without
taking image, region, or season into account. the PWGSN
team achieved the best results for p = 0.1 and q = 0.2.
Training examples were collected into eight-element batches.
Training observations consisted of all 24 channels available
in the data. Low-resolution channels were upsampled to the
size of SAR images. The following data augmentations were
applied in an effort to mitigate overfitting: rotations, flips,
multiplicative noise, and slight distortions. It is worth noting
that only transformer-based architectures were prone to over-
fitting – for other architectures tested, including CNNs, data
augmentations had no positive impact on the metrics.
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Table 3. Training specifications of the UW team model solution.

Optimiser SGDM
Learning rate 0.001
Weight decay 0.01
Scheduler Cosine annealing
Batch size 16
Number of iterations per epoch 500
Total epochs 300
Number of epochs for the first restart 20
Downscaling ratio 10
Data augmentation Rotation, flip, random scale, CutMix
Patch size 256
Loss functions MSE for SIC, CE for SOD and FLOE
Total loss calculation SIC× 1+SOD× 3+FLOE× 3
Number of validation scenes 18

Figure 9. The undersampling procedure used by the PWGSN team, composing the training dataset with the approximately imposed class
frequency.

A modified semantic segmentation model was used with
an adjusted number of output heads. This approach enabled
the PWGSN team to make SIC, SOD, and FLOE maps si-
multaneously. The model returned three three-dimensional
tensors with an estimated likelihood of pixels belonging to
a particular class. An ensemble of 10 models was created to
generate the final results. Outputs from each of the models
were merged using a majority-voting mechanism. All of the
models in the ensemble shared the same architecture but dif-

fered in the saved model parameter checkpoint, loss function,
augmentations, and the imposed data distribution.

Validation and test scenes were divided into patches (224×
224 pixels, 512×512 pixels, and 1024×1024 pixels) due to
memory limitations on the utilised GPU. Predictions were
made on each patch separately and were then combined to-
gether into the final outcome. Different tiling techniques
were used during this process, including overlapping the
patches, rotating and averaging, and smooth blending, as in-
spired by Chevalier (2017).

The Cryosphere, 18, 3471–3494, 2024 https://doi.org/10.5194/tc-18-3471-2024



A. Stokholm et al.: The AutoICE Challenge 3483

Several convolutional and vision transformer architec-
tures, including EfficientUNet, ResNeXt and DeepLabV3,
have been tested. The most promising results were achieved
with a transformer-based architecture, where an altered
CoaT-Lite Medium (Xu et al., 2021) was used as the encoder
and an altered DAFormer (Hoyer et al., 2022) was used as the
decoder. For the encoder part, transfer learning was applied
(weights were pre-trained on the ImageNet dataset). The ar-
chitecture was inspired by a Kaggle competition notebook
(Cijov, 2022). The number of the encoder input channels was
adjusted to 24 dimensions available in the RTT dataset. For
this purpose, the pre-trained weights of the first convolution
layer were averaged and then expanded to the required quan-
tity of input channels.

The distribution of classes for all three maps was highly
unbalanced. Thus, experiments were set up in which mod-
els were trained using cross-entropy (CE), weighted cross-
entropy (WCE), focal, dice, and ordinal loss. The best results
were obtained with CE, WCE, and a mixture of CE and dice
loss with the ratio of 0.7/0.3. The Adam optimiser was ap-
plied during the training. In most of the experiments, models
were trained in two steps. At first, the learning rate was set
to η = 10−4 while training the model for approximately 50
epochs. Then the model was fine-tuned for the subsequent
300 epochs with η = 10−5.

5.3 Rank 4 – sim

The best solution by sim was based on U-net architecture
(Ronneberger et al., 2015), which effectively captures spa-
tial information and preserves fine details, making it suitable
for tasks requiring pixel-level segmentation accuracy. One of
the primary reasons for choosing U-net as the baseline archi-
tecture was the team’s prior experience with the architecture.
The U-net model has been previously adopted for Earth ob-
servation data-processing tasks, particularly for onboard pro-
cessing, where limited computational resources are available.
The architecture performs well on edge processing hardware
(Dunkel et al., 2022). In addition, the architecture required
minimal adaptation from the provided code base, enabling
the sim team to focus on optimising its performance for the
challenge.

