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ABSTRACT

Big biodiversity data sets have great potential for monitoring and research because of their large taxonomic, geographic
and temporal scope. Such data sets have become especially important for assessing temporal changes in species’ popula-
tions and distributions. Gaps in the available data, especially spatial and temporal gaps, often mean that the data are not
representative of the target population. This hinders drawing large-scale inferences, such as about species’ trends, and
may lead to misplaced conservation action. Here, we conceptualise gaps in biodiversity monitoring data as a missing data
problem, which provides a unifying framework for the challenges and potential solutions across different types of biodi-
versity data sets. We characterise the typical types of data gaps as different classes of missing data and then use missing
data theory to explore the implications for questions about species’ trends and factors affecting occurrences/abundances.
By using this framework, we show that bias due to data gaps can arise when the factors affecting sampling and/or data
availability overlap with those affecting species. But a data set per se is not biased. The outcome depends on the ecological
question and statistical approach, which determine choices around which sources of variation are taken into account. We
argue that typical approaches to long-term species trend modelling using monitoring data are especially susceptible to
data gaps since such models do not tend to account for the factors driving missingness. To identify general solutions to
this problem, we review empirical studies and use simulation studies to compare some of the most frequently employed
approaches to deal with data gaps, including subsampling, weighting and imputation. All these methods have the poten-
tial to reduce bias but may come at the cost of increased uncertainty of parameter estimates. Weighting techniques are
arguably the least used so far in ecology and have the potential to reduce both the bias and variance of parameter esti-
mates. Regardless of the method, the ability to reduce bias critically depends on knowledge of, and the availability of data
on, the factors creating data gaps. We use this review to outline the necessary considerations when dealing with data gaps
at different stages of the data collection and analysis workflow.
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I. INTRODUCTION: UNEVEN SAMPLING
OF BIODIVERSITY

Ecologists have ever-growing access to data on species’ occur-
rence and abundances. Potential sources of data include long-
term citizen-science monitoring schemes (such as the North
American Breeding Bird Survey) (Bled et al., 2013), data aggre-
gators [such as the Global Biodiversity Information Facility
(GBIF)] (Garcia-Rosello et al., 2015), remote-sensing platforms
(Fretwell, Scofield & Phillips, 2017) and synthesis databases
(such as BioTIME or the Living Planet Database) (Dornelas
et al., 2014). Since these data cover broad spatial and temporal
scales, they are especially useful for large-scale questions,
for instance, about species’ distributions, population and
community-level trends, and ecological niches (Chandler
et al., 2017; Sullivan et al., 2017; Fink et al., 2020). These data
also underpin many biodiversity trend indicators that are cen-
tral for national and international conservation policy
(Gregory et al., 2005; van Swaay et al., 2008; Fraisl et al., 2020).

Despite the impressive volume of data, biodiversity data,
regardless of the source, tend to contain gaps (Boakes
et al., 2010). Data gaps are not necessarily a problem; indeed,
most ecological studies rely on statistical inference to make
inferences about a broader region of interest from a sample.
Data gaps, however, can be problematic when they lead to
biases (Boakes et al., 2010; Bled et al., 2013; Amano,
Lamming & Sutherland, 2016). Many ecologists have raised
concerns about the impacts of bias due to data gaps on esti-
mated spatial or temporal biodiversity patterns (Bayraktarov
et al., 2019; Valdez et al., 2023). For instance, biases could
mean that species’ trends are over- or under-estimated, lead-
ing to ill-informed decisions about which species should be
conservation priorities and misplaced direction of conserva-
tion action. Developing methods to deal with data gaps and
associated biases within large-scale biodiversity data is an
increasingly important task to make full use of the growing
big data sources.

Patterns in the availability of biodiversity data are affected
by the original motivations for, and constraints on, data-
collection, reporting and mobilisation activities. There are,

however, typical patterns in data availability that indicate
common causes of data gaps. Spatial patterns in the data
available from citizen science, which form the majority of
monitoring data (Chandler et al., 2017), have been especially
well studied. Citizen-science programs have varying degrees
of standardisation in protocol and sampling designs (Isaac &
Pocock, 2015; Pocock et al., 2017) but more data are typically
collected in accessible areas such as near roads and urban
areas, leading to data gaps in remote areas (Geldmann
et al., 2016). Such biases are not unique to citizen-science
data, as even data collected during formal scientific studies
have potential sampling biases; for instance, towards regions
undergoing less habitat change (Gonzalez et al., 2016; Foris-
ter et al., 2023; Cardinale et al., 2018). Various solutions have
been proposed to deal with these biases (Hefley et al., 2013;
Cretois et al., 2021; Johnston et al., 2020; Ver Hoef
et al., 2021), but there is still a lack of a general framework
for ecologists to guide decisions on when and how to deal
with data gaps.
Here, we show how usingmissing data theory (Rubin, 1976)

can unify problems associated with data gaps across different
types of biodiversity data sets. Missing data are a widespread
problem crossing disciplines, with a large body of literature
on their implications and possible solutions (Little &
Rubin, 2019; Carpenter & Kenward, 2012; Carpenter &
Smuk, 2021).We expect that aligning the generalised problem
of missing data, conceptualised within missing data theory, to
the problem of biodiversity data gaps discussed above will
yield opportunities so far overlooked. We mostly focus our
review on modelling trends in species occupancy or abun-
dance using monitoring data collected by volunteer citizen sci-
entists, but the ideas transfer to other types of biodiversity data
or questions. The general problems and potential solutions
could be applied to animal or plant data, or terrestrial or
marine systems; however, the implications of ignoring data
gaps, and the ability to account for problematic data gaps, will
vary according to the causal factors at play in both sampling
probability and biodiversity patterns and the availability of
data to model them. We show that bias is not a property of a
data set; rather, bias is a property of the use of a data set for
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a specific question and target population that are imposed by
the data analyst. We review some commonly used solutions
for missing data to highlight potential approaches that could
be considered in biodiversity analyses.

II. CLASSIFYING DATA GAPS USING MISSING
DATA THEORY

(1) Biodiversity data gaps

Species occurrence or abundance data can have gaps in differ-
ent dimensions. We distinguish between spatial, annual and
within-year gaps (Fig. 1).We define spatial gaps as those formed
by sites with no data, and annual gaps as those formed by a lack
of data in some years at sites that otherwise have been sampled.
Together, spatial and annual gaps determine the spatial and
temporal coverage of a data set. Within-year gaps arise when
data are lacking in specific seasons or months, which can be
important because most organisms are seasonal and multiple
visits can be used to estimate detection probabilities. Biodiver-
sity data sets can also have taxonomic gaps (Troudet
et al., 2017) – this is outside the scope of this review since we
are primarily interested in the implications of data gaps for
species-level questions asked bymonitoring schemes. However,
some of the approaches we discuss later for dealing with spatio-
temporal gaps have been applied to account for taxonomic
gaps (e.g. weighting in the Living Planet Index, McRae,
Deinet & Freeman, 2017) and missing data thinking could be
extended to these types of gaps.

