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Highly variable deep-sea currents over tidal 
and seasonal timescales

Lewis P. Bailey    1,2,3 , Michael A. Clare1, James E. Hunt    1, Ian A. Kane    4, 
Elda Miramontes    5,6, Marco Fonnesu7, Ricardo Argiolas7,  
Giuseppe Malgesini8 & Regis Wallerand9

Deep-sea transport of sediment and associated matter, such as organic 
carbon, nutrients and pollutants, is controlled by near-bed currents. 
On the continental slope, these currents include episodic down-slope 
gravity-driven turbidity currents and more sustained thermohaline-driven 
along-slope contour currents. Recent advancements in deep-sea monitoring 
have catalysed a step change in our understanding of turbidity currents 
and contour currents individually. However, these processes rarely operate 
in isolation and the near-bed current regime is still to be quantified in a 
mixed system. Such measurements are crucial for understanding deep-sea 
particulate transport, calibrating numerical models and reconstructing 
palaeoflow. Here we use 4 years of observations from 34 instrument 
moorings in a mixed system offshore of Mozambique to show that near-bed 
currents are highly dynamic. We observe spatial variability in velocity over 
tidal and seasonal timescales, including reversals in current direction, and 
a strong steering and funnelling influence by local seabed morphology. 
The observed near-bed currents are capable of mobilizing and distributing 
sediments across the seabed, therefore complicating deep-sea particulate 
transport and reconstruction of palaeoceanographic conditions.

The seafloor is the ultimate sink for sediment, organic carbon and 
pollutants, with deposits forming an important archive of past cli-
mate, oceanography and natural hazards1–4. The sedimentary record, 
particularly on the continental slope, is dominated by the transport 
of material through (1) episodic down-slope gravity-driven sediment 
flows, termed ‘turbidity currents’5, and (2) more sustained along-slope 
thermohaline-driven contour currents, known as ‘bottom currents’6–9. 
It is increasingly recognized that these processes rarely operate in 
isolation, and mixed turbidite–contourite systems, where down- and 
along-slope systems interact, may be the norm10. These interactions are 
most pronounced where along-slope contour currents orthogonally 
intersect down-slope oriented submarine canyons or channels, either 

directly deflecting sediment suspended by gravity flows or reshaping 
the morphology of their deposits10–21. These dynamic interactions can 
modify sediment transport regimes, controlling the distribution and 
fate of sediments, organic carbon, nutrients and pollutants16,22–24.

Inferences about these flow interactions have previously been 
based on depositional records, such as the resultant channel–levee 
geometries and internal stratigraphic architectures, which often serve 
as the basis for palaeoceanographic reconstructions19. However, such 
reconstructions can be equivocal, with competing models arising from 
apparently similar geometries and architecture8,13–15,25. Uncertainty 
primarily stems from a paucity of direct monitoring of the near-bed 
current regime in mixed depositional systems26. Recent advances 
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Understanding near-bed current variability over different space and 
timescales is critical for our knowledge of sediment (and associated 
particulate matter) re-suspension and transport, especially in mixed 
systems where gravity flow–contour current interactions can funda-
mentally modify transport pathways15,25.

To progress our understanding of deep-sea particulate trans-
port, calibrate numerical models and enable robust palaeoflow recon-
structions, there is a compelling need to acquire field-scale current 

in deep-sea monitoring, particularly the long-term deployment of 
acoustic Doppler current profilers (ADCPs), have catalysed a step 
change in our understanding of turbidity currents5 and demonstrated 
the seasonality of contour currents9. Fewer equivalent measurements 
exist in mixed systems. Such monitoring campaigns have suggested 
that currents are steered by seabed relief27,28. However, these measure-
ments do not truly characterize the near-bed regime as observations 
were generally recorded far above the seabed (tens of metres to 100 m). 

