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Abstract
Urbanisation is an important driver of changes in streamflow. These changes are not uniform
across catchments due to the diverse nature of water sources, storage, and pathways in urban river
systems. While land cover data are typically used in urban hydrology analyses, other characteristics
of urban systems (such as water management practices) are poorly quantified which means that
urbanisation impacts on streamflow are often difficult to detect and quantify. Here, we assess
urban impacts on streamflow dynamics for 711 catchments across England and Wales. We use the
CAMELS-GB dataset, which is a large-sample hydrology dataset containing hydro-meteorological
timeseries and catchment attributes characterising climate, geology, water management practices
and land cover. We quantify urban impacts on a wide range of streamflow dynamics (flow
magnitudes, variability, frequency, and duration) using random forest models. We demonstrate
that wastewater discharges from sewage treatment plants and urban land cover dominate urban
hydrology signals across England and Wales. Wastewater discharges increase low flows and reduce
flashiness in urban catchments. In contrast, urban land cover increases flashiness and frequency of
medium and high flow events. We highlight the need to move beyond land cover metrics and
include other features of urban river systems in hydrological analyses to quantify current and
future drivers of urban streamflow.

1. Introduction

Urbanisation is a critical driver of changes in stream-
flow. Urbanisation impacts annual and seasonal
flood magnitudes (Prosdocimi et al 2015, De Niel
and Willems 2019, Blum et al 2020, Slater et al
2024), mean flows (Anderson et al 2022), dry-
ing regimes (Price et al 2021), non-perennial flow
regimes (Hammond et al 2021), flashiness (Booth
and Konrad 2017), streamflow seasonality (Diem
et al 2021), low flows and baseflow (Bloomfield
et al 2009, Schwartz and Smith 2014, Han et al
2022). The impacts of urbanisation on these hydro-
logical processes are not uniform across catchments
(figure 1). Urbanisation results in diverse changes to

water sources, storage and pathways in the catchment
including increased impervious surfaces, surface and
groundwater abstractions to feed public water sup-
ply, changes in channel morphology (i.e. channel
straightening), stormwater control (water manage-
ment schemes), urban drool from domestic irriga-
tion, inputs from leaky transport and storage infra-
structure and sewage treatment plants. These have
confounding impacts on streamflow. For example,
flashiness and high flows could increase from rural
to more urban areas due to decreased infiltration
and increased impervious areas (Blum et al 2020,
Anderson et al 2022, Ariano and Oswald 2022), or
decrease due to increased retention of stormwater
from stormwater control measures (McPhillips et al
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Figure 1. Synthesis of urbanisation impacts on streamflow from 25 large sample studies (we use a threshold of 10 catchments to
define a large-sample study). The full list of studies can be found in table S1.

2019, Bell et al 2020). Understanding these diverse
and complex urban drivers of changes in streamflow
dynamics is crucial, particularly as pressures on urban
waterways increase with more than 5 billion people
projected to live in cities by 2030 (Grimm et al 2008,
Gerland et al 2014).

To characterise the impacts of urbanisation, most
studies use urban land cover or population dens-
ity (as a proxy for urban land cover percentage)
as the primary catchment descriptor. From the 25
large-sample hydrology studies we reviewed, 22 stud-
ies solely used land cover to characterise urbanisa-
tion and two studies characterised built infrastruc-
ture in urban areas (Oudin et al 2018, Ariano and
Oswald 2022). Only one study included data on
wastewater discharges from sewage treatment works,
using these data to provide evidence on the poten-
tial for the inflow and infiltration of extraneous water
into sewers to reduce streamflow (Diem et al 2021).
Incorporating other sources of data beyond urban
land cover is challenging as water management and
infrastructure data are typically either (1) not avail-
able because there is no data or the data are not
allowed to be shared, (2) difficult to compile because
they are held bymultiple agencies in different formats
and/or (3) limited temporally and/or spatially due to
infrequentmonitoring (Addor et al 2020, Oswald et al
2023). Therefore, urbanisation impacts are often dif-
ficult to detect and quantify, and the relative impact
of these factors (i.e. the contribution of impervi-
ous surfaces and water management infrastructure
to changes in streamflow) is currently poorly under-
stood (Oswald et al 2023).