Considering why these gaps arise can help understand
their likely impact, for instance, on species long-term trend
estimation. Data gaps can be found in all types of monitoring

data including highly structured monitoring schemes with a
standardised protocol, such as many national bird survey
schemes, as well as unstructured/opportunistic monitoring
data that are typically an aggregation of heterogeneous obser-
vations. While both structured and opportunistic monitoring
data can be affected by similar data gaps (Binley &
Bennett, 2023), there are some key differences between these
types of monitoring data. In structured schemes with a formal
spatial sampling design, data gaps include both planned and
unplanned gaps. Planned gaps arise because only a sample
of sites was ever intended to be sampled. Unplanned gaps
can still occur in these schemes, for instance due to a failure
to recruit and retain surveyors at sites that were intended to
be sampled (Zhang et al., 2021; Marsh & Cosentino, 2019).
In most other types of data and monitoring schemes, there is
no large-scale planned spatial sampling design. Somemonitor-
ing schemes have sampling protocols but participants are free
to choose their own sampling sites. In fully opportunistic mon-
itoring schemes, participants make individual decisions about
where to sample and gaps emerge from unevenness in the
cumulative sampling effort of all participants. Due to the high
number of participants, and lack of coordination of their
effects, sampling effort is generally more strongly skewed
across space and time in opportunistic schemes than in struc-
tured schemes, leading to more pervasive data gaps
(Geldmann et al., 2016). Synthesis databases such as BioTIME
and the Living Planet Database, and data aggregators such as
GBIF, are similar in these respects to schemes without a spatial
sampling design since they contain data that were indepen-
dently collected as part of separate studies, without any coordi-
nation in their efforts.

Drivers of data gaps may differ across data sets because of
differences in sampling objectives and constraints, but

Fig. 1. Different types of data gaps within biodiversity data. We imagine a scenario where there are multiple survey visits across sites
and years. Visits can be in response to a protocol (“structured” data) or opportunistic (“unstructured”), and repeat visits can be made
by the same or different recorders. Data gaps, or more generally uneven data availability, can arise due to (a) within-year gaps
(e.g. blue squares, i.e. ordinarily there are three visits, but some sites are only visited once or twice in a year), (b) annual gaps
(e.g. yellow squares, i.e. some sites that are usually sampled are entirely unvisited in some years) or (c) spatial gaps (e.g. light grey
squares, i.e. some sites within the region of interest are never visited across all years). Some sites are well-sampled within and
across years and hence have no missing data (e.g. green squares).
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similar gaps are often found within monitoring schemes
involving citizen scientists. Spatial gaps often occur in
remote areas because there is a smaller pool of potential
participants nearby (Geldmann et al., 2016; Mandeville,
Nilsen & Finstad, 2022). Spatial gaps can also be more com-
mon where species have lower abundance or land cover is
perceived to be less attractive for species and for surveying,
e.g. agricultural land (Tulloch et al., 2013; Dambly
et al., 2021; Marsh & Cosentino, 2019). At large scales, gaps
can also be associated with socio-economic variables such as
metrics of economic activity that might be associated with
lower sampling and data-compilation effort (Meyer
et al., 2015). Annual gaps can arise due to project turnover
or because of external factors (e.g. the 2020 season for most
countries was highly compromised by the Covid-19 pan-
demic). Annual gaps have also been linked with local land
use changes that negatively affected species abundance
(Zhang et al., 2021; Marsh & Cosentino, 2019). Within-year
data gaps can be caused by periods of inclement weather
(Zimney & Smart, 2022; Diekert et al., 2023) or vary season-
ally, for example missing surveys for butterflies are more
common at the start and end of the main flight period
(Dennis et al., 2016), while bird sampling can be higher dur-
ing their migration periods (La Sorte & Somveille, 2020).

(2) Classes of missing data

Within the classic missing data theory, there are three clas-
ses of missing data or missingness (Missing Completely at
Random, Missing at Random, Missing Not at Random),
defined below, each with different consequences for bias
(Table 1) (Rubin, 1976; Nakagawa & Freckleton, 2008;
Little & Rubin, 2019). These classes vary in their missing
data mechanism, which describes the relationship between
the probability of missing data (or sampling effort in the
monitoring context) and the values of other variables.

Hefley et al. (2013) proposed viewing spatial biases in
presence-only data as a form of missing data. Here, we extend
it more broadly across different types of biodiversity data.
Within the context of biodiversity data, missingness can be

regarded as Missing Completely at Random (MCAR) if the
factors affecting sampling, and causing missingness, are inde-
pendent of those affecting species (Table 1). Under MCAR
missingness, the observed data are effectively a random sam-
ple of the whole population, and the distribution of values of
the biodiversity variable of interest are similar in sampled
and non-sampled sites or times. For instance, if sampling site
selection is driven by human accessibility, but species distri-
bution is primarily driven by climate, and if accessibility
and climate are not correlated, then spatial data gaps would
be MCAR. Within-year gaps associated with weekdays,
because many volunteers only have the necessary spare time
to sample at the weekends (Evans & Day, 2002; Courter
et al., 2013), or annual gaps associated with project turnover,
are also examples likely to cause MCAR data gaps since such
gaps are probably not associated with species occurrence or
abundance (Table 1). In this case, missing data could reduce
the precision of parameter estimates through reduced sample
size but would not increase the bias.
When the factors affecting sampling effort are the same as, or

correlated with, those factors affecting species, the missing data
are not MCAR and can either be Missing at Random (MAR)
or Missing Not at Random (MNAR). In both cases, there are
systematic differences in the distribution of values of the biodi-
versity variable of interest between sampled and non-sampled
sites or times (Table 1). For instance, if road density affects both
sampling probability and species abundance, then any spatial
gaps associated with roads are not MCAR. Similarly, habitat
degradation at a site could reduce both species abundance
and participant retention in a citizen science scheme, creating
an annual data gap that is not MCAR (Table 1), because the
missing values are lower than the sampled values.

Table 1. Missing data classes in biodiversity data, including examples and implications.

Missing data class Typical meaning
Meaning in the context of
biodiversity data

Examples
Typical
implications

Missing completely
at random
(MCAR)

Missingness is
independent of
observed and
unobserved variables

Sampling is independent of any
covariates, or covariates that
affect sampling probability are
independent of those affecting
biodiversity

Within-year: Weekdays
Annual/spatial: Completion of a
fixed-term project or retirement
of a participant

Ignorable

Missing at random
(MAR)

Missingness is
associated with
observed data but
not any unobserved
variables

Covariates that affect sampling
probability are shared with those
affecting biodiversity, but data
are available on all these
covariates and included in the
analysis

Within-year: Season (day of year)
Annual: Urban development
Spatial: Accessibility

Ignorable if the
model includes
all relevant
covariates

Missing not at
random (MNAR)

Missingness depends on
unobserved variables
or the missing values
themselves

Sampling varies with biodiversity
values or an unknown or
unavailable covariate affects
sampling and biodiversity

Within-year/annual/spatial:
Unknown factors causing
variation in species activity/
abundance that correlate with
sampling effort

Non-ignorable –
the missing data
mechanism
might need to be
modelled
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We can separate MAR and MNAR by borrowing from
the “Rumsfeld Matrix”: MAR are effectively “known
unknowns” while MNAR are “unknown unknowns”. The
“known” for MAR is knowledge and availability of data on
the shared covariates affecting sampling probability and the
biodiversity variable. If data for these covariates are avail-
able, and included in the analysis, then the missing data are
MAR. Hence, despite its name, MAR in biodiversity moni-
toring does not mean that sampling effort is randomly dis-
tributed in the landscape. Rather, it means that the
covariates affecting sampling are known and that there are
available covariate data to explain fully the differences
between sampled and non-sampled sites/times. If any of
the relevant factors affecting sampling and species are
unknown, unavailable or not modelled, the missing data
become MNAR (Table 1). Hence, decisions of the analyst,
and whether to collect and model the effects of a specific var-
iable, can determine whether a data gap is MNAR or MAR
(discussed more fully in Section III). MNAR may also arise
when missingness is dependent on the missing values of the
biodiversity variable itself, that is, if sampling effort directly
depends on species occurrence or abundance.