In the search for an appropriate network architecture, a
secondary solution was explored in the form of DeepLabV3
(Chen et al., 2017). The reasoning for choosing DeepLabV3
was that this state-of-the-art deep learning architecture for
semantic image segmentation could be used to segment sea
ice since it excels in capturing multi-scale contextual infor-
mation. The team hypothesised that this could improve the
overall performance due to the scale differences in terms of
ice formations. However, despite reasonable results, the team
did not find this model architecture to be able to outperform
our U-Net solution. In addition, due to the larger size of the
network, iterations proved to be more time-consuming than

the U-Net architecture and more demanding in terms of com-
putational resources.

For their training pipeline, the sim team utilised the code
and data provided by the competition organisers as these re-
sources proved to be a powerful starting point. Both the get-
started notebook and the RTT dataset (Buus-Hinkler et al.,
2023b) were leveraged.

The U-Net was trained with the Adam optimiser, with a
learning rate of 10−4 and using a CE loss function. A total of
225 epochs with 100 iterations per epoch were used. For each
iteration, a batch was filled with 32 random crops of 256×
256 pixels. All input channels were used as input; i.e. the
input tensor was of shape [32, 24, 256, 256] (batch, channel,
H, W). This model reached an overall score of 80.6 %, with a
score of 87.2 % for the SIC, 77.5 % for the SOD, and 73.6 %
for the FLOE.

The team’s best DeepLabV3 model was trained for 76
epochs with 500 iterations per epoch and a batch size of
8. For this training pipeline, the Adam optimiser was used,
with a learning rate of 10−5 and CE loss as well. The team’s
best-performing DeepLabV3 model performed worse overall
than the U-net, with a public score of 79.1 %. Interestingly,
the network outperformed U-Net significantly on FLOE seg-
mentation, with a public score of 74.5 %. For SIC, the best
public score was close to U-Net with 84.8 %, and SOD was
significantly worse with 75.8 %. These results suggest that an
ensemble of multiple network architectures could potentially
outperform a standalone model by leveraging their comple-
mentary strengths. However, due to time constraints, further
investigations into ensemble models were not pursued.

6 Comparison of top-five submissions

For a deeper dive into the solution results submitted by the
top-five teams, output maps for two example SAR scenes are
highlighted. Figure 10 illustrates a scene in the native mea-
surement geometry from Hudson Bay in the Canadian Arc-
tic, captured in July 2018, along with a sea ice chart from the
Canadian Ice Service. In the top row, the Sentinel-1 HH and
HV channels are shown, followed by rows for the SIC, SOD,
and FLOE ice parameters. The columns show the reference
sea ice chart, the solutions by the top-five teams, the SD be-
tween the solutions, and the accumulated error between each
solution and the reference. The SD and error colour scales are
from 0 to the maximum SD, defined as the maximal possible
SD. Likewise, the error goes from 0 to the maximal possi-
ble accumulated error across the solutions. The SD indicates
where the top-five solutions disagree, while the error shows
locations where the top-five solutions disagree with the ref-
erence.

The scene in Fig. 10 was acquired during the Arctic sum-
mer season and showcases sea ice in warm conditions with
varying SICs covering the majority of the scene, while most
ice is on the right-hand side of the image, with an area of ice
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Figure 10. Hudson Bay, Canada. First row: SAR HH and HV images, acquired on 7 July 2018. Reference ice chart labelled by the Canadian
Ice Service. Second row: SIC reference and top-five solution SIC maps, with the standard deviation between solutions and the accumulated
map of error between solutions and the reference. Max indicates the maximum possible standard deviation of 4.9, 2.4, and 2.9 for SIC, SOD,
and FLOE, respectively, or the maximum accumulated error assuming a linear distance between classes of 50, 25, and 30 for SIC, SOD, and
FLOE, respectively. The third row contains the SOD, and the fourth row contains the FLOE. White areas indicate a mask of either land with
no information or ice polygons without a dominant ice code.

in the centre of the image stretching towards the left side. The
top-five solutions agree on the separation between open wa-
ter and sea ice. The SIC solutions have the lowest SD among
the three sea ice parameters, and the errors are most promi-
nent near the ice–water boundaries and in the upper portion
of the scene. In the SOD maps, all solutions are consistent
in that they agree on the dominant class being thick FYI, but
they disagree on the location of the ice edge, as seen in the
SD and error images. This is persistent across the three ice
parameters. Still, as the SD and error are calculated based on
the assumption of a linear distance between classes, the dif-
ference becomes most notable in the SOD as the difference
between open water and thick FYI is large here. The FLOE

parameter is also relatively consistent across the solutions.
However, the UW team appear to have hit the location of the
vast floe class given in the reference ice chart more accurately
than the other teams.