There is an opportunity with new water manage-
ment data in large-sample hydrology datasets (e.g.
CAMELS-GB; Coxon et al 2020a) to move beyond
impervious cover and better characterise the impacts
of urbanisation to develop an integrated understand-
ing of water sources, stores and pathways in urban
areas. This study uses catchment attributes describing

urban land cover as well as abstractions and wastewa-
ter discharges from sewage treatment works to assess
the impacts of urbanisation on streamflow dynam-
ics for a large sample of catchments across England
and Wales. We quantify urban impacts on stream-
flow using a wide range of hydrological signatures
(i.e. metrics that quantify the statistics or dynam-
ics of streamflow, McMillan 2021) representing the
magnitude, variability, frequency, and duration of
key streamflow dynamics. We apply random forest
models with catchment attributes representing water
management practices compiled from environmental
regulators (surface-water abstractions, groundwater
abstractions and treated wastewater returns from
sewage treatment works) and urban land cover to
answer the following research questions:

1. How does urbanisation impact streamflow
dynamics across England and Wales?

2. Which has the greatest impact on urban stream-
flow, land cover or water management?

2. Catchment selection and data

2.1. Catchment selection
Urban areas currently account for ∼10% of land
cover across England and Wales, with previous stud-
ies indicating a wide range of impacts of urbanisa-
tion on low flows, high flows and baseflow (Beran and
Gustard 1976, Bloomfield et al 2009, Han et al 2022,
Slater et al 2024). Critically, in England andWales, we
have access to high quality hydroclimatic, urban land
cover and water management data to enable us to dis-
entangle the impacts of water management practices
and urban land cover on streamflow dynamics across
a large sample of catchments for the first time.

In total, 711 catchments were selected across
England and Wales from over 1500 gauges avail-
able in the United Kingdom National River Flow
Archive (NRFA) based on three key criteria. Firstly,
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the catchments needed to have available water
management data (abstractions and wastewater dis-
charges), which limited the study area to England and
some catchments in Wales. Secondly, the catchments
needed to have at least 95% complete river flow data
available from 1 October 1995–30 September 2015
to ensure robust calculation of hydrological signa-
tures. Thirdly, we excluded 9 catchments that had a
runoff ratio greater than one (mostly due to signific-
ant groundwater imports) as we found these outliers
skewed some of the subsequent analysis. The large
sample of catchments used in this study represent
the climatic, hydrologic, and geologic diversity found
across England and Wales.

2.2. Hydrological data for signature calculation
Daily streamflow data (mm d−1) from 1 October
1995–30 September 2015 were collated for the 711
gauges from the UK NRFA. These data are collected
by measuring authorities including the Environment
Agency (EA) and Natural Resources Wales, and then
quality controlled, on an ongoing annual cycle, before
being uploaded to the NRFA site.

2.3. Catchment attributes
The catchment attributes used in this study were
obtained from the CAMELS-GB large sample hydro-
logy dataset (Coxon et al 2020a, 2020b) but calcu-
lated for a larger number of catchments. While a
wide range of catchment attributes are available from
CAMELS-GB, we selected nine catchment attributes
that were not highly correlated (Spearman rank cor-
relation <0.6) and have shown to be key controls on
hydrologic signatures across Great Britain in previous
studies (Bloomfield et al 2021, Zheng et al 2023).

Streamflow dynamics across England and
Wales predominantly reflect climate and geology
(Bloomfield et al 2009, Chiverton et al 2015, Zheng
et al 2023) and therefore three catchment attributes
characterising climate (aridity) and geology (the per-
centage of the catchment underlain by highly pro-
ductive, fractured aquifers and the percentage of
the catchment underlain by rocks with essentially
no groundwater) are included. We also select catch-
ment attributes characterising soils (percentage clay
soils) and topography (catchment area) as these have
been identified as key controls on baseflow in the
UK (Bloomfield et al 2021). Finally, since the focus
of this study is on urbanisation impacts, catchment
attributes characterising urban land cover (urban
percentage) and water management (surface water
and groundwater abstractions and treated wastewater
returns from sewage treatment works) were selected
in this study. Despite the importance of reservoirs
on streamflow dynamics across the UK (Salwey et al
2023) we did not include reservoir catchment attrib-
utes in this study as they are rarely present in urban
catchments in the UK.