Statistical tests can only partly help assess which form of
missingness is most likely (Little, 1988). Analysis of relation-
ships between data availability and observed covariates can
point towards MAR if some relationships are significant.
But a lack of any association, or an incomplete explanation
of data gaps, could reflect MCAR or MNAR. Because
MNAR is associated with unavailable data, it cannot be
tested directly. Concerns about whether missingness in the
biodiversity data is directly associated with the data’s values
could be explored if there is a related variable with available
data (Wu, 2022). We argue that MCAR is unlikely in most
biodiversity data because many variables that affect sampling
probability (such as road density or human population den-
sity) are also likely to affect species. Even in schemes with a
planned spatial design, a similar set of variables are likely to
be associated with unplanned data gaps that arise from vari-
ation in participant recruitment or drop-out. However,
MCAR is still a useful concept as a null hypothesis and
because it is the assumption made when no consideration is
given to adjust for data gaps when using monitoring data to
estimate species trends. Since gaps in biodiversity data are
caused by a range of different factors, some gapsmay be under-
standable by knowledge of the data collection process and/or
with available environmental covariates, while other gaps
may be harder to explain. This means that data gaps are
unlikely to be entirelyMARorMNAR, but typically amixture.

III. IMPLICATIONS OF MISSINGNESS FOR
ECOLOGICAL QUESTIONS

Missing biodiversity data do not necessarily have strong
impacts on the results of statistical modelling – the outcome
often depends on the specific question and parameter of

interest (Bartlett, Harel & Carpenter, 2015; Collins,
Schafer & Kam, 2001; Little et al., 2022; Hughes
et al., 2019). Viewing data gaps as a form of missing data can
help decide whether a particular data gap matters. As we note
above, data gaps that are MCAR do not cause bias, but data
gaps in biodiversity data are unlikely to beMCAR. The “miss-
ing at random” assumption ofMAR is conditional on account-
ing for variables affecting sampling probability within an
analysis, require that these variables are known, reflected in
available data and included in the analysis (Fig. 2) (Conn,
Thorson & Johnson, 2017; Hefley et al., 2013). Because differ-
ent ecological questions will lead to different decisions about
which variables to collect and include in an analysis, a data
gap might be MAR under some questions/analyses but
MNAR under others. To illustrate these potential differences,
we contrast two typical questions asked with biodiversity data.

(1) Understanding the roles of environmental
drivers on species’ distributions

Monitoring data are often used to understand the environ-
mental factors explaining species distribution patterns. The
implications of missing data for species distribution models
have been often considered in terms of niche truncation.
Niche truncation happens when a data set only contains
occurrence data from part of the geographic range of a spe-
cies, which usually also means that the data set only covers
part of the ecological/environmental space that is suitable
for the species (Chevalier et al., 2022; Albert et al., 2010;
Guo et al., 2023). These studies show that the implications
of niche truncation depend on the functional form of the rela-
tionship between the associated covariate and the species
response (Chevalier et al., 2022) and the type of monitoring
data available (Baker et al., 2022).

We begin considering the scenario when abundance data
are available. In this case, if there is a simple linear relationship
between an environmental covariate and species abundance,
missing data do not necessarily cause bias in the estimated
effect of the covariate on abundance, even when missingness
depends on the same covariate (Fig. 2A, C, E, G)
(Collins et al., 2001). For instance, we could estimate the
effect of elevation on species abundance without bias, even
if elevation is associated with data gaps (e.g. if we are miss-
ing data from high-elevation regions), provided elevation
and abundance are linearly related. This is because the rela-
tionship between the covariate and species abundance can
be estimated without bias using data over the sampled
range of covariate values, as shown in Fig. 2C – the same
relationship is found with a full data set (green in Fig. 2) or
a restricted data set with data gaps (purple in Fig. 2).
Missing data can, however, cause problems when the
underlying relationship between the covariate and species
abundance is non-linear. In this case, data gaps hinder esti-
mating the true form of the relationship (see Fig. 2I – the
true curved relationship is fitted with the full data set but a
simple positive linear relationship is fitted with the restricted
data set). The fitted relationship using the restricted data set
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will critically depend on which portion of the covariate
range is sampled. Since many ecological associations show

some non-linearity, or context dependencies such that rela-
tionships depend on the value of other variables (Spake

(Figure 2 legend continues on next page.)
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et al., 2023), we expect this issue is likely to be widespread. We
also note that we assumed a linear relationship on the log-scale
in our example (Fig. 2), which matched the log link function of
the fitted regression model, but non-linearity in other cases
could also be affected by the specific link functions used in gen-
eralised linear models.

We now consider the alternative scenario of fitting a distri-
bution model with presence-only occurrence data, typical of
opportunsitic citizen science. In this case, any data gaps
within a geographic region could represent a lack of sampling
or a lack of true species occurrence. This creates an inherent
identifiability challenge for any model seeking to separate the
sampling processes from the true ecological processes affect-
ing species distributions (Hefley et al., 2013; Baker
et al., 2022). Many methods have been developed to generate
pseudo-absences for analysis of presence-only data (Barbet-
Massin et al., 2012; Hertzog, Besnard & Jay-Robert, 2014),
but they are still usually more prone to biases when there
are shared covariates affecting sampling probability and true
species occurrence (Baker et al., 2022). The target-group
background method is a popular approach to generate
pseudo-absences by integrating data from multiple species
assumed to be surveyed by similar methods/people. With
this method, the aim is to produce absence data with a similar
pattern of spatial sampling bias as the presence data of the
focal species (Phillips et al., 2009), but its performance
depends on the range of environmental preferences of the
species included in the target group (Botella et al., 2020).
More recent approaches to modelling presence-only data,
by integrating them with any available presence–absence
data (Fithian et al., 2015), may help minimise some of these
biases.