The second scene example is illustrated in Fig. 11 with an
ice chart labelled by the Greenland Ice Service at DMI, show-
casing the large Scoresby Sound (Kangertittivaq) fjord in
eastern Greenland. The scene was acquired in October 2020
and, thus, at the beginning of the cold period, with newly
formed ice in the fjord and old ice along the coast in a cake
ice form and with small floes. This scene also contains many
different SICs, varying SAR signatures, no strong wind pat-
terns, and dim ice signatures in the fjord. Again, the separa-
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Figure 11. Scoresby Sound (Kangertittivaq), East Greenland. First row: SAR HH and HV images, acquired on 10 October 2020. Reference
ice chart labelled by Greenland Ice Service at DMI. Second row: SIC reference and top-five solution SIC maps, with the standard deviation
between solutions and the accumulated map of error between solutions and the reference. Max indicates the maximum possible standard
deviation of 4.9, 2.4, and 2.9 for SIC, SOD, and FLOE, respectively, or the maximum accumulated error assuming a linear distance between
classes of 50, 25, and 30 for SIC, SOD, and FLOE, respectively. The third row contains the SOD, and the fourth row contains the FLOE.
White areas indicate a mask of either land with no information or ice polygons without a dominant ice code.

tion between open water and ice is strong, with all SIC solu-
tion maps capturing the complexity of the labels well, with
low inter-solution SD and error values. The solutions also, to
a large extent, identified that the ice is old along the coast and
new or young in the fjord. There is also a considerable SOD
error in the centre of the image, which is caused by many of
the solutions saying that open water is present here instead
of old ice. As the SIC is low here, there is quite a bit of open
water, implying that this error is not problematic but perhaps
rather an expression of the ice-charting methodology and the
way polygons were drawn. This could be due to a tendency of
the ice services to be conservative in their delineation of ice
polygons (i.e. the tendency, in some cases, to draw more ice

than is present), or it could be a result of the coarser resolu-
tion of the ice charts (i.e. not all openings in the sea ice in the
SAR imagery are resolved in the ice charts); it could even be
a combination of both. The produced FLOE maps, however,
have a large SD, with only one solution correctly identifying
the cake ice patterns along the coast. In contrast, three solu-
tions label it as big or vast floes, which naturally gives rise to
a significant error. Another notable feature is the model out-
put submission from crissy that appears to be blocky. This
is likely a result of outputting small sections of the map at a
time and stitching the image together, which typically limits
the field of view of the model and its capability to produce
continuous-looking outputs.
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Table 4. Average percentage sea ice parameter class accuracies, ± standard deviation and value range indicated by the minimum and
maximum for SIC, SOD, and FLOE for the top-five participants. Ice implies ice pixels labelled as any true SIC above 0 %. Intermediate
SICs are compressed to one class, indicating the percentage of intermediate class predictions correctly labelled as a true intermediate class.
Open-water accuracies for SOD and FLOE are omitted for simplicity.

SIC Open water Ice Intermediate 100 % Ice

96.85 % ±2.53% 94.98 % ±2.31% 75.53 % ±10.08% 83.46 % ±12.20%
[92.01 %, 98.57 %] [92.23 %, 98.89 %] [66.92 %, 93.53 %] [59.89 %, 93.92 %]

SOD New ice Young ice Thin FYI Thick FYI Old ice
15.58 % ±9.39% 19.73 % ±3.13% 20.55 % ±15.61% 75.92 % ±10.60% 42.11 % ±22.17%
[3.86 %, 32.48 %] [15.85 %, 24.62 %] [2.75 %, 44.19 %] [58.16 %, 89.11 %] [17.93 %, 82.71 %]

FLOE Cake ice Small Medium Big Vast Bergs
14.26 % ±28.53% 18.81 % ±14.86% 21.43 % ±7.85% 50.44 % ±5.31% 60.38 % ±12.52% 13.87 % ±27.73%
[0 %, 71.32 %] [4.35 %, 37.97 %] [12.61 %, 35.64 %] [41.81 %, 58.01 %] [36.52 %, 71.21 %] [0 %, 69.34 %]