–1
0°

–2
0°

–3
0°

50°40°

1

–5

Elevation (km
)

ba

c d

e

500 m

1,000 m

1,500 m 2,000 m

Backscatter

Low

High

W
ater depth

(km
)

M
UC

M
C

SEC

EA
C

C

SE
M

C
N

EM
C

Mozambique rings

Surface circulation
Deep circulation

Fig. 1a

QU
IONGA CANYON

MEBUISI CANYON

TUNGUE CANYON

VAMAIZI CANYON

 METUNDO CANYON

Obstacle and
Scour

Furrows

Linear furrows oriented parallel
to near-bed currents

AFUNGI CANYON

0 100
m

0 5
km

0 10
km

Fig. 1e

Fig. 1d

Fig. 2e

5%
10%

15%

N

S

EW

> 50

Percentage of current measurements
in binned direction

40–49
30–39

Sp
ee

d 
(c

m
 s

−1
)

20–29
10–19
0–9

C12

C05B
D1

D2 C11B

D5
•

D3 D7

D6

•CM06A
C05A

D4

•
D8

C03A
CM11

C03B

CM08A

C08

CM09C • 
CM09A

CM09B

•

•
CM12A

 C09BCM12B

CM10 C04

C06

CM06B

CM16

CM08B

CM13B

CM13A

CM15
C02

0

2.8

Fig. 1 | Observations of near-bed currents offshore North Mozambique. 
 a, Rose diagrams showing current direction as a percentage of total 
measurements from closest to seabed bin at each mooring (Supplementary  
Table 1). The arm colour divisions refers to abundance of recorded velocities as 
shown in c. b, Bathymetry (GEBCO, 2022) offshore East Africa showing location  
of study site and regional ocean circulation patterns. SEC, South Equatorial 

Current; SEMC, Southeast Madagascar Current. c, The legend for rose diagrams 
in a. d, E–W trending linear furrows from multi-beam backscatter (5 m bin 
size) oriented parallel to seafloor currents proximal to gullies most probably 
reflect changes in grain size. e, Furrows and scours at the seabed (0.6 m bin size, 
remotely operated vehicle multi-beam) indicate the dominance of north-flowing 
bottom currents.
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measurements proximal to seabed in mixed turbidite–contourite 
systems. Here, using a spatially- and temporally-extensive monitor-
ing array, we integrate near-bed (to within 3 m of the seabed) current 
measurements (comprising both thermohaline and tidal components) 
made at 34 mooring locations (Fig. 1a) over a 4 year monitoring period 
(Supplementary Table 1), with >2,500 km2 of high-resolution seabed 
multi-beam bathymetry spanning a mixed turbidite–contourite 
depositional system, on the Mozambique continental slope (Fig. 1).  

The system comprises of a series of east–west (E–W) trending subma-
rine canyons that extend ~70 km offshore (Fig. 1a), with low modern 
terrestrial sediment supply29, and is located in a region of complex and 
highly energetic ocean currents (Fig. 1b)12,30–37. Using these unprec-
edented synchronous and spatially- distributed measurements, 
we quantify the dynamic interactions across a large mixed deposi-
tional system and address the following questions. First, how does 
near-bed current velocity vary temporally and spatially across a large 
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current velocity.  a,b, Open slope velocity 3 mAB at C08 (a) and CO2 (b). Black 
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e, Cumulative vector plots of near-bed currents at mooring locations within 
Tungue Canyon (C05A, D8, C03A and CM11) and the open slope (C08). Data 
are from closest bin to seabed (Supplementary Table 1). Black and red data 
points represent 50 day intervals. The insert shows the duration of instrument 
deployment and vector plots show data from all periods of monitoring. Location 
and water depth shown in Fig. 1a.
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mixed system? Second, to what extent does seabed relief influence 
near-bed currents and over what spatial scale? Specifically, how do 
orthogonally-oriented currents interact with topographic features? 
Finally, what are the implications of the diverse interactions we observe 
for particulate transport and deposition in mixed systems?