(2) Estimating trends in species abundances

Models to estimate species’ trends tend to be descriptive: spa-
tial variation is modelled by including site identity (as a fixed
or random term) while any temporal trend is modelled as a
simple year effect, either as a linear function, spline function

or as a factor (Amano et al., 2012; Bled et al., 2013). Drivers of
the trend are not explicitly modelled when the goal is simply
to estimate the mean long-term trend. As such, broader infer-
ences about the estimated mean trend are based on the
assumed representativeness of the sampled sites, or prior
knowledge of sampling unit inclusion probabilities (see design
weights discussed in Section IV.2). Relying on the represen-
tativeness of the sampling design is the most traditional
approach to survey sampling (Smith, 1976) and the one
typically taken by official governmental surveys using some form
of random sampling (van den Brakel & Bethlehem, 2008). This
approach has the advantage of avoiding complex assumptions
in the statistical analysis (Buckland et al., 2012) and is perhaps
also easier to analyse and communicate to stakeholders and
laypersons.

Simple trend models may, however, lead to biased trend
estimates when data gaps are not MCAR. We illustrate this
in a simple simulation in which site-level species trends were
assumed to depend on a site-level covariate, for example
urban cover (Fig. 3). We assumed sites were sampled either
with a probability affected by an independent covariate
(Fig. 3 middle panel) or with a probability affected by the
same site-level covariate affecting species trends (Fig. 3 right
panel), a scenario already identified in some monitoring
schemes (Buckland & Johnston, 2017). We estimated the
mean trend using a simple mixed-effect model including site
and year. The results show that when an independent covar-
iate affected sampling, the trends were unbiased, but when
the site-level covariate affected both sampling and species’
trends, the trends were biased (Fig. 3). In real-world situa-
tions, many factors will simultaneously influence the trend
of a species, but this simple simulation highlights the poten-
tial for bias caused by shared covariates. Since the specific
causal covariates driving species trends or sampling probabil-
ity are not included in the commonly used descriptive trend
models, trend analyses are liable to be affected by MNAR.
Without conditioning on the covariates involved, trend esti-
mates might be underestimated if missing data are more
common in regions where species trends are more strongly

(Figure legend continued from previous page.)
Fig. 2. The impacts of different missing data patterns on regression (left) and sample distributions (right). We use a hypothetical data
set to highlight different missing data mechanisms. In A and B, the covariate affecting sampling probability is independent from the
covariate affecting species abundance. In this case, both the estimated effect of the covariate (e.g. in a linear regression, shown in A
by the solid line) and the sample distribution (B) are similar in a data set with (purple) and without (green) missing data
[i.e. missingness is “missing completely at random” (MCAR)]. In C and D, the covariate affecting sampling probability is the same
as or correlated with the covariate affecting species abundance – in this case, data are missing when the covariate is above average
(threshold missingness). The estimated effect of the covariate is the same in the data set with and without missing values (shown in
C) but the sampling distribution is different (D). In E and F, the missingness pattern is reversed compared to C and D (i.e. data are
missing when the covariate is below average), but we can similarly retrieve the same unbiased covariate effect (E) even though
there is greater mean abundance in the data set with missing values (F). In G and H, the covariate affecting sampling probability is
the same as or correlated with the covariate affecting species abundance – in this case, the probability of missing data increases with
the value of the covariate (linear missingness rather than a theshold). Again, the estimated effect of the covariate is the same
(shown in G) but the sampling distribution is different (H). In I and J, the covariate affecting sampling probability is the same as or
correlated with the covariate affecting species abundance; additionally, the true relationship between the covariate and species
abundance is non-linear and data are missing when the covariate is above average.
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declining or overestimated if missing data are more common
in regions where species are stable or increasing (Fig. 3)
(Bowler et al., 2022; Buckland & Johnston, 2017).

IV. MISSING DATA SOLUTIONS

A broad range of methods to deal with missing data have
been used in ecology (Hossie, Gobin & Murray, 2021;
Nakagawa & Freckleton, 2008; Lopucki et al., 2022). Many
solutions are particularly relevant when data are missing in
both response and predictor variables. Here, we focus on
the typical scenario in biodiversity modelling of missing data
only in the response variable (i.e. in the biodiversity data)
since predictors typically used in large-scale modelling tend
to have no or few gaps (e.g. site identity or environmental
data products derived from remote sensing). We organise
solutions into three groups – subsampling, weighting and
imputation (Fig. 4) – which have been tested to varying
degrees already with both structured and unstructured biodi-
versity data (Table 2). Most solutions to deal with missing
data are only appropriate for MCAR or MAR missingness,
when data are available on the key covariates affecting sam-
pling to be included in the analysis. MNAR is the most

challenging class of missing data to deal with in statistical
modelling, so we deal with MNAR separately in Section VI.

(1) Subsampling

The “Big Data Paradox” highlights that there can be trade-
offs between data set size and data set quality (Bradley
et al., 2021; Meng, 2018). Small data sets can be preferable
to large data sets if they are more representative and less
heterogeneous (Bayraktarov et al., 2019). Based on such
thinking, some studies have proposed “reverse engineering”
structure in biodiversity data by filtering data points
(Rapacciuolo, Young & Johnson, 2021). Part of this reverse
engineering has attempted to deal with spatial biases; for
instance, by spatially subsampling data to reduce the uneven-
ness of sampling effort across the landscape (Steen et al., 2021;
Matutini et al., 2021; Steen, Elphick & Tingley, 2019; Boria
et al., 2014; Robinson et al., 2020). This has been tested on,
for instance, the semi-structured data compiled by eBird
(Johnston et al., 2021). Typically, subsampling is done using
geographic covariates or spatial units, such as grid cells, rather
than using environmental covariates that are assumed to have
a causal link with either sampling or species. Some have also
applied this approach to reduce the effects of temporal

Fig. 3. The impacts of different missing data mechanisms on trend modelling. We use a hypothetical scenario in which a mean trend
model is fitted to data sets that vary in their missing data mechanism. We assumed a scenario of 50 sites that varied in an
environmental covariate affecting species trends (trends were stable or even increasing at low values of the covariate and declining
at increasingly high values of the covariate). When the probability of sampling a site was independent of the covariate driving
species trends [i.e. a “missing completely at random” (MCAR) pattern – there are fewer points in each year in the middle panel,
but they are a random set of those in the left panel, that is the covariate affecting sampling probability was a different and
uncorrelated covariate to the one affecting species], the overall mean trend (estimated by the year effect in a generalised linear
mixed-effect model that also included a site random effect) was similar with (middle panel) and without (left panel) missing data.
By contrast, when the same covariate affected both species’ trends and sampling probability, leading to less sampling in sites with
low values of the covariate [notice there are fewer blue points in the right panel – a “missing not at random” (MNAR) pattern],
the overall mean trend was downward biased with missing data (right panel) compared to the scenario of no missing data (shown
by the dashed black line and in the left panel).
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changes in sampling effort (Hof & Bright, 2016; Zbinden
et al., 2014), although not always successfully (Callcutt,
Croft & Smith, 2018). Subsampling could also be used to bal-
ance the amount of data across a single or multi-dimensional
environmental gradient; essentially stratified sampling of the
original sample (Meng, 2022; Nunez-Penichet et al., 2022).

Recent class balancing approaches have been developed to
ensure that important detections for rare species are not lost
during the subsampling process (Robinson et al., 2020; Steen
et al., 2021; Gaul et al., 2022).