Figure 12. Confusion matrices for (a) SIC, (b) SOD, and c FLOE in percentages from 0 % to 100 %. Diagonal elements are highlighted with
black borders and represent the accuracy for each class.
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The average percentage class accuracies ± the standard
deviation and value range indicated by the minimum and
maximum for each sea ice parameter are presented in Table 4.
For simplicity, the open-water accuracy is only included un-
der the SIC class performance as this ice parameter contains
the most pixels (due to some polygons not having dominant
SOD or FLOE). In addition, similarly to Stokholm et al.
(2023), SIC performance can be summarised using macro
classes, open water, any ice class (“ice”), true intermediate
pixels outputted by the model as any intermediate class, and
100 % sea ice. This is due to the relatively large uncertainties
in the intermediate classes as highlighted in Karvonen et al.
(2015) and Cheng et al. (2020), resulting in the accuracy for
individual SIC classes being uninformative. Here, the mod-
els’ capabilities in separating water and ice are highlighted,
with a high open-water accuracy of 98.65 % and 94.98 % of
ice being labelled as any SIC above 0 %, with associated low
standard deviations. Further high accuracies are obtained in
the intermediate and 100 % ice categories at 75.53 % and
83.46 %, respectively, though with higher standard devia-
tions. For the SOD parameter, it is clear that new and young
ice, as well as thin FYI, are challenging for the models, while
the thick FYI has the highest score of 75.92 % followed by
old ice with an accuracy of 42.11 % with a very large de-
viation in performance. Finally, the FLOE scores highlight
difficulties with cake ice and small and medium floes, while
big and vast floes received higher accuracies of 50.44 % and
60.38 %, respectively. Finally, bergs were the most difficult,
with an accuracy of merely 13.87 %. Cake ice and bergs
exhibit the largest performance difference, with accuracies
varying between 0 and 71.32 % and 69.34 %, respectively.

To expand on the class accuracies, confusion matrices for
each sea ice parameter for the combined top-five submissions
are included in Fig. 12, with (a) SIC, (b) SOD, and (c) FLOE.
The matrices show percentages of predicted classes in con-
trast to the actual classes. Each row sums to 100 %, and the
diagonal elements are demarcated with black borders and in-
dicate the percentage of individual correctly labelled classes.
In Fig. 12a, the predictions align well with the diagonal, with
notable exceptions of 10 %, 40 %, 60 %, and 80 % where
the submissions tend to produce fewer class outputs, indicat-
ing that the models prioritise the neighbouring classes. The
deviation from the actual to the predicted intermediate SIC
appears to be within ±2 classes; e.g. models predict 70 %
classes for actual classes of 50 %–90 %. The submissions
also have high accuracies for open water and 100 % SIC.
However, nearly half the actual 10 % class and 90 % class
were predicted to be open water and 100 % SIC, respectively.

For SOD in Fig. 12b, the same tendency appears, with ac-
tual and predicted classes aligning with the matrix diagonal.
It appears that the submissions classify new ice and thin FYI
as young ice close to 50 % of the time, whereas the actual
young ice is predicted as thick FYI at the same rate. The
models often also appear to label old ice as thick FYI.

In the FLOE confusion matrix in Fig. 12c, the predicted
and actual classes align with the matrix diagonal. However,
the majorities of cake ice, small floe, and medium floe are
predicted to be big floe in addition to a notable portion of
vast floe and bergs. Most actual berg classes are predicted
to be open water. The test scene with bergs consists of SIC
areas of less than 50 % and the majority of 30 % of less. In
addition, if the areas mostly consist of small bergs, a lot of
ocean will be present, which may confuse the models.

7 Discussion

Overall, the top-five participants scored well on the selected
metrics and showed strong separation between open water
and sea ice. However, as indicated by Table 4 and Fig. 12, the
models struggled to classify the SOD classes new ice, young
ice, and thin FYI correctly but tended to follow the matrix
diagonal in the confusion matrices. Similarly, cake ice, small
and medium floes, and bergs proved to be challenging for the
top participants. As the FLOE parameter score was substan-
tially numerically lower than the SIC and SOD scores, addi-
tional research on improving it is warranted. It is plausible
that participants gave less priority as the weight for this pa-
rameter was half that of SIC and SOD. This lower weight was
assigned because the ice-charting experts in the AI4Arctic
external panel of experts deemed this parameter to be less
critical for the ice service end users. The ice charts used as
label data in the challenge are not produced with associated
uncertainties for the SIC, SOD, and FLOE information. Sup-
pose the FLOE parameter is generally given less attention
during the charting process. In that case, there might be a
higher degree of uncertainty accompanying this parameter so
that the label quality could be lower.