Variability in regional near-bed current velocity
Direct near-bed measurements on the open-slope areas show a domi-
nance of northward-directed near-seafloor currents, with velocities of 
typically 0.2–0.4 m s−1 and the fastest currents (up to 0.6 m s−1) observed 
in shallower (<500 m) water depths (Figs. 1a and 2a,b). These measure-
ments are consistent with the formation of north-to-northeast trending 
obstacle-scour seabed features (Fig. 1e) and asymmetric canyon and 
channel cross-sectional morphologies15. The dominant northward 
flow, especially in deeper (>1,500 m) water, is consistent with previ-
ous observations of the Mozambique Undercurrent35 (MUC; Fig. 1b). 
While the northward extent of the MUC is not clearly defined, modelled 
currents show a prevalent northward current through the study site at 
1,700 m water depth (for example, Fig. 3f).

Our long-duration measurements reveal that near-bed flow is not 
persistent, and its intensity and direction vary temporally, sometimes 
reversing over periods of days to weeks. A net-northward transport 
of near-bed water masses along the entire slope is observed15 (C08 in 

Fig. 2e) due to the fastest near-bed currents coinciding with a north-
ward flow direction (Figs. 1a and 2a,b). This transient switching of 
near-bed current direction could easily be missed by shorter-duration 
monitoring, potentially leading to misinterpretation of the net direc-
tion of the regional current. Indeed, we observe further variations on 
even shorter timescales, wherein the velocity of near-bed currents fluc-
tuates across tidal cycles (Figs. 1a,b and 2d). Furthermore, the timing 
of the multiple subannual current reversals is not always synchronous 
along the slope (Fig. 2a,b). These observations underline the value 
of sustained near-bed current measurements at multiple locations, 
and demonstrates that contour currents are clearly far from steady, 
continuous flows, and can be extremely dynamic, varying in speed and 
direction across subannual timescales.

Temporal and spatial variability of measured current velocity off-
shore North Mozambique probably reflects the complex ocean circula-
tion of the region12,30–36. The direction of surface water flow alternates 
depending on seasonal shifts in latitude where the Northeast Mada-
gascar Current (NEMC) splits along the African margin36 (that is, when 
the NEMC splits north of the study site surface currents trend to the 
south, and vice versa; Fig. 3a,d). Additionally, regional modelling of cur-
rents shows that the intensity of deeper (>500 m) northward trending 
currents within the study area diminishes when mesoscale eddies are 
present to the south (for example, lower velocity observed in July 2013  
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(Fig. 3b,c) compared with December 2013 (Fig. 3e,f)), consistent with 
observations of the MUC intensity in the Mozambique Channel12,31.

Topographic steering of near-bed currents
Net-northward near-bed flow is not observed in all moored instruments 
(Fig. 1a). For example, within submarine canyons, current direction is 
modulated on a tidal frequency, producing a clear semi-diurnal (M2) 
and tidal (M4) signal (for example, C05A in Tungue Canyon; Extended 
Data Fig. 1) in an up- and down-canyon oriented flow (approximately 
E–W; Figs. 1a and 2c). Moored ADCPs did not record turbidity currents 
during the deployment period (despite the observations of crescentic 
bedforms, sediment waves and knickpoints providing morphologi-
cal evidence of their past activity; Fig. 1a and Extended Data Fig. 2). 
Instead, the most intense near-bed currents are observed in the upper 
reaches and heads of canyons (up to 0.95 m s−1; Figs. 1a and 2c and Sup-
plementary Table 2) with current magnitude decreasing down-canyon 
with increasing water depth (as observed on the open slope). Perhaps 
more surprisingly, low relief gullies (typically 20 m deep) show similar 
near-bed current deflection towards their axes (for example, D7; Fig. 1a). 
The up-slope- and down-slope-oriented flow in topographic features 
can extend onto the adjacent open slope. For example, moorings C04 