(2) Weighting

Weighting is a common practice in survey analysis, especially
in the social sciences (Li et al., 2013; Seaman & White, 2013;
Raghunathan, 2004; Valliant, Dever & Kreuter, 2018).
Weighting can serve different purposes, including reducing
the impact of confounding variables when the goal is to esti-
mate the causal effect of an intervention. But weighting can
also be used to deal with missing data that are not MCAR.
For instance, weighting has been used to reduce selection
bias caused by participant non-response in surveys
(Seaman & White, 2013), but it is less often used to account
for data gaps in biodiversity modelling (Boyd, Powney &
Pescott, 2023; Aubry & Francesiaz, 2022).

Different types of weights have been used in the analysis of
biodiversity data, especially to deal with spatial gaps: (1)
design weights; (2) non-response weights (or sampling
weights) and (3) population weights. Each form of weighting
is intended to improve sample representativeness of some tar-
get population but vary in terms of whether or not the

Fig. 4. Visualisation of contrasting approaches to deal with data gaps. We focus on spatial gaps to illustrate the possible approaches,
but the ideas apply to other types of data gaps (Fig. 1). In the top panel, the landscape is divided into four quarters (e.g. representing
different habitats or geographic regions). One quarter (top right quarter) has been sampled more (four sampling sites) than the others
(two sampling sites each). The bottom panel shows possible solutions. In random subsampling (bottom left), two sites are randomly
subsampled from the oversampled quarter to create a data set with an even sampling coverage across quarters. In weighting
(bottom middle), data from the oversampled quarter are down-weighted in the statistical model so data from all quarters similarly
influence the modelled results. In imputation (bottom right), missing values at unsampled sites are imputed based on the spatial
pattern in the data and/or environmental covariates, and summary parameters are calculated based on both predictions at
sampled and unsampled sites. In subsampling and weighting, the aim is to improve the representativeness of the sample for
statistical inference at the population level. In imputation, the aim is directly to predict population-level values.

Table 2. Example applications of the solutions to deal with data
gaps within biodiversity data.

Type of
data gaps

Typical approaches

Within-year Sometimes imputed e.g. spline terms to smooth
over seasonal variation in sampling times during
the flight period of butterflies (Dennis
et al., 2016; Schmucki et al., 2016)

Annual Sometimes imputed e.g. generalised linear models
to impute gaps based on mean site and year
effects, optionally allowing for habitat
differences, e.g. used in TRIM abundance
indices (Lehikoinen et al., 2016)

Spatial Often ignored, but occasionally weighting by
geographic regions (Bled et al., 2013) or imputed
(Breivik et al., 2021) or reduced by subsampling
(Johnston et al., 2021).

Biological Reviews (2024) 000–000 © 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Missing data theory for biodiversity data gaps 9

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13127 by C

entre For E
cology &

 H
ydrology, W

iley O
nline L

ibrary on [09/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



weights derive from the sampling design and the dimension
of representativeness under consideration. Design weights
are based on the study sampling design and assumed to be
known with certainty, and hence are only relevant for struc-
tured monitoring schemes with a sampling design.
For instance, in many national bird breeding schemes, the
design weights are based on the geographic strata that
underlie a random stratified study design (Buckland
et al., 2012). Non-response weights can be used to account
for unplanned missing data in structured schemes (Frair
et al., 2004) or variation in sampling effort in unstructured
schemes (Johnston et al., 2020; Hefley et al., 2013). In both
cases, the non-response weights must be estimated based
on the available data and hence differ from design weights
since they cannot be known with certainty. Population
weights are primarily used in the calculation of suprana-
tional/international indicators in which estimates from
national surveys are combined (e.g. farmland or woodland
bird indicators; Gregory et al., 2005). For these indicators,
populations weights are used to give greater weight to
data from regions/countries that harbour a larger propor-
tion of the species’ total population, when calculating the
overall mean.

Non-response weights are usually the most difficult to
include since they are not known a priori and need to be esti-
mated. Predictive models (e.g. random forest models) have
been used to predict the probability that a site is sampled
based on a set of covariates (e.g. land cover or climate, or
accessibility) available across all sampled and unsampled
sites, with the inverse of these probabilities used as weights
(Little et al., 2022; Johnston et al., 2020). Alternatively,
post-stratification (for categorical covariates or subgroups
termed strata), or more generalised calibration approaches
(allowing both continuous and categorical covariates), can
be used, which adjust the weight given to each data point
until the joint or marginal distributions of covariate values
in the observed sample matches those for the population.
For instance, when estimating the occupancy change of a
plant species in the UK, Boyd, Stewart & Pescott (2024)
used data on elevation – a factor affecting both sampling
and species occupancy – to upweight data from under-
sampled high-elevation regions and produce more accurate
estimates of the species distribution size at different time
points. In both cases, weighting can cause problems when
there are regions within the target population with close
to zero probability of being sampled, which could lead to
some data points having extremely large weights. In this
case, weights may need to be redefined, for example by
coarsening the covariates used to define the weights so that
all strata have some probably of being sampled, or by trun-
cating weight values so that extreme weights are not pro-
duced (Battaglia, Hoaglin & Frankel, 2009). Another
approach that can help deal with small sample size in some
strata is so-called “Mr P” analysis (= Multilevel Regression
with Post-stratification). With this approach, variables for
the sampling strata are included as random effects in a mul-
tilevel regression/mixed-effect model, so that there is

partial pooling of information across strata, before the
model predictions for each strata are reweighted for repre-
sentativeness of the target population (Gelman, 2007;
Authier, Rouby & Macleod, 2021).
Themost appropriate approach to using weighting is likely

to be question and taxon specific, varying with howmuch the
species range extends across the region of interest. For exam-
ple, when estimating trends in the total population size of a
species, it might not be important to upweight under-
sampled regions if those regions overlap with where a species
is rare, or even absent. If, however, the goal is to estimate
trends in average site-level population trends of a species,
then it would be important to up-weight data from under-
sampled regions, even from where the species is rare. For
instance, in the UK bat monitoring scheme, data are
weighted to allow for the different sampling rates across
England, Scotland and Wales in proportion to the ratio of
non-upland area to number of sites surveyed for the relevant
country (Bat Conservation Trust, 2023). However, this
weighting is not applied to range-restricted species, such as
the serotine bat, Eptesicus serotinus that is only found in south-
ern England.