7.1 Top-five team approaches

Table 5 summarises the main characteristics of the solutions
presented by the three top-five teams, including the version
of the dataset used; the preprocessing steps taken; data load-
ing; implementation details, such as the model architecture
and model optimisation; and, finally, the teams’ technical ex-
perience. All three top-five teams used the RTT dataset. Two
teams used or modified the U-Net model provided, while two
teams added data augmentation. All teams applied the same
approach to feeding the model different data types by upsam-
pling coarse-resolution variables with the get-started tools
and ingesting them with the SAR data. Two teams applied
more advanced model optimisation strategies with cosine-
annealing learning rate and transfer learning with weights op-
timised on the ImageNet dataset (Russakovsky et al., 2015).

The three teams had different professional backgrounds,
with sea ice domain experts, AI practitioners, and space en-
gineering knowledge, which is thought to have affected the
variety of solutions presented and led to some interesting dis-
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Table 5. Summary of the three top-five teams’ approaches, including dataset version; the preprocessing steps taken; how the data were
loaded; implementation details, such as model architecture and model optimisation approach; and, finally, the teams’ technical backgrounds.

Team Dataset Preprocessing Data loader Implementation Experience

1 – UW RTT downsample SAR, upsample
coarse-resolution variables,
lat./long. and time, data aug-
mentation

get-started tools U-Net architecture, cosine-
annealing LR* scheduling

sea ice + AI

2 – PWGSN RTT data augmentation, upsampling
coarse-resolution variables

new sampling method transfer learning and vision
transformer

AI

4 – sim RTT upsampling coarse-resolution
variables

get-started tools U-Net architecture, constant
LR*

space

* Learning rate

cussions. Domain knowledge allowed the UW team to tin-
ker with the input and output, while AI expertise allowed
for more advanced modelling architectures in the PWGSN
team. Fusing the two approaches could lead to further im-
provements, as suggested by the PWGSN team during the
winners’ event.

UW was the only team to apply additional preprocess-
ing steps by downsampling the SAR data before ingesting
it into the network. This increases the effective geographi-
cal field of view of the model, allowing it to see informa-
tion further away when deciding the class for a particular
pixel. This approach is contrary to the approaches presented
in Heidler et al. (2021) and Stokholm et al. (2022) as these
sought to achieve the same goal but by increasing the number
of pixels in the model’s receptive field instead of increasing
the area each pixel covers. This increased pixel cover has a
tradeoff in terms of a loss of effective and detailed resolution
but yields computational efficiency as fewer pixels are fun-
nelled through the network. However, as the polygons in the
ice charts are relatively coarse (except for the boundaries)
compared to the SAR data, this loss of resolution does not
appear to hamper the models from learning to replicate the
human-produced SIC and SOD ice charts. However, we see
that UW score lower in FLOE, which could be because the
delineations of the individual smaller ice floes are lost. It may
also substantially reduce the training duration and memory
requirements, allowing for quicker model iterations, which,
in addition to UW being a large team, could have increased
the iteration rate, triggering many submissions.

The UW team also provided additional information to the
model regarding the geographical location by ingesting the
latitude and longitude of the scene and the acquisition month.
It is possible that knowing the location of the scene could
be beneficial in determining the SIC and, particularly, the
SOD as multiyear ice typically drifts southwards along the
eastern coast of Greenland. In contrast, the western coast of
Greenland and the Baffin Bay area have less multiyear ice.
The SAR scene acquisition time could also be beneficial for

the model, enabling it to better capture the sea ice seasonal
changes, especially for the SOD parameter. The combination
of both the geographical location and the time of the year
could be a powerful information combination for mapping
SOD. This is supported by the ablation study in Chen et al.
(2024a), with a 9.1 % decrease in SOD performance when
removing the information.

Among the top solutions, it is interesting that UW scored
best on SIC and SOD – by a significant margin – but fifth on
the FLOE parameter. This could reflect less effort being di-
rected towards this parameter, or perhaps the high amount of
downsampling could blur the individual ice floe boundaries.
If boundaries between smaller floes are difficult to distin-
guish, it could be difficult to differentiate cake ice and small
and medium floes, which could lead to lower performances
in three of the FLOE classes. Big and vast floes do not appear
to be problematic. Across the top teams, these observations
align with the confusion matrix in Fig. 12c. This hypothesis
could be further supported in the SIGRID-3 documentation
with individual floe sizes of 30 cm–20 m for cake ice, 20–
100 m for small floes, and 100–500 m for medium floes while
considering the fact that UW downsamples with a factor 10,
giving a SAR pixel spacing of 800 m. In addition, this may
support using the native SAR pixel spacing of 40 m instead
of 80 m, which is otherwise used in the challenge.