and C05B, positioned on open slope ~1 km outside of a canyon both 
record a dominant E–W current regime near bed (Fig. 1a), though not 
as intense and persistent as within submarine canyons. Further com-
parison indicates that velocity oscillations were greater at C05A (within 
the submarine canyon) than C05B (Fig. 2c,d). This regime contrasts 
with other measurements on the open slope (for example, C02, C08 
and CM13A; Fig. 1a) where only a slight (that is, northeast–northwest) 
deflection to the prevailing north-trending current is observed. The 
observed spatial variation demonstrates the influence of seafloor mor-
phology, where internal tides are captured and funnelled by the steep 
confining topography.

The net direction of near-bed currents can vary substantially 
within an individual canyon. For example, the two shallowest moor-
ings within Tungue Canyon (C05A and D8 at 605 m and 746 m water 
depth, respectively) reveal a strongly net down-canyon near-bed 
flow, whereas net flow is up canyon in deeper canyon reaches (C03A 
at 1014 and CM11 at 1,583 m water depth; Fig. 2e). The net up-canyon 
current at the distal moorings is interpreted as an internal tidal bore 
which is then strongly reflected back down-canyon when it hits the 
steep bathymetry in canyon heads, as observed in other deep-sea 
submarine canyons23,38–41. The net direction of displacement also 
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varies temporally as well as spatially. For instance, measurements 
at C03A (1,014 m water depth in Tungue Canyon; Fig. 1a) reveal 
short-lived (weeks) intervals where near-bed flow is counter to the net 
westward-directed flow (Fig. 2e). This reversal further demonstrates 
the importance of sufficiently long measurement periods to capture 
the true net direction of flow.

The influence of topographic steering diminishes with distance 
from seabed. For example, axis-parallel currents are recorded at 10 m 
above bed (mAB) within a low relief northeast–southwest trending 
gully, but the topographic influence is barely recognizable at 30 mAB 
(Fig. 4a). The much greater topographic confinement provided by 
submarine canyons ensures that currents are consistently aligned with 
the canyon thalweg at all elevations measured by the ADCP (that is, from 
5 m to 85 mAB; Fig. 4b). No measurements were made above the height 
of the canyon, hence it is not possible to determine at precisely what 
height above seabed this influence is no longer felt. However, while 
canyons probably fundamentally affect near-bed current steering over 
at least their full height (~200 m), the influence of the adjacent subma-
rine canyon at mooring C05B (Fig. 1a) is seemingly only restricted to 
the bottom few metres and is indiscernible by 25 mAB (Fig. 4c). These 
findings again highlight the need for near-bed measurements to truly 
quantify near-bed flow.

Implications for sediment transport
While morphological evidence exists for down-canyon sediment trans-
port (Fig. 1a and Extended Data Fig. 1), the absence of ADCP-recorded 
turbidity currents and lack of bedform migration observed from repeat 
seabed mapping, coupled with the low present-day sediment supply29, 
suggests that the submarine canyons are currently largely inactive 
with respect to gravity flows42. However, enhanced ADCP acoustic 
backscatter documents the contemporary transport of suspended 
sediment within submarine canyons and along the adjacent slope (for 
example, C05A and C05B), with the highest backscatter coinciding 
with peaks in near-bed current velocity (Fig. 2c,d and Extended Data 
Fig. 1). Very high sediment concentrations (that is, >1 g l−1) are unlikely 
given that the ADCP measurements are not fully attenuated (that is, 
signal penetrates to seafloor)43,44. However, according to near-bed 
measurements, current speeds can exceed the threshold to initiate 
motion of the sampled silt to medium sand grain sizes (critical Shields 
parameter is exceeded; Methods), aside from the coarsest grain frac-
tion observed in upper submarine canyons susceptible to transport 
through re-suspension (Rouse number >1.2; Methods, Supplementary 
Table 3 and Supplementary Fig. 1). Streaked seabed accumulations 
of sand oriented parallel to submarine canyons and gullies (inter-
preted from multi-beam backscatter data45; Fig. 1d and Supplementary 
Table 3) further indicate that near-bed currents are capable of mobiliz-
ing and (re)distributing sediment across the seafloor, in a direction 
that is orthogonal to the regional thermohaline-driven current. There-
fore, it is near-bed currents and internal tides steered by topography 
that are the dominant mechanism for the contemporary transport of 
sediment46 (and associated matter, such as organic carbon and pol-
lutants, which are similarly susceptible to redistribution by near-bed 
currents22–24), whereby local net-down-slope transfer is modulated at 
tidal frequencies (Fig. 2c,d).