As the primary focus of this paper are the catch-
ment attributes characterising urban land cover and
water management, these attributes are described in
more detail below. A detailed description of all the
catchment attributes can be found in Coxon et al
(2020a), and a full list of the catchment attributes
(including their description, units, data sources etc)
used in this study and their spatial maps can be found
in table S2 and figure S1 respectively.

Land cover attributes for each catchment were
derived from the 1 km UK Land Cover Map 2015
(LCM2015) produced by the UK Centre for Ecology
and Hydrology (Rowland et al 2017). LCM2015 uses
a random forest classification of Landsat-8 satellite
images based on the joint nature conservation com-
mittee broad habitats, encompassing the range of UK
habitats. The urban land cover represents the sum of
both urban and sub-urban land cover.

The water management data consists of sur-
face water abstraction, groundwater abstraction and
wastewater discharges from sewage treatment works.
The abstraction data consist of monthly recorded
abstraction volumes reported by abstraction licence
holders to the national environmental regulator (EA)
covering the period from January 1999 to December
2014. These data are the actual abstraction returns
and represent the total volume of water removed
by the licence holder for each month over the time
period. The discharge data consist of daily discharges
of treated wastewater returns from sewage treatment
works into water courses reported to the EA from 1
January 2005 to 31 December 2015. These data rep-
resent the total volume of treated wastewater added to
rivers from sewage treatment works for each day over
the time period. To generate a single static variable
for each catchment, we calculate amean daily abstrac-
tion and wastewater discharge rate by averaging and
then summing all abstraction/wastewater discharges
records that fall within each catchment boundary.

3. Methods

3.1. Hydrological signatures
We use the toolbox for streamflow signatures in
hydrology toolbox (Gnann et al 2021) to calculate a
range of hydrological signatures (see table 1). These
signatures were chosen to capture diverse streamflow
dynamics including flow magnitude, variability, fre-
quency, and duration based on previous literature
characterising urbanisation impacts on streamflow
(see tables 1 and S1). They include:

1. Flow percentiles for low, median, and high flows
as urbanisation has been shown to impact flow
magnitudes across the flow range (e.g. Bhaskar
et al 2020).

2. Richard-Bakers Flashiness Index and TQmean as
key signatures of flow variability that have been
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Table 1.Hydrological signatures used in this study including their description, unit and references for where they have been used in
other large-sample urban hydrology analyses.

Streamflow
dynamic

Hydrological
signature Description Unit References

Magnitude Flow percentiles (Q5,
Q25, Q50, Q75, Q95)

Flow percentiles
representing low (Q5,
Q25), median (Q50)
and high flows (Q75,
Q95)

mm day−1 (Salavati et al 2016,
Oudin et al 2018,
Bhaskar et al 2020,
Ledford et al 2020,
Han et al 2022)

Variability Richards-Baker
flashiness index

The sum of the
absolute values of
day-to-day changes in
mean daily flow
normalised by total
discharge

— (Konrad and Booth
2002, Chelsea Nagy
et al 2012, Martin et al
2012, Booth and
Konrad 2017,
McPhillips et al 2019,
Ariano and Oswald
2022, Gannon et al
2022)

TQmean The fraction of time
that the daily flow
exceeds the mean flow
over the time period

Frequency Number of low (Q5
and Q25) and high
(Q75 and Q95) flow
events

Average number of
low/high flow events
per year

days yr−1 (Debbage and
Shepherd 2018)

Duration Duration of low (Q5
and Q25) and high
(Q75 and Q95) flow
events

Average duration of
flow events—number
of consecutive days
less (more) than Q5

and Q25 (Q75 and
Q95)

days

shown to capture urbanisation-driven hydrologic
changes in previous studies (e.g. Booth and
Konrad 2017).

3. Flow frequency and duration for low and high
flows. These hydrological signatures are less com-
monly used in urbanisation analyses but rep-
resent important streamflow dynamics that can
be impacted by urbanisation (e.g. Debbage and
Shepherd 2018).

The 15 signatures in total were calculated using
daily streamflow observations (in mm d−1) for each
catchment for the entire 20 year period. Spatial maps
of the hydrological signatures calculated in this study
are shown in figure S2.