UW investigate the effect of SAR downsampling on the
FLOE retrieval in Chen et al. (2024a), indicating a perfor-
mance loss of 5.3 % when their additional SAR downsam-
pling is removed. At the same time, SIC and SOD lose 7.3 %
and 6.5 %. However, given that the receptive field of the CNN
model is not increased, the comparison is strictly between
a lower and higher pixel coverage and, subsequently, an ef-
fective geographical field of view. In this context, the anal-
ysis has an advantage in having a larger effective geograph-
ical field of view. Ultimately, this analysis cannot conclude
whether the downsampling of FLOE delineations hampers
performance compared to not downsampling as severely and
instead relying on increasing the model’s receptive field. Em-
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pirical evidence to support this analysis could be provided by
comparing models with the same effective geographical field
of view but achieved either through downsampling or by in-
creasing the model’s receptive field by expanding the number
of pixels the model can access during individual pixel predic-
tions.

An elaborate validation scheme was applied by the UW
team, where scenes were selected to be approximate both ge-
ographically and temporally to the test set, enabled by the
date given in the file names and the geographical coordinates
provided in the files. This allowed the team to compare model
outputs more frequently to scenes that may have some infor-
mation leakage. While this validation selection is within the
challenge’s rules, it could have positively affected the team’s
scoring and final rank on the leader board. Ideally, the test
scenes should have been selected at a sufficient temporal dis-
tance to prevent any leakage from testing data to training or
validation. This is a notable takeaway for organising similar
competitions in the future.

The PWGSN team was the only one of the top-five
teams to apply vision transformers in their winning solu-
tion, which have been hailed as very potent for computer
vision but require additional computational resources com-
pared to the U-Net. The team used pre-configured weights
(transfer learning), trained on ImageNet (Russakovsky et al.,
2015), which contains large quantities of RGB images. Here,
the pre-trained weights included a three-channel input for
RGB. However, the competition data had 24 channels. Here,
PWGSN chose to average the three-channel input weights
and to repeat them to match the 24 channels. While this
is practical, the weights trained on RGB images may not
be suitable for the remote sensing and climate data, with
a particular emphasis on the AMSR2 and reanalysis data
with less-structured patterns than typical real-life images.
However, this weight-averaging approach may have been the
most feasible as the competition’s data volume may not have
been sufficient to train a vision transformer from scratch. In
addition, PWGSN implemented an alternative data-loading
scheme to speed up their training time and to mitigate class
imbalance by sampling less frequently appearing classes.

Lastly, the sim team utilised the provided get-started tools
and the provided U-Net model with tuned hyperparameters
to perform well and brought the team to a top-five rank-
ing. Therefore, it can be noted that the supporting get-started
tools provided to the participants worked well and allowed
for competitive models. Multiple teams also conducted in-
vestigations using the DeepLabV3 (Chen et al., 2017) archi-
tecture but did not achieve better results than the U-Net on
this particular segmentation task.

7.2 The state of automatic sea ice mapping

Given the decisions on design choices regarding the dataset,
the metric selection using sea ice charts, and the selection
of dominant ice classes in polygons using a threshold, the

outcome of the challenge contains some bias despite attempts
to minimise it. Nonetheless, given the large participation in
the challenge, the top teams should represent the general field
of automatic sea ice mapping and retrieval of the three sea
ice parameters, with overlapping shortcomings that can be
extrapolated to the remaining community.

Regarding SIC, models appear to be capable of identify-
ing open water and fully ice-covered areas, similarly to ear-
lier SIC works such as Radhakrishnan et al. (2021), de Gelis
et al. (2021), Tamber et al. (2022), Stokholm et al. (2023),
and Wulf et al. (2024). However, correctly assigning inter-
mediate SIC appears to remain an obstacle, as presented in
the SIC confusion matrix in Fig. 12a. Some classes appear
to be underutilised as the models do not appear to produce
many 10 %, 40 %, 60 %, and 80 % outputs often and instead
prioritise neighbouring classes. The class imbalance could
cause this, but it also appears to be similar to the results re-
ported in Kucik and Stokholm (2023) when utilising clas-
sification optimisation objectives. Given the R2 metric, this
is not penalised significantly but is apparent when inspect-
ing the class accuracies. As not all classes are utilised by
the model, it may be better to combine some neighbouring
intermediate SIC classes to simplify the problem and to mit-
igate class imbalance issues, as explored in Stokholm et al.
(2023). However, the paper only assessed the impact of sep-
arating macro classes rather than combined R2 scores when
combining classes.