While modern sediment supplies are restricted, a stock of sedi-
ment deposited by past gravity currents is available for reworking and 
redistribution by near-seafloor currents along canyons. The reworking 
influence of contour currents may not extend to the base of highly 
confined channels16. However, we show that the confining topogra-
phy funnels near-bed currents, creating axis-parallel flows capable of 
re-suspending sediment (Figs. 1a and 2c,d and Extended Data Fig. 2). 
The role of topographically funnelled near-bed currents, which can 
exceed 1 m s−1 in many submarine canyons23,38,47–50, may have been 
dramatically underestimated in many mixed systems. The resultant 
deposits which will probably comprise reworked turbidites may be 

indiscernible from those emplaced by gravity currents, therefore 
complicating the calculation of turbidity current recurrence intervals 
and reconstruction of palaeo-currents.

The wide variability in current velocity observed across 34 moor-
ing locations underlines the challenges that remain in characteriz-
ing seafloor currents, even when direct measurements are available. 
Near-bed processes are clearly complex and sedimentation across the 
study area is probably controlled by the combination and interaction 
of different processes. Our new observations highlight the value of 
sustained near-bed current measurements at multiple locations in 
understanding deep-sea transport systems and the resultant dynamic 
distribution and accumulation of sediment, carbon and pollutants.
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Methods
Field site and setting
The study area comprises a mixed turbidite–contourite deposi-
tional system offshore of Mozambique, East Africa. The present-day 
Mozambique slope lies offshore from a narrow (10–20 km) mixed 
carbonate-siliciclastic shelf bounded on the seaward edge by a barrier 
island system and a steep (up to 70°) shelf break. A sequence of E–W 
trending submarine canyons occurs along the continental slope, cut-
ting into the shelf break, and incising up to 200 m vertically. The mor-
phology of individual canyons is variable, but all terminate at or before 
the intersection with the Davie fracture zone ~70 km offshore51. The 
Rovuma Delta (located to the north of the study area) was a major depo-
sitional environment through most of the Tertiary period52. However, 
the development of the East African Rift system during the Cenozoic 
strongly modified continental drainage patterns53. A series of ephem-
eral rivers discharge onto the shelf, but these do not directly connect to 
canyon heads, and modern sediment supply to canyon heads is low29.

Ocean currents offshore of Mozambique are complex and can be 
highly energetic30,33. Circulation is strongly influenced by the NEMC. 
The NEMC diverges to the northward flowing East African Coastal Cur-
rent (EACC) and the southward-bound Mozambique Current (MC)36, 
which forms part of the Agulhas Current system, the strongest western 
boundary current in the Southern Hemisphere54 (Fig. 1). The latitude 
where the NEMC splits along the African margin varies seasonally34,36. 
The deeper-water regime (>800 m water depth) is dominated by the 
north-flowing MUC. At the narrowest point between Mozambique and 
Madagascar, the MUC has been analysed at 1,500–2,500 m water depth 
and includes the Antarctic Intermediate Water and North Atlantic Deep 
Water, and has long-term currents of ~4 cm s−1 with daily maximum 
velocities up to 35 cm s−1 (refs. 32,35). The entire water column may 
also be affected by the formation of mesoscale (>300 km diameter) 
southward-bound anti-cyclonic eddies due to the interaction between 
NEMC and Madagascar30–32,36,37. These eddies may alter the bottom 
current regime12.