3.2. Evaluating urbanisation impacts on
streamflow dynamics
3.2.1. Random forest analysis
We use random forest models to explore the inter-
play between catchment attributes and hydrological
signatures by analysing which catchment attributes
have the strongest empirical relationships with dif-
ferent streamflow dynamics. Random forests are a
machine learning model that creates and combines
an ensemble of regression trees to produce predic-
tions. They have been successfully applied in many

previous hydrological studies to relate catchment
attributes to streamflow signatures (for example,
Addor et al 2018, Bloomfield et al 2021, Zheng et al
2023), including to assess the impacts of urbanisation
on streamflow dynamics (e.g. Hammond et al 2021,
Gannon et al 2022).

The random forest analysis was performed using
the ‘randomForest 4.6–14’ R package (Breiman 2001,
Cutler andWiener 2022). Random forestmodels were
first built for each of the 15 hydrological signatures
(described in section 3.1) using all catchment attrib-
utes (described in section 2.3) from all the 711 catch-
ments. We calculated the coefficient of determina-
tion between predicted and measured signature val-
ues (Rd

2) to evaluate the performance of the random
forest model prediction and determined the import-
ance of each catchment attribute by calculating the
increase in the mean square error (IncMSE). To fur-
ther evaluate model performance, a tenfold cross-
validation was employed. For more details on the
evaluation metrics and random forest analysis please
see text S1.

This analysis was repeated using a subset of catch-
ments with varying urban land cover thresholds
(exceeding 5%, 10% and 15%) to isolate the key con-
trols within urban catchments. These thresholds were
identified fromprevious studies as suitable thresholds
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for identifying impacts of urbanisation (Oudin et al
2018), while still ensuring a large enough sample of
catchments for the random forest to be robust (5%,
10%and 15%urban thresholds result in a total of 327,
198 and 144 catchments respectively). The results for
a 10% threshold are presented in the paper, while the
results for 5%and 15%urban thresholds (which show
similar patterns) are presented in the supplementary
information (see figures S4–6 and table S3).

3.2.2. Paired catchments
To explore the large-sample results in more detail, we
identified a subset of paired catchments for a visual
evaluation of differences in hydrograph dynamics.
The paired catchments were chosen to be similar
except for their urbanisation characteristics includ-
ing pairs that had (1) high urban land cover (>50%)
but contrasting wastewater discharges and (2) low
wastewater discharges (i.e. <0.05 mm d−1) but con-
trasting urban land cover. All pairs were chosen to
have similar geophysical characteristics by selecting
catchments that were within 10% of catchment area
and mean annual rainfall, 20% of the percentage of
the catchment underlain by highly productive, frac-
tured aquifers, and gauging stations that were within
60 km (as close gauging stations tend to be highly cor-
related; Kiraz et al 2023). Finally, all pairs were manu-
ally checked to retain catchments where the primary
difference in catchment form was either the impact
of urban land cover or wastewater discharges and not
other human influences (such as reservoirs or abstrac-
tions). Identifying pairs where one major driver of
catchment form can be isolated is challenging, and
therefore the resulting number of catchment pairs is
limited.

4. Results

4.1. Urban land cover and water management are
linked across England andWales
Figure 2 shows the spatial distribution of urban frac-
tion, abstractions, and wastewater discharges. In our
sample, urban land cover ranges from 0%–83% of the
catchment area with a mean of 10% (figure 2(b)).
Catchments with the highest urban land cover
are found in the South-East and Midlands region
of England, focused in major cities (figure 2(a)).
For water management, wastewater discharges from
sewage treatment works range from 0 to 1 mm d−1

(mean of 0.06 mm d−1) and exceed 25% of the mean
flow in 6% of catchments. There is a non-linear rela-
tionship between wastewater discharges and urban
land cover, where many catchments that are highly
urbanised also have high volumes of wastewater dis-
charges (figures 2(a), (b) and S3(c)).

Surface and groundwater abstractions range from
0 to 9 mm d−1 and 0–1 mm d−1, with a mean
of 0.1 and 0.04 mm d−1 respectively. These fluxes

can represent a large component of the flow volume,
with abstractions exceeding 25% of the mean flow
in 17% of catchments (figures 2(d) and (e)). The
largest groundwater abstractions are concentrated
in regions with major aquifers (particularly Chalk
aquifers) in the South-East of England (figure 2(e)),
whilst the largest surface water abstractions are con-
centrated in the central regions and South of England
(figure 2(d)). Catchments with high percentages of
urban land cover tend to have low surface-water
abstractions (figure S3(a)). In contrast, several catch-
ments with high percentages of urban land cover also
have high groundwater abstractions (figure S3(b)).