Another notable element is the variation in the assigned
intermediate SIC classes in Fig. 12a, appearing as actual
classes distributed across ±2 predicted classes or 20 % SIC
in many cases. In addition, lower SIC appears to be over-
estimated as higher SIC. Middle SIC, e.g. 50 %, is widely
spread, and higher SIC is skewed towards lower concentra-
tions. These observations align with the results reported in
Wulf et al. (2024).

The SOD classes new ice and thin FYI also appear to be
difficult to predict correctly, given the SAR image, dominant
polygon ice classes, and class distribution favouring thick
FYI and old ice. Similarly, for FLOE, cake ice, small-floe,
and medium-floe predictions can be improved as these are,
to a large extent, assigned as big floe. For FLOE, the class
distribution favours big and vast floe.

Other factors could explain these shortcomings as the elec-
tromagnetic SAR signatures could be ambiguous for these
SOD and FLOE classes. There may also be underlying
bias in the ice-charting process, such as some classes being
viewed as secondary and used occasionally instead of regu-
larly. Bergs also appear to be difficult to map in the style of
the sea ice charts. Bergs often cover few pixels and may often
be in regions with low SIC, making the effective number of
berg pixels small and thus resulting in few examples for the
model to train on.
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7.3 Challenge considerations

To perform comparative studies of different SAR-based sea
ice retrievals of SIC, SOD, and FLOE to establish the state
of the art, there is a need for a standardised benchmarking
dataset. Here, the challenge has provided an initial version
of such a reference dataset, with 20 scenes selected for test-
ing the models. Naturally, evaluating the models more thor-
oughly with many more ice conditions, years, and geograph-
ical areas is desired and presents a key opportunity to fur-
ther contribute to the automatic-sea-ice-mapping community.
Creating an online dashboard (Papers With Code, 2024) with
sea ice retrieval test results akin to ImageNet (Deng et al.,
2009) could drive further competition and innovation in this
space.

One obstacle in the current evaluation of the SOD and
FLOE is the occasional absence of a dominant ice class.
Therefore, it may be helpful to evaluate on polygon level
rather than the pixel level, which could enable the use of the
partial concentrations for the evaluation of SOD and FLOE.
Despite some polygons’ lack of dominant ice types, models
can still produce segmentation results in these areas. Future
models could be able to create maps with the individual par-
tial polygon concentrations of the SOD and FLOE classes,
effectively increasing the information resolution of the maps.

For evaluation, measuring SOD performance with macro
classes similar to the SIC summary in Table 4 may be use-
ful. Macro classes could combine new and young ice as this
would allow for, at least conceptually, macro categories with
closely related ice types. Similarly, for FLOE, some combi-
nation of cake ice and small and medium floes and of big and
vast floes could be combined.

Naturally, automatic-sea-ice-mapping research could ben-
efit from an increased dataset size with thousands of scenes
and an accompanying larger testing dataset. This could
help train better models and evaluate them more generally
while minimising potential bias in the choice of the cur-
rent scenes. Work is underway to expand the current ASID
Challenge dataset to provide the ASID-v3. However, with
an increased number of scenes, the imbalance of intermedi-
ate SIC, younger SOD, and floes of smaller size is expected
to remain present. Therefore, work on incorporating better
class balancing could improve performance. However, Kucik
and Stokholm (2023) and Stokholm et al. (2023) have exper-
imented with class weight balancing when optimising SIC
models, showing an increased performance for intermediate
SIC but a lower performance for open-water and fully ice-
covered areas. Another approach could be to sample classes
with lower representation more often.

A limitation of the challenge and the developing super-
vised deep learning models in mapping sea ice information
based on sea ice chart reference data is the large polygons
with low effective resolution and the SOD and FLOE in-
formation mixed within each polygon. An open question
is whether mimicking these coarse and mixed maps is the

future for sea ice mapping. With better and more reliable
satellite communication, the polar regions have more trans-
mission bandwidth to acquire sea ice information, which
could warrant moving towards more detailed sea ice maps.
Nonetheless, using manually derived sea ice charts has fu-
elled supervised model developments with open-source and
readily available expert-labelled information without need-
ing large-scale annotation efforts in terms of SAR imagery.
However, the community may be ready to undertake such ef-
forts.