Bathymetry
Two separate multi-beam surveys covering the study site were collected 
in 2013 and 2014 with a Hugin 1,000 autonomous underwater vehicle 
using a Kongsberg EM2040 sonar with 140° swath width. Data were 
gridded into 5 m × 5 m bins and have a vertical resolution of approxi-
mately 0.1 m. A more focused (190-m-wide) bathymetric survey was 
also performed using a remotely operated vehicle, with data gridded 
to 0.6 m × 0.6 m bins, with a vertical resolution on the order of a few 
centimetres (Fig. 1e). Seabed data, including bathymetric elevation 
(Fig. 1a and Extended Data Fig. 2) and backscatter (that is, the strength 
of the signal reflected from the seabed, where dark colours represent 
more compact, consolidated, cemented and/or coarser-grained sub-
strate; Fig. 1d) were provided in processed form by the energy company 
Eni, hence no processing of raw data was performed in this study. The 
bathymetric raster surface was used to generate a greyscale slope 
gradient attribute map in Environmental Systems Research Institute 
ArcGIS that was found to best illustrate the geomorphological features. 
These datasets were also analysed to determine the height of canyons 
and gullies. These heights were measured vertically from the deepest 
point of the canyon or gulley (that is, thalweg) to an inflection point on 
the flanking slope where the bathymetry levels out.

Moored instruments
Twelve moorings comprised paired single-point current metres that 
measured velocity and direction at 3 and 5 mAB (labelled C in Fig. 1). Two 
of these moorings (C05A and C05B) also held up-looking 300 kHz ADCPs 
positioned 10 mAB (accounting for blanking distance data collected from 
15 mAB). The remaining 23 moorings included 600 kHz down-looking 
ADCPs that recorded vertical profiles either at 0.5 m resolution to within 
10.5 m of the seabed (labelled CM in Fig. 1a) or at 1 m resolution to 11 mAB 

(labelled D in Fig. 1a). Data from two of the moorings (C02 and C08 
located on open-slope areas; Fig. 1a) were previously reported in Fuhr-
mann et al.15 ADCPs record current velocity (that is, speed and direction) 
and echo intensity at different elevations (‘bins’) within the water column. 
ADCP and current metre data were provided in text file format.

Near-bed current observations
The sense of near-bed flow at each mooring, and how it varies spatially 
across the study area, was assessed by extracting the velocity data from 
the bin closest to the seabed (Supplementary Table 1) and presented as 
rose diagrams that quantify both the speed and direction of near-bed 
currents (Fig. 1a). These current roses were overlain on the seabed 
bathymetric data to cross-compare the sense of direction with any 
geomorphological features (Fig. 1a). Time series analysis of near-bed 
currents at each mooring site were used to assess temporal variability 
(for example, Fig. 2a–d). Cumulative vector plots were then created to 
illustrate the net sense of near-bed flow and its evolution throughout 
the monitoring period (for example, Fig. 2d). To determine the extent 
to which topography influences the current regime, near-bed current 
velocity was extracted at different elevations above the seabed within 
a gulley, within a canyon and compared with that on an area of open 
slope, also presented as rose diagrams (Fig. 4).

Grain size measurements
Visual grain size (which typically discerns the 95th percentile)55 core 
log observations were determined from box cores. To estimate surficial 
grain sizes a series of box core top observations were chosen to provide 
representative surficial grain sizes for different physiographic areas 
within the study site (Supplementary Table 3 and Fig. 1).