4.2. Controls on streamflow dynamics across
England andWales
Climate, geology, and human influences are key con-
trols on streamflow dynamics for catchments across
England and Wales (figure 3; larger/darker circles
show more influential controls).

When considering all catchments, climate (arid-
ity) is the most influential predictor of river flow
magnitude, while geology (the percentage of the
catchment underlain by highly productive, fractured
aquifers) is the most influential predictor for flow
variability (Richards-Baker Flashiness Index) and
event duration (figure 3(a)). As expected, increas-
ing aridity leads to decreasing flow magnitudes
(p< 0.001) and increasing highly productive aquifers
leads to decreasing flashiness (p< 0.001) and increas-
ing event duration (p < 0.005). The strong associ-
ation between climate and flowmagnitudes, and geo-
logy and event duration/frequency are confirmed by
the similarities in their spatial maps (see figures S2
and S3). For event frequency, geology and urban land
cover percentage are the most influential predictors
with increasing urban land cover and/or decreasing
highly productive aquifers leading to increasing fre-
quency of events. The random forest models achieve
the best prediction accuracy in predicting flow mag-
nitudes (Rd

2 > 0.8 for mean flow, Q75 and Q95), fol-
lowed by event frequency, flashiness, and event dura-
tion (see table S3). The random forestmodels have the
poorest prediction accuracy for low flow dynamics,
particularly for predicting low flow event frequency
and duration (Rd

2 < 0.4).
Overall, water management practices of treated

wastewater returns, surface water and groundwater
abstractions, are not as influential on streamflow
dynamics as climate, geology, and land cover when
considering all catchments (figure 3(a)). However,
when we focus the analysis on urban catchments
(i.e. catchments with >10% urban land cover), we
find that the volume of wastewater discharges is the
most influential predictor of the magnitude of low
flows (Q5 and Q25) and appears as the second most
influential predictor (following aridity) of mean and
high flows (figure 3(b)). Interestingly, the proportion
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Figure 2. Context for Great Britain, urban land cover and water management catchment attributes. (a) Map showing major
regions, aquifers, and cities in Great Britain. The six largest cities by population are shown; (1) London, (2) Birmingham, (3)
Manchester, (4) Liverpool, (5) Leeds, (6) Sheffield. Then catchment maps show the spatial distribution of (b) urban fraction (−),
(c) mean daily wastewater discharges from sewage treatment works normalised by mean flow (−), (d) mean daily surface water
abstraction normalised by mean flow (−), (e) mean daily groundwater abstraction normalised by mean flow (−).

of urban land cover has little influence on the mag-
nitude of mean or high flows but remains the most
influential predictor of event frequency signatures.
Surface water abstractions appear to increase flow
magnitudes while groundwater abstractions decrease
flowmagnitudes. However, overall both surface water
and groundwater abstractions have less influence on
streamflowdynamics in urban catchments in England
and Wales. We found similar predictive accuracy
of the random forest models for flow magnitudes
and flashiness in urban catchments as compared to
all catchments (table S3). However, the predictive
accuracy for event duration and low flow event fre-
quency decreases substantially in urbanised catch-
ments. We find similar patterns and outcomes for
different thresholds of urban land cover (see figures
S4–S6).

4.3. Urbanisation has conflicting impacts on
streamflow dynamics
Water management practices and urban land cover
in urban catchments have conflicting impacts
on flow magnitudes, variability, and frequency
(figure 4). We use a visual comparison of hydro-
graphs from catchments that are similar except

for their urban land cover and water management
attributes to untangle and illustrate these inter-
acting impacts. In total, we identified four pairs
of catchments for water management (high urban
land cover, contrasting wastewater discharges) and
two paired catchments for urban land cover (con-
trasting urban land cover, minimal wastewater
discharges). Here, we highlight two of the paired
catchments related to our two key findings on the
effects of wastewater discharges (figure 4(a)) and
urban land cover percentage (figure 4(b)). We find
similar results for both these examples in other
paired urban catchments (see figures S7, S8 and
table S4).