8 Conclusions

This article presents the AI4EO AutoICE Challenge in full
with the challenge setup, dataset description, and participa-
tion statistics while briefly summarising three of the top-five
solutions before highlighting two test scenes with the top-
five participants’ model output maps. Finally, a discussion
that compares the different approaches is included, with an
assessment of the state of automatic sea ice mapping. The
competition was won by the University of Waterloo team
from the Department of System Engineering, followed by
the teams PWGSN, crissy, sim, and finally jff. The challenge
had 129 registered teams representing 179 users, with 494
submissions in total by 34 of the 129 teams, comprising a
participation rate of 26.4 %.

Overall, the AI4Arctic team is delighted with the exten-
sive participation from across a broad and diverse interna-
tional community, ranging from sea ice and computer vision
experts to students who have used the competition as part of
their educational activities. The tools provided in the compe-
tition proved to be both competitive and useful to the partic-
ipants, with the three top-five teams described here using the
ready-to-train dataset.

Through the competition, participants have proven that it
is possible to perform the retrieval of multiple ice parameters
with deep learning models using professionally produced sea
ice charts across multiple national ice services and national
boundaries. Top solutions showed that the total sea ice con-
centration and stage of development were mapped the best,
while the floe size was the most difficult. Furthermore, partic-
ipants offered intriguing approaches and ideas that could help
propel future research within automatic sea ice mapping. In
particular, it was shown that higher rates of SAR data down-
sampling do not degrade model SIC and SOD performance
when evaluated against ice charts but may not fully exploit
the rich information in the SAR data.

Intermediate SIC remains difficult to assign correctly, with
models overestimating low SIC and with middle SIC hav-
ing a wide spread, while high SIC can be underestimated.
Younger SOD classes and floe sizes that are less extensive
are also difficult to map accurately.
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9 Future work

The AI4Arctic Sea Ice Challenge Dataset (ASID Challenge)
incorporated several additional data sources compared to the
ASID-v2 (Saldo et al., 2021), such as numerical weather
prediction parameters. Mapping how influential each data
source is based on both combined and individual ice param-
eter retrieval model performances is a natural next step in
quantifying data fusion choices. In addition, all the top par-
ticipants applied the provided data-ingesting approach of up-
sampling coarse-resolution data to the SAR pixel spacing,
but this simple solution may be naive. Therefore, an investi-
gation of alternative approaches could provide a more appro-
priate means of integrating the data sources.

The prospect of downsampling the SAR data and yield-
ing good results is promising and provides an avenue to re-
duce complexity and hardware constraints in training mod-
els. However, more research into how downsampling affects
the performance of the three ice parameters would be benefi-
cial, but investigating how to better utilise the rich informa-
tion in the SAR data could also yield additional benefits.

Some of the issues with correctly assigning intermediate
SIC, younger SOD classes, and less extensive FLOE sizes
could be addressed by having a larger dataset with more
scenes. However, approaches to better optimise models based
on these classes, such as weighted sampling, should be inves-
tigated. Furthermore, developing models capable of produc-
ing higher-resolution sea ice maps compared to the manually
derived sea ice charts could yield further advantages of util-
ising an automatic approach.

Another option for future work is estimating uncertain-
ties for all sea ice parameters. This, in connection with the
mapped sea ice parameters, could be useful for both mar-
itime navigation and as assimilation parameters for climate
and weather models.

Finally, it will be possible for the AutoICE participants
to continue their work when the next iteration of the ASID
dataset, ASID-v3, is released. The new dataset will comprise
16 times as much data compared to the competition dataset,
which will allow a much larger test dataset to be selected,
much more data to train on, and the addition of ice charts
from the Norwegian Ice Service (with SIC only), which fur-
ther expands the geographical coverage.

Code and data availability. Data from the competition are avail-
able at https://doi.org/10.11583/DTU.c.6244065.v2 (Buus-Hinkler
et al., 2022a), and the code provided to participants is avail-
able at https://github.com/astokholm/AI4ArcticSeaIceChallenge
(Stokholm et al., 2024).

Video supplement. See the link for a short video describing the
AutoICE competition: https://youtu.be/iuXIeLPyKfg (Stokholm,
2023).
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