(3) Imputation

Imputation involves replacing missing values in a data set
with plausible estimates. A range of imputation procedures
have been developed, which can fill gaps in both response
and predictor variables (Carpenter & Kenward, 2012).
Imputation is probably the most flexible and widely used
approach to account for missing data across ecology and
beyond. In biodiversity modelling, missing values are more
often concentrated in the response variable (i.e. the biodiver-
sity value), so imputation here can be equated with making
model predictions at unsampled sites and times.
Imputation is already in use in species trend monitoring,

especially to account for within-year and annual data gaps
(Table 3). Early approaches used chain indices or route regres-
sion (Ter Braak et al., 1992) or the Underhill index, using an
expectation-maximisation algorithm, designed for waterbirds
(Underhill & Prysjones, 1994; Rehfisch et al., 2003). A range
of further model-based approaches have been developed that
fill data gaps usingmean effects of site and year, for example to
fill annual gaps using TRIM/birdSTATs, commonly used for
bird indices (Lehikoinen et al., 2016); or using temporal splines,
for example to fill seasonal gaps in butterfly sampling
(Schmucki et al., 2016; Dennis et al., 2016) or using ecological
covariates (Dakki et al., 2021). A Bayesian framework can be
especially useful for dealing withmissing values in the response
since they are naturally imputed with a full probability distri-
bution during model fitting, for example with Just Another
Gibbs Sampler (JAGS) or NIMBLE. For instance, Bayesian
occupancy-detection models have been used to analyse oppor-
tunistic species observations from citizen science, with annual
data gaps at each site imputed before the predicted annual
proportion of occupied sites is calculated (Outhwaite
et al., 2019). The flexibility of Bayesian models means they
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could also incorporate expert knowledge as priors to help fill
data gaps (Johnson et al., 2023).

While imputation is already used to deal with annual and
within-year gaps, it has been used less often to deal with spa-
tial gaps when the focus is modelling change over time in spe-
cies’ abundances or occurrences. An exception is studies of
changes in species’ range sizes using distribution models that
predict the full distribution of a species at multiple time
points before change is assessed (e.g. Grattarola, Bowler &
Keil, 2023). Monitoring schemes with large spatial coverage
(e.g., eBird) are also beginning to use models to predict spa-
tio-temporal patterns of abundance change across whole
countries (Fink et al., 2020). In these cases, statistical models
of the effects of environmental covariates and/or spatial
structure are used to make predictions at unsampled sites
(Bush et al., 2017; Ver Hoef et al., 2021; Breivik et al., 2021).
Geostatistical methods, such as kriging, also offer a range of
interpolation methods for spatial data, which are especially use-
ful when there is a strong spatial autocorrelation (Ballesteros-
Mejia et al., 2013; Kreft & Jetz, 2007; Lin et al., 2008).

V. PRO AND CONS OF EACH SOLUTION

All of the above-mentioned approaches have the potential to
reduce the bias in parameter estimates associated with data
gaps but differ in complexity, scope and typical practice
(Table 3) (Little et al., 2022; Collins et al., 2001). Moreover,
while we separated the methods into three categories for con-
venience, their distinctions are not absolute. For instance, sub-
sampling essentially assigns included data points a weight of
1 and the remainder a weight of 0. Often, but not always,
the reduction in bias due to application of the above solutions
comes at a cost of increased parameter uncertainty: the classic
bias–variance trade-off (Hefley et al., 2013). This is because

subsampling directly reduces the sample size; weighting can
reduce the effective sample size; and imputation adds uncer-
tainties via predictions at unsampled points. But this trade-off
does not always apply; for instance, post-stratification can
lead to the dual benefits of reduced bias and increased pre-
cision depending on the choice of covariates (Little &
Vartivarian, 2005).

Covariates used to account for data gaps are often called
“auxiliary variables” (Little et al., 2022), which are typically
not of central interest to the scientific questions but are used
to adjust for missing data. The general recommendation
from the missing data theory and survey sampling literature
is to be generous when deciding on auxiliary variables, con-
sidering those relating to the missingness (i.e. sampling effort
in the context of biodiversity data gaps) to reduce bias, and to
the biodiversity outcome to reduce variance (Collins
et al., 2001; Caughey et al., 2020). It is worth noting, however,
that selecting auxiliary variables purely on the hypothesised
strength of the correlation can increase bias in some circum-
stances (Thoemmes & Rose, 2014), and a safer strategy is to
select covariates a priori based on causal reasoning (Mohan
& Pearl, 2021). When auxiliary variables are related to both
the biodiversity outcome and the pattern of missingness,
weighting approaches can reduce bias and improve precision
(Little & Vartivarian, 2005). The success of any of the solu-
tions, hence, critically depends on the choice of auxiliary var-
iables (Little et al., 2022). A recent study testing the use of
weighting approaches to account for spatial biases in a rea-
sonably well-understood ecological system found that the
selected auxiliary variables had only limited success in miti-
gating bias (Boyd et al., 2024), suggesting that the limiting fac-
tor in accouting for bias often may be defining the right
auxillary variables.

We illustrate some of these challenges and the application
of each potential solution with a toy example of an abun-
dance data set with missing values (Fig. 5). We simulated a

Table 3. Summary of the pros and cons of each approach to deal with missing data in biodiversity monitoring.

Solution Pros Cons

Subsampling – arguably the simplest approach, especially for spatial gaps
– already a routine feature of many species distribution
modelling protocols

– aligns with rarefaction approaches used in community
ecology

– could mean excluding a large amount of data, which may
be unacceptable for citizen science and engaging/
retaining volunteers

–most protocols focus on a single dimension (e.g. filtering by
geographic region)

– more complex to implement when gaps are multi-
dimensional or temporally varying

Weighting – standard practice to deal with sample unrepresentativeness
in other disciplines, especially social sciences

– less commonly applied in ecology
– diverse range of possible weighting techniques
(Valliant, 2020; Boyd et al., 2024) but little guidance
available for ecologists to decide which approach to use

Imputation – suitable approach if missing data are within the
environmental covariates as well as within the biodiversity
response

– offers the promise to generate the continuous space–time
data cubes of the Essential Biodiversity Variable
framework (Kissling et al., 2018; Jetz et al., 2019).

– requires a good understanding of the ecological system to
predict the missing biodiversity values

– inefficient when the number of unsampled sites/times is
large if the goal is only to estimate mean abundance or
occupancy
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landscape in which a covariate (for example representing
habitat quality) affected both species abundance and the like-
lihood of a site being sampled. The analysis aimed to estimate
the mean abundance of the species across all sites in the land-
scape. We varied the total fraction of sites that were sampled
and the degree of knowledge available on the covariate
affecting sampling/the species (modelled as the correlation
between the covariate involved in the data-generation pro-
cess and the covariate available to the modeller). We com-
pared subsampling, weighting and imputation, which all
used the available covariate data for adjustment. For
subsampling, we subsampled one site at random for each
value of the covariate. For weighting, we compared two
approaches: first, fitting a generalised linear regression model
with cell-specific weights (inverse of sampling probability)
using model-robust variance estimators that take into
account the weighting of the observations, and second, using
post-stratification to weight data so the covariate distribution
of the sampled data matched that of the population – in this

case the unique covariate values were treated as separate
sampling strata (Valliant et al., 2018). For imputation,
we fitted a Bayesian generalised linear regression model
(using JAGS) in which missing values were set as “NA” in
the response and were imputed based on the estimated effect
of the covariate.
The results show that all methods do better, in terms of

reducing bias, than a naive approach that did not attempt
to account for missingness in the estimation of the mean
abundance (Fig. 5A, C). Subsampling performed the worst,
and weighting the best. Post-stratification tended to
perform slightly less well (i.e. led to higher bias) when the
sampling fraction was low, when the number of missing
values was high (Fig. 5A). This latter pattern was because
the sample did not contain all the habitat quality values
found in the population, meaning there were no available
data to upweight in under-sampled regions. All models
performed less well, shown by higher bias, as the available
covariate became a weaker proxy of the true driving covariate

