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Abstract
The detection of changepoints in spatio-temporal datasets has been receiving increased focus in recent years and is utilised
in a wide range of fields. With temporal data observed at different spatial locations, the current approach is typically to use
univariate changepoint methods in a marginal sense with the detected changepoint being representative of a single location
only.We present a spatio-temporal changepoint method that utilises a generalised additive model (GAM) dependent on the 2D
spatial location and the observation time to account for the underlying spatio-temporal process.We use the full likelihood of the
GAM in conjunction with the pruned linear exact time (PELT) changepoint search algorithm to detect multiple changepoints
across spatial locations in a computationally efficient manner. When compared to a univariate marginal approach our method
is shown to perform more efficiently in simulation studies at detecting true changepoints and demonstrates less evidence
of overfitting. Furthermore, as the approach explicitly models spatio-temporal dependencies between spatial locations, any
changepoints detected are common across the locations. We demonstrate an application of the method to an air quality dataset
covering the COVID-19 lockdown in the United Kingdom.

Keywords Changepoint · Spatio-temporal · PELT · GAM

1 Introduction

In time series analysis, a changepoint is a point in time where
an abrupt change in the statistical properties of the time series
occurs. Typically, the focus of changepoint analysis has been
on detecting changes in the temporal structure of the time
series, often changes in mean, variance, trend or a combina-
tion (Beaulieu and Killick 2018). Changepoint detection is
utilised in a wide range of fields including genomics (Caron
et al. 2012; Liehrmann et al. 2023), health (Younes et al.
2019; Tapsoba et al. 2020; Creswell et al. 2023), and envi-
ronmental science (Lund et al. 2007; Gallagher et al. 2012;
Beaulieu et al. 2020).
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Historically, changepoint detection has focused on the uni-
variate case whereby changes are detected in a single time
series although in recent years this has been extended to mul-
tivariate time series (Ma and Yau 2016; Hahn et al. 2020;
Lowther et al. 2023). Themajority ofmultivariate approaches
harness detection power across the series but still make the
assumption of independence between them.

However, often with environmental datasets, we are pre-
sented with data from various spatial locations that measure
the evolution of a variable not only over time but also the
spatial domain on which the measurement process lies, thus
violating this assumption of independence between time
series. Furthermore, univariatemethods canonly be deployed
in a marginal sense and the changes detected are repre-
sentative of a single spatial location only. This property of
environmental datasets has prompted new approaches to be
developed to account for the dependence between the mul-
tiple time series. Ryan and Killick (2023) detect changes
in covariance but focus on the second order and assume
the mean structure is zero. Gromenko et al. (2017) use an
approach based on functional data analysis in order to detect
a single changepoint in the annual pattern of precipitation
data at fixed spatial locations. In this case, observations
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are modelled as functional valued time sequences across
the multiple spatial locations with the addition of spa-
tially correlated error functions. Dette and Quanz (2023)
take spatio-temporal changepoint detection further by focus-
ing on changes exceeding a certain threshold rather than
considering the problem of arbitrary change sizes. Finally,
Zhao et al. (2024) develop a composite likelihood approach
using a piecewise stationary spatio-temporal process in order
to detect underlying changes in the non-stationary spatio-
temporal process acrossmultiple spatial locations. By using a
pairwise composite likelihood in conjunctionwith thePruned
Linear Exact Time (PELT; Killick et al. (2012)) algorithm,
they are able to overcome the computational burden of spatio-
temporal modelling to detect multiple changepoints.

There are many spatio-temporal process models that have
been developed in the literature coming from different start-
ing paradigms. Examples include linear mixed effect models
that can model spatial and temporal effects (e.g. using the
R package nlme based on the approaches of Laird and
Ware (1982); LindstromandBates (1988)),Bayesian univari-
ate and multivariate spatio-temporal random effects models
(Finley et al. 2015; Finley and Banerjee 2020) and Bayesian
hierarchical approaches (Bakar and Sahu 2015). However,
one of the most easily accessible spatio-temporal processes
for practitioners is the generalised additive model (GAM),
due to the conceptual extended regression framework, and
availability of code and accessible introductions. In this
paper, we adopt a spatio-temporal process using a GAM
which is dependent on the 2-D spatial location and the time
of the observation. We then use the full likelihood in con-
junction with PELT to detect multiple changepoints across
spatial locations in a computationally efficient manner.

The remainder of the paper is set out as follows: Sect. 2
provides a description of the derivation of the method and
its application to spatio temporal changepoint detection. The
approach is demonstrated through series of simulation stud-
ies in Sect. 3 and application to a real world example using
air quality data over the United Kingdom (UK) in Sect. 4.
Finally Sect. 5 presents concluding remarks.

2 Methods

There are twomain components needed for detecting change;
1) The model to fit between two changepoints, and 2) the
algorithm for identifying changes. The spatiotemporalmodel
we utilise between changepoints is a Generalised Additive
Model (GAM) (Wood 2017). The likelihood of the GAM is
utilised within the Pruned Exact Linear Time (Killick et al.
2012) algorithm for detecting multiple changepoints over
time. These are described in the remainder of this section.