Figure 4(a) illustrates the impacts of wastewa-
ter discharges, by comparing two nearby catchments
with very similar levels of urbanisation (77%–78%),
but river flow is augmented by wastewater discharges
in catchment 39 005 by 0.67 mm d−1 (this accounts
for 67% of the mean flow). Wastewater discharges
from sewage treatment works in this catchment are
associated with increases in flow magnitudes (dark
blue line is higher throughout the year). This effect
causes a secondary impact on streamflow flashi-
ness: the elevated baseflows means that flashiness is

6
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Figure 3. Association between each catchment attribute and hydrological signature for the random forest models based on (a) all
711 catchments and (b) a subsample of 198 catchments with>10% urban land cover. The dots are coloured by the strength of the
Spearman rank correlation coefficient between the attribute and hydrological signature. A black outline around the dot indicates
a significant p-value (<0.01). The dots are sized by the increase in mean squared error when excluding that attribute from the
random forest model (IncMSE %) which quantifies the influence of the predictor in the random forest. Q5 represents low flow
while Q95 represents high flow.

lower in catchment 39 005 (0.32 compared to 0.5
in 39 058).

Figure 4(b) illustrates the impacts of urban land
cover percentage, by comparing two nearby catch-
ments with different percentages of urban land cover
(62% compared to 4%), but identically zero wastewa-
ter discharges. This example shows that urban land
cover can increase flashiness (flashiness index of 0.54
in the highly urbanised catchment compared to 0.2)
and frequency of high flow events. The high urban
land cover catchment experiences higher summer
baseflows and summer event flows compared to the
low urban land cover catchment.

5. Discussion

5.1. Wastewater discharges and urban land cover
dominate urban hydrology signals
This study demonstrates that wastewater discharges
from sewage treatment works and urban land cover
dominate urban hydrology signals across England
and Wales. In these regions, sewage treatment works
are typically located close to large population centres
in urban areas and thus the fraction of urban land
cover and wastewater discharges from sewage treat-
ment works in each catchment are closely linked.
Here, we find that these two features of urban

hydrologic systems have conflicting impacts on dif-
ferent streamflow dynamics.

Treated wastewater discharges increase flow mag-
nitudes, particularly at low and medium flows. In
contrast, urban land cover is not identified as a key
control on flow magnitudes in urban catchments in
our study area. Urban land cover has previously been
found to impact flow magnitudes in studies from
the UK (Han et al 2022), US (DeWalle et al 2000,
Oudin et al 2018, Blum et al 2020, Anderson et al
2022), Belgium (De Niel and Willems 2019) and
Germany (Tetzlaff et al 2005). This contrast in res-
ults may be due to a number of factors. Firstly, urban
catchment behaviour differs from place to place due
to differences in the built environment, local catch-
ment characteristics and the interaction between the
two (Bhaskar et al 2020). Secondly, previous stud-
ies have highlighted the variability in results due to
different statistical methods employed for attribut-
ing changes in streamflow to land cover (Anderson
et al 2022). Many urbanisation impact studies focus
on changes over time, with their methods estim-
ating the average effect of increasing urban extent
within individual catchments (e.g. Han et al 2022,
Slater et al 2024). Our method uses only one value
per catchment and therefore focuses on explaining
the differences between catchments, where the effect
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Figure 4. Annual hydrographs and flow duration curves for two sets of paired catchments with similar climate and geology, but
differing land use or water management practices. Paired catchments shown are 39 005 (Beverley Brook at Wimbledon Common)
and 39 058 (Pool River at Winsford Road), and 54 063 (Stour at Prestwood Hospital) and 28 079 (Meece Brook at Shallowford).
Additional paired catchment examples can be found in figures S7 and S8. Catchment attributes and hydrological signatures for
each paired catchment are detailed in table S4.

of urban extent on streamflow dynamics might be
harder to detect than at the individual catchment
level.

Treated wastewater discharges from sewage treat-
ment works decrease flashiness, while urban land
cover increases flashiness and event frequency across
all sizes of events. Conflicting impacts of urbanisa-
tion are a common finding for urban hydrology ana-
lyses (Salavati et al 2016, Oudin et al 2018, Dudley
et al 2020). Indeed, past work examining trends in
low and high flow magnitude in response to urb-
anisation found a range of behaviours in different
US cities (Bhaskar et al 2020), emphasising that the
impacts of urbanisation are not uniform across urban
areas. One reason for the diverging responses are dif-
ferent drivers (and buffers) of urban flows that are
caused by urban land cover and water management
practices that will vary from city to city (and equally
catchment to catchment) as shown here. We anticip-
ate that wastewater discharges and urban land cover
will dominate hydrology signals inmany urban catch-
ments globally, and this stresses the need to bet-
ter understand the key controls of different aspects
of urbanisation (see also discussion for future work
below).