Fig. 5. The ability of missing data solutions to adjust for bias in biodiversity data. We assumed a landscape of 400 cells and that a cell-
varying covariate affected both species abundance and the likelihood of a cell being sampled. In A and B, we varied the fraction of the
cells that were sampled. In C and D, we varied the correlation between the true covariate and the covariate available for analysis, as
measure of our knowledge (correlation of 1 = perfect covariate and knowledge). The models used to estimate the parameter of
interest (mean abundance) were: naive [no correction, Poisson generalised linear model (GLM)]; subsampled (cells were
subsampled along the covariate gradient), weighted (two methods: weighted GLM and post-stratification, using postStratify in the
survey package) and imputed (using Just Another Gibbs Sampler, or JAGS, in which missing values were set as “NA” in the response).
Points in A and C show the mean bias (difference between model prediction and truth – note the true mean value was 7.3) while B
and D show the mean width of the confidence intervals (CI) of the mean abundance estimate across 100 independent runs. In A
and B, covariate knowledge was fixed at a correlation of 0.75; while in C and D, the sampling proportion was fixed at 0.35.

Biological Reviews (2024) 000–000 © 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
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(lower correlation with the truth; Fig. 5C), especially imputa-
tion. In terms of uncertainty of the parameter estimates (mea-
sured as the width of the confidence interval), attempts to
adjust for bias usually increased the width of the confidence
intervals (Fig. 5B, D) – subsampling led to the greatest increase
in uncertainty (explained by reduced sample size), while
weighting added intermediate levels of uncertainty. For post-
stratification, the increase in uncertainty was minimal when
the covariate was a good proxy (Fig. 5D), which is a pattern
noted elsewhere (Little & Vartivarian, 2005). In this simple
example, imputation led to a similar uncertainty – in terms of
width of the confidence interval – as the naïve approach, partly
because we assumed a relatively small and well-sampled sys-
tem. In further simulations, we found that imputation per-
formed less well when there were additional covariates
affecting species abundance and these covariates were not
modelled, highlighting the importance of understanding the
ecological system for imputation (see online Supporting Infor-
mation, Fig. S1). We do not intend this simulation to be
exhaustive – rather to highlight the potential ways in which
the availability of data and degree of knowledge about the fac-
tors causing bias affect any attempts to account for missing
data. We point the reader towards some useful R packages
and functions in Table S1.

VI. DEALING WITH MISSING NOT AT RANDOM

Dealing with MNAR is more challenging than dealing with
the other classes of missing data (Little & Rubin, 2019). In
this case, missingness is directly associated with unavailable
data, which could be either because sampling is affected by
the missing biodiversity values or important covariates that
are not known to be important and/or are not measured or
measurable. This makes MNAR especially difficult to diag-
nose [but see Conn et al. (2017) for suggestions] and model,
since possible auxiliary variables to adjust for the data gaps
are not available. MNAR can arise through several mecha-
nisms in biodiversity monitoring data.

MNAR can be an outcome of preferential sampling –more
intense sampling effort where the species is expected (Diggle,
Menezes & Su, 2010; McClure & Rolek, 2023) – leading
to more missing values in places where the species is rare
or absent. Preferential sampling can arise, for instance,
if observers visit a location specifically to observe a species
that others have observed there before (Laney et al., 2021;
Pennino et al., 2019). Preferential sampling can also be a
planned sampling strategy (Alessi et al., 2023). For rare
species, preferential sampling can be chosen when the
goal is to estimate species detection probability and
account for imperfect detection, since sufficient observa-
tions of the species can only be achieved by sampling
where they are found (Specht et al., 2017). Similarly, it
can be optimal to expend greater sampling effort where
the species is common if the goal is to estimate trends in
the total population size, since regions where the species

is scarce are less important for the overall trend. For
organisms associated with specific habitats, such as wet-
land species or colonial seabirds, dedicated structured
monitoring schemes target their habitats (McClure &
Rolek, 2023). In such schemes, missing data outside of
these core habitats are not considered part of the target
population.

Typical approaches to modelling data allowing for
MNAR are selection models (Heckman, 1979) and pattern-
mixture models (Little, 1993). Both model the joint distribu-
tion of the data and the data availability, but differ in how
these processes are decomposed. Both also require making
strong assumptions about the missing data mechanism but
can be used to explore the consequences of plausible missing
data mechanisms as sensitivity analyses (Little, 1995). In the
ecological literature, approaches to deal with preferential
sampling have also involved jointly modelling the sampling
intensity, the biodiversity value at sampled points and the
dependence between them, such as using marked point pro-
cess models (Conn et al., 2017; Pennino et al., 2019; Laxton
et al., 2023). Meta-analyses often face similar MNAR prob-
lems, caused by publication bias when data are missing
according to values of the data itself. In meta-analysis, sim-
ilar sensitivity analyses, including selection models and the
trim-and-fill method, have been proposed to test the robust-
ness of model predictions to possible assumptions about
missing data (Maier, VanderWeele &Mathur, 2022; Sutton
et al., 2000). Another approach to inference in a MNAR
scenario is to use instrumental variables, i.e., variables that
affect the probability of sampling/data availability but are
independent of the biodiversity variable of interest
(Tchetgen & Wirth, 2017; Bailey, 2023); however, the
challenge is to identify such variables.

VII. GENERALGUIDELINES FORDEALINGWITH
BIODIVERSITY DATA GAPS

Our review highlights the potential value of “missing data
thinking” when analysing biodiversity data. We argue that
MCAR data gaps are unlikely in most biodiversity data
contexts because at least some of the known factors affect-
ing sampling probability, especially accessibility, urban
land cover and human population density, overlap with
those affecting species. This means that researchers will
need to consider whether and how they deal with data
gaps in their analysis. While it is premature to make very
specific guidelines, we summarise here some of the consid-
erations needed when dealing with data gaps in biodiver-
sity data at different stages of data collection, analysis
and reporting.

(1) Study design

For new monitoring schemes, planned data gaps that deviate
from MCAR (i.e. a random sample) can be seen as
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opportunities rather than challenges since solutions are
available to deal with missing data, provided that sampling
inclusion probabilities are known. Indeed, planned data
gaps are already used in schemes with a spatially stratified
sampling design, often in relation to sampling probabilities
of different geographic regions. In other fields, beyond
monitoring, intentionally missing data has been proposed
for ethical or practical reasons (e.g. Noble & Nakagawa,
2021; Herrera, 2019). In citizen science, planned data gaps
could help increase uptake and avoid participant fatigue,
especially caused by collecting difficult data. For instance,
the UK Breeding Bird Survey includes an “upland rovers”
component in which the standard protocol is modified to
allow for fewer visits to remote sites, with the long-term
aim of increasing spatial coverage of the data (Darvill
et al., 2020). Alternative study designs, such as wave miss-
ingness or a rotating panel design (Nielsen et al., 2009;
Little & Rhemtulla, 2013) explicitly incorporate planned
data gaps (e.g. years when a site is not planned to be sur-
veyed) and may similarly increase the sustainability of long-
term monitoring for some taxa or regions with few willing
participants. But such an approach has to balance the cost
of increased study design complexity and potential implica-
tions for the range of questions that can be addressed.