Estimates of sediment re-suspension
ADCP acoustic backscatter provides a proxy measure of suspended 
sediment concentration (for example, Fig. 2c,d and Extended Data 
Fig. 1). Backscatter is related to scattering of the acoustic pulses gener-
ated by the ADCP, which are enhanced by sediment suspensions, and 
records the strength of the returned signal. Higher echo intensities 
generally relate to higher suspended sediment concentrations until 
a concentration threshold is reached, at which point the signal will be 
fully attenuated43. Cross-comparison of near-bed currents obtained 
from instrument moorings and acoustic backscatter was used to 
investigate the influence of temporal variations in current speed and 
direction on sediment suspension (Fig. 2c,d and Extended Data Fig. 1).

To assess sediment mobility the critical Shields parameter56 (θcr) 
was calculated for the range of grain sizes logged at the top of box cores 
for each of the physiographic settings within the study area. Sediment 
density values between 1,400 and 1,700 kg m−3 (as observed in gamma 
density analysis) were used to cover the range of sediment types/sizes. 
Near-bed current speeds from the medium to 95th percentile of repre-
sentative moorings (Supplementary Table 3) were used as a range to 
calculate the Shields parameter56 (θ) and determine whether near-bed 
currents were above the threshold for incipient motion (that is, where 
θ > θcr). Where the threshold for sediment mobility was exceeded, the 
Rouse number57 (P) was calculated to define the mode of sediment 
transport as bedload (P > 2.5), suspension (P < 1.2), or a combination 
of both (1.2 < P < 2.5). Again, this calculation was based on the same 
range of grain sizes, densities and the subsequent settling velocities to 
provide a range in potential transport mechanisms. The Rouse number 
calculation assumed a natural grain shape of nominal size.

Modelled seawater velocity
Water column velocity models were analysed to link observed current 
velocity from moored instruments to mesoscales features (that is, 
eddies) and seasonal changes in ocean circulation (that is, the latitude 
NEMC diverges along the African margin; Fig. 1b). Data were acquired 
from the GLORYS12V1 global ocean eddy-resolving product hosted by 
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Copernicus Marine Data Store (https://data.marine.copernicus.eu) at 
1/12° horizontal resolution. Modelled seawater velocity was analysed 
at the surface, ~500 m and ~1,700 m water depths, these water depths 
were chosen to correlate with the range of instrument mooring depths.

Data availability
ADCP and seafloor mooring data (used in Figs. 1 and 4 and Extended 
Data Fig. 1) can be requested through the ‘System of Industry Metocean 
data for the Offshore and Research Communities’ portal where they are 
held, http://www.simorc.com/welcome.asp. The GLORYS12V1 product 
(used to produce Fig. 3) from the EU Copernicus Marine Service Infor-
mation is publicly available (https://doi.org/10.48670/moi-00021). 
The GEBCO 2022 Grid (https://www.gebco.net/data_and_products/
historical_data_sets/#gebco_2022) was downloaded from the GEBCO 
portal (https://www.gebco.net/data_ and_products/gridded_bathym-
etry_data/). Source data are provided with this paper.
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Extended Data Fig. 1 | Evidence for tidal signal and sediment re-suspension 
within Tungue Canyon at mooring C05A. a, Rose diagram showing the 
speed and direction for each measurement from the current metre located 3 
mAB with data points coloured the corresponding ADCP acoustic backscatter 

measurement recorded at 15 mAB (that is the most bed proximal measurement). 
b, Power spectral density based on current direction measurements to show M2, 
semi-diurnal (12.4 h), and M4 (6.2 h) tidal constituents.

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-024-01494-2

a b

c

0 1
km

0 1
km

Crescentic Bedforms

Sediment Waves

Knickpoints

W
ater D

epth [km
]

0

2.8

0 1
km

0 10
km

d

a

b

c

Extended Data Fig. 2 | Morphological evidence of past turbidity current activity. a, Crescentic bedforms in the head of Afungi Canyon. b, Knickpoints in the deep 
water section of Afungi Canyon. c, Sediment wave trains and large scale scours in Vamizi Canyon. d, Map of study area showing locations of morphological features.
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