2.1 GAMmodel

Let ys,t be a three-dimensional observation of a process of
interest over a 2-d space, s = (u, v) and time, t . The col-
lection of {ys,t }(s∈(U ,V ),t=1,...,n) is a spatio-temporal process
over a defined spatial domain (U , V ) observed at n time
points. This could be, for example, air quality (NO2 or O3)
observed at different spatial locations across the UK over
time. We choose to fit a generalised additive model (GAM)
to data of this type.

ys,t = f1 (xs) + f2 (xt ) + f3 (xs, xt ) + εs,t (1)

where f1(·) is a function over 2-d space, f2(·) is a function
over time and f3(·) is a functionover both time and space.The
εs,t are errors that are independent of all fitted components
with mean 0 and variance σ 2.

There are many different functional forms that the fi (·)
can take, including thin plate and cubic spline regressions,
and tensor products. See Wood (2017) for descriptions. We
focus on aGAMdescribed by (1) here but additional explana-
tory covariates can also be added if warranted.

Recall that in identifying changepoints we seek to identify
changes in the GAM model parameters. To do this we need
to have a way of describing and comparing the fit of different
GAMmodels to different segments of the data. A commonly
used measure of fit is the likelihood and we will adopt this
approach, including maximum likelihood estimation for the
parameter estimates.

2.2 Changepoint estimation

In describing the GAMmodel in Sect. 2.1 we sought to opti-
mise the no changepoint scenario

n∑

i=1

C(ys,i |θ) (2)

for θ . Here C(·) is a measure of fit given fitted parameters
θ̂ which is twice the negative log-likelihood of the GAM
model (1). As written, equation (2) fits a single GAMmodel
(and parameters via maximum likelihood) for all time points
i = 1, . . . , n. To add changepoints we focus on the time
component in what follows. The spatial component, and the
within-segment space-time interactions, are dealt with by the
GAM modelling for each segment. Thus we are detecting
changes in time of the spatial-temporal process parameters,
we do not seek to detect changes across space i.e., cliffs.

Recall thatwedefine changepoints at times0 = τ0, τ1, . . . ,

τM , τM+1 = n. Under the changepoint assumption themodel
parameters are restricted to be the same across segments of
data and we seek to optimise,
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min
τ,M

M∑

m=0

τm+1∑

i=τm+1

C(ys,i |θ̂m). (3)

Due to the discrete nature of both the number and loca-
tion of changepoints, standard estimation methods cannot be
directly applied. We now have a model selection problem
where you need to select the appropriate number of change-
points. This is akin to choosing the number of regressors in
a regression problem. Without restrictions, the optimisation
of (3) would choose the maximum number of changepoints,
M and so as in the regression context, we need to penal-
ize. Zheng et al. (2022) demonstrates that penalties of the
form CM log(n) are consistent for likelihood-based cost
functions, C(·), and constant C with respect to n. Thus we
optimize,

F(n) = min
τ,M

M∑

m=0

τm+1∑

i=τm+1

C(ys,i |θ̂m) + CM log(n). (4)

Optimizing (4) over all possible combinations of M and
τ is a computationally intensive task. Killick et al. (2012)
demonstrates how a combination of dynamic programming
and pruning the search space can reduce the computational
burden fromO(2n) toO(n).With the assumed independence
of the segments in (4), dynamic programming allows us to
rewrite the search for all changepoints in (4) into the search
for the last changepoint prior to n,

F(n) = min
τ∗ F(τ ∗) +

n∑

i=τ∗
C(ys,i |θ̂M ) + C log(n). (5)

Computing F(τ ∗) recursively for τ ∗ = 1, . . . , n recov-
ers the optimal set of changepoints for penalty CM log(n) in
O(n2) computational time. To reduce this to O(n) one can
prune theminimisation in (5). As theminimisation is looking
for the best last changepoint location at each step of the algo-
rithm, where there has been an obvious changepoint prior to
the current step, the best last changepoint is unlikely to be
before this obvious changepoint. This intuition is mathemati-
cally optimal to prune an individual τ ∗ from theminimization
set, if it satisfies

F(τ ∗) +
t∑

i=τ∗
C(ys,i |θ̂M ) ≥ F(t). (6)

Intuitively this says that if at any time in the recursive
computation, a candidate last changepoint location is more
than C log(n) larger than the optimal likelihood at that time,
it can never be the last changepoint at any future point so it
can be pruned from the minimisation in (5). The authors call
this algorithm, PELT, Pruned Exact Linear Time.

We use PELT as a wrapper for our GAM model by using
the negative twice the log-likelihood as C(·) in (5).We denote
this GAM-PELT in the remainder of the paper. The computa-
tional cost of this is thenO(Ln)where L is the computational
order of evaluating the likelihood for the GAM model in a
single segment.