For existing monitoring schemes, data gaps may be filled,
where possible, by promoting data collection in regions that
represent sampling priorities – either because they lack data
or because they are dissimilar to sampled regions. Within
citizen science projects, there is evidence that participants
can be nudged to collect more data in regions identified as
sampling priorities (Callaghan et al., 2019, 2023). Previous
studies have identified sampling priorities in different ways;
for instance, based on the expected influence of a data point
(Callaghan et al., 2019) or predictions based on species dis-
tribution models (Chiffard et al., 2020). A similar targeting
of effort may be used in synthesis studies that compile data
from independent studies. In this case, efforts to mobilise
data may be targeted towards under-represented sites/
times, or those with the most uncertain predictions accord-
ing to models of the existing data.

(2) Evaluating and reporting missingness

Developing a causal model of the factors affecting sam-
pling probability and species [e.g. using a directed acyclic
graph (DAG) to visualise the hypothesised causal links]
can be a useful first step to identify the covariates linked
to both sampling probability and species occurrence or
abundance (Mohan & Pearl, 2021; Hughes et al., 2019).
As far as possible, data should then be collected on these
covariates. Statistical models can be used to test whether
covariates that are associated with missingness are also
associated with the species, although of course the latter
is only possible in the sampled data. Unplanned missing-
ness in structured monitoring schemes could be investi-
gated by disseminating follow-up surveys to participants
to determine their reasons for missed surveys. Follow-on

data collection, for example with paid surveys, or tar-
geted citizen science, in regions or times of missing data
could also help understand whether there are fundamen-
tal differences in species occurrence/abundance between
the original data set and the extended data set.
Missingness, and how it is dealt with, is often not clearly

reported in species trend analyses. Some reporting frame-
works for missing data have been developed for other dis-
ciplines (Lee et al., 2021). Such frameworks are in their
early stages in ecology, but an approach has been pro-
posed recently (Boyd et al., 2022) that builds on the “risk
of bias” tools used in other fields, especially in systematic
reviews in medicine (Babic et al., 2019). At a minimum,
we propose that missingness can be reported in terms of
the proportion of sampling units that are spatial, annual
and within-year gaps, and the number of unplanned gaps
for structured monitoring schemes (Fig. 1). But also
important are summaries or visualisations of the distribu-
tions of environmental covariate values in sampled and
non-sampled times/sites to highlight potentially impor-
tant differences between the sample and target population
of inference.

(3) Modelling to account for data gaps

The impact of data gaps will depend on multiple factors:
their frequency and contiguity; how well data gaps are
understood; whether the factors affecting missingness
are independent of the factors affecting species and species
abundance itself; the ecological questions being asked and
which covariates are available and included in the analysis.
Because of this, the potential impacts of missingness and pos-
sible solutions should be considered for each species–ques-
tion–data set combination. A data set per se is not biased.
Subsampling, weighting and imputation all have potential
to reduce bias caused by data gaps. Weighting is probably
the most under-used in ecology and could be applied more
often, especially to account for spatial gaps when the goal is
estimating overall means or mean trends in abundance or
occupancies. Imputation methods offer the potential to fill
in spatio-temporal gaps to generate the space–time data
cubes underlying the Essential Biodiversity Framework
(Kissling et al., 2018), but their success depends on the ability
to model variation in the biodiversity response. If bias is
expected to be strong, but the causes are not fully known or
relevant covariate data not fully available to adjust for it,
the broader implications that can be drawn from a model
of the data become difficult to communicate. Sensitivity anal-
ysis could help explore how different assumptions of the miss-
ingness would affect model interpretation and the robustness
of conclusions (Little, 1995; Leurent et al., 2018). Alterna-
tively, it might be sensible to redefine the target region of
interest to a region with fewer data gaps so that the sampled
data are more representative of the target population. If this
is not possible due to wide data gaps, a final option might be
to revise the generality of the study question to make explicit
the limits of information within the sampled data.
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VIII. CONCLUSIONS

(1) Biodiversity data sets containing information on species’
occurrences and abundances are rapidly growing in size, but
data gaps are not necessarily closing. Nonetheless, big biodi-
versity data sets are invaluable for a broad range of basic
and applied questions, and increasingly for policy-relevant
questions about the status and trends of biodiversity at large
scales. Heterogeneity in sampling efforts –whether by volunteer
citizen scientists or contracted surveyors – creates different types
of data gaps in the available data. Such data gaps are among the
biggest hindrances to making use of these growing data sources
for large-scale inferences about biodiversity patterns.
(2) We show how “missing data thinking” can help decide
whether a data gap is problematic in a given context and pro-
vides directions on possible solutions. We show that an
important determinant of bias is whether factors affecting
sampling effort are correlated with those affecting species:
shared covariates affecting sampling effort and species occur-
rence or abundance have the potential to lead to biased ana-
lyses if not taken into account.
(3) Multiple approaches are available to account for missing
data but they depend on knowledge and availability of cov-
ariates associated with missingness. A lack of training for
ecologists in commonly employed approaches in other disci-
plines has meant there are few standard practices in ecology
to deal with gaps. We highlight multiple methods that are
ripe for comparison across different ecological problems.
(4) At the same time, statistical solutions can only go so far,
closing data gaps with more coordinated data collection
across stakeholders in biodiversity and environmental moni-
toring is also important to advance predictions of the state of,
and trends in, biodiversity.
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problems and their potential application for use in biodiver-
sity research.

(Received 20 October 2023; revised 23 July 2024; accepted 25 July 2024 )

Biological Reviews (2024) 000–000 © 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

18 Diana E. Bowler and others

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13127 by C

entre For E
cology &

 H
ydrology, W

iley O
nline L

ibrary on [09/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Treating gaps and biases in biodiversity data as a missing data problem
	I.  INTRODUCTION: UNEVEN SAMPLING OF BIODIVERSITY
	II.  CLASSIFYING DATA GAPS USING MISSING DATA THEORY
	(1)  Biodiversity data gaps
	(2)  Classes of missing data

	III.  IMPLICATIONS OF MISSINGNESS FOR ECOLOGICAL QUESTIONS
	(1)  Understanding the roles of environmental drivers on species' distributions
	(2)  Estimating trends in species abundances

	IV.  MISSING DATA SOLUTIONS
	(1)  Subsampling
	(2)  Weighting
	(3)  Imputation

	V.  PRO AND CONS OF EACH SOLUTION
	VI.  DEALING WITH MISSING NOT AT RANDOM
	VII.  GENERAL GUIDELINES FOR DEALING WITH BIODIVERSITY DATA GAPS
	(1)  Study design
	(2)  Evaluating and reporting missingness
	(3)  Modelling to account for data gaps

	VIII.  CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	REFERENCES