5.2. Future work and limitations
Our findings emphasise the significance of moving
beyond metrics of impervious land cover and includ-
ing metrics that capture water management schemes
in urban hydrology analyses. Such characterisations
are needed to better interpret the impacts of urban-
isation and to develop an integrated understanding
of water sources, stores, and pathways in urban areas
(Oswald et al 2023). There are a host of other potential
water sources to urban streams (as well as situations
that favour losing conditions; McPhillips et al 2019)
that require further investigation, such as leaky water
infrastructure (Pangle et al 2022), urban green infra-
structure (Jarden et al 2016), irrigation return flows
(Fillo et al 2021), canals (Carlson et al 2019), and
storm water control measures (Gold et al 2019). The
challenge of quantifying the impacts of these sources
on urban hydrology will be twofold; firstly, capturing
these data across large samples of catchments to gen-
erate process understanding across different urban
systems (Oswald et al 2023) and secondly, analysing
how best to characterise these impacts.

In this study, we consider a range of streamflow
dynamics related to mean annual flow magnitudes,
variability, event frequency and duration. However,
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we have not investigated the impact of water man-
agement practices on seasonal hydrological signatures
or whether water management practices vary season-
ally. Urbanisation has been shown to impact season-
ality of streamflow and linked to the inflow and infilt-
ration of extraneous water into sewers (Diem et al
2021). Furthermore, ongoing work has highlighted
the complexity of baseflow responses in urban areas
(Bhaskar et al 2016), with baseflow sometimes rising
(as we observe for some catchments in our study,
e.g. figure 4) or falling, depending on local setting.
Analysing seasonal changes in wastewater discharges
and the impacts of urban land cover on seasonal
streamflowdynamics are key areas for future research.

We found that the random forest models
struggled to predict low flow event frequency and
event duration in urban catchments (table S3).
Event frequency and duration metrics are generally
more challenging to predict than magnitude met-
rics (Addor et al 2018) and low flow signatures can
be particularly sensitive to discharge uncertainties
(Westerberg et al 2016). Future work should develop
a better understanding of the processes driving low
flow event frequency and duration, and consider
other relevant predictors that might be important to
characterise low flow catchment behaviour, includ-
ing seasonal abstraction metrics and other land cover
descriptors (Chiverton et al 2015).

6. Conclusions

This study used catchment attributes describing
abstractions, wastewater discharges from sewage
treatment works and urban land cover to assess the
impacts of urbanisation on streamflowdynamics for a
large sample of catchments across England andWales.
Our findings demonstrate that urban land cover and
water management practices are linked, a key control
on flow magnitudes, variability, and frequency, and
have conflicting impacts on streamflow dynamics.
This highlights the need to move beyond land cover
metrics and include other features of urban river sys-
tems in hydrological analyses to quantify current and
future drivers of urban streamflow.

More broadly, our findings also highlight the
significant contribution of treated wastewater dis-
charges to streamflow and their importance in chan-
ging streamflow dynamics in urban river systems.
Wastewater discharges from sewage treatment works
can help in sustaining low flows and can be used
as part of water reuse schemes to increase resi-
lience of water supplies (Murgatroyd et al 2022).
However, they are also important for urban water
quality, biogeochemical cycling, and ecosystem func-
tion. Urban rivers commonly have low dissolved oxy-
gen and high nutrient loads (Zhi et al 2023) which are
attributed to a combination of flashy runoff provid-
ing inputs from urban surfaces and household and
industrial wastewater, followed by periods of slow

water movement between high flows (Blaszczak et al
2019). Urban rivers can also have high carbon dioxide
and methane loads, which have been linked to out-
flows from sewage treatment plants (e.g. Yu et al 2017,
Brown et al 2023). If wastewater discharges are key
drivers of urban hydrology as shown here, then man-
agement of urban river systemsmust go beyond inter-
ventions such as sustainable urban drainage systems
to slow runoff processes and focus on the amount
and chemical composition of water released as treated
wastewater discharges.
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