3 Simulations

In this section we evaluate the GAM-PELT method, with
default SIC/BIC penalty, to see if it can accurately detect
different types of change. In applications, several different
types of change can occur so we run several scenarios in
which changepoints are specified in the; spatial structure,
temporal structure, both (spatio-temporal), or no change at
all. It is important to include simulations with no change
to ensure that false changepoints are not detected when no
changepoints are present. A summary of the scenarios run
can be found in Table 1 (no changes) and Table 3 (changes).

The GAMused in our simulations is defined following the
form of Eq.1 where f1 is a 2D thin plate regression spline
over U , V , f2 is a cubic regression spline over T and f3 is
a tensor product interaction to account for the interactions
between the spatial and temporal components. The splines
were defined using the default settings from the mgcv pack-
age with the exception of the number of knots in the cubic
regression spline which were set to 5. Naturally other GAM
forms could be used depending on the dynamics of a given
application.

We compare the performance of the GAM-PELT method
with the closest available marginal (univariate) method; the
change in mean model with autoregressive errors of order
one, AR(1). Themarginal method ignores the spatial compo-
nent and fits each spatial location independently, identifying
multiple changepoints with the same PELT search algorithm.
Code for this method is available in the EnvCpt R package
on CRAN (Killick et al. 2021). Both the GAM-PELT and the
marginal approach used the standard Bayesian Information
Criterion (BIC) as the penalty value in PELT.

For all scenarios the number of time points and spatial
locationswere fixed at 200 and 50 respectively, and 3 change-
points at timesteps 50, 100 and 150. For each scenario there
are 100 replicates with the spatial locations generated at
random at the start of each replicate uniformly from u ∼
Unif(-3,3), v ∼ Unif(40,60), rounded to 1 decimal place.
To compare the accuracy of the GAM-PELT method and
the traditional marginal approach, we consider the timing
of the detected changepoints. A changepoint is considered
to be accurately detected (i.e. true positive) if it sits within
10 timesteps of the true position. If more than one change-
point sits within this window, one is counted as the true
changepoint, and the other as false. Finally, the number of

123



  162 Page 4 of 9 Statistics and Computing           (2024) 34:162 

Table 1 Summary of scenarios where there are no spatial and/or tem-
poral changes in the simulated dataset

Scenario Time Space

A AR1: same all locations Constant

B AR1: random all locations Constant

C Independent Constant

D Independent Independent

E Independent Structured correlation

F Independent 2-D gamSim example (mgcv)

Table 2 Percentage of estimated changepoints m among 100 replica-
tions at 50 locations under various no changepoint scenarios

GAM-PELT Marginal
Scenario 0 1–4 >5 0 1–4 >5

A 98 2 0 98.58 1.42 0

B 92 8 0 98.36 1.64 0

C 100 0 0 99.10 0.90 0

D 100 0 0 99.04 0.96 0

E 100 0 0 99.38 0.62 0

F 100 0 0 99.04 0.96 0

false changepoints (i.e. false positives) is the total number of
changepoints minus the number correctly identified. To be
fair in the comparison with the marginal approach, we per-
form this evaluation independently across all spatial locations
according to the expected changepoints for eachmethod, and
then average across locations. Thus a falsely detected change-
point inGAM–PELTwill be counted as 50 false changepoints
and a true detection as 50 true changepoints. Conversely, for
the marginal approach, where only a single spatial location
has a change, if any other location detects a change then it is
considered a false changepoint.

3.1 No changes

To ensure that the GAM-PELT method doesn’t falsely
detect changepoints, we run a series of scenarios that have
different spatial and temporal structures but have no change-
points. Table 1 shows a summary of the scenarios run with
specific parameter values given in the Supplementary Mate-
rial. A summary of the results is shown in Table 2.

For Scenario A, GAM-PELT benchmarks well against
the marginal approach with both methods correctly estimat-
ing zero changepoints in 98% of replicates. In Scenario
B, where each spatial location has a different AR compo-
nent, GAM-PELT performs slightly worse; estimating 1–4
false changepoints in 8% of replicates compared to only
1.64% using the marginal approach. For Scenarios C–F,
GAM-PELT correctly estimates zero changepoints in 100%

Table 3 Summary of scenarios where changepoints are introduced into
the simulated data

Scenario Time Space

1a All locations change: No change:

AR1, Mean and Variance Constant

1b All locations change: No change:

AR1, Mean and Variance All random

1c All locations change: No change:

AR1, Mean and Variance Correlated

2a 1 location changes: No change:

AR1, Mean and Variance Constant

2b 1 location changes: No change:

AR1, Mean and Variance All random

2c 1 location changes: No change:

AR1, Mean and Variance Correlated

3a No change: Change:

AR1, Mean and Variance Constant → Constant

3b No change: Change:

AR1, Mean and Variance All random → All random

3c No change: Change:

AR1, Mean and Variance Correlated → Correlated

4a Change: Change:

Random draw Random draw

(Can include no change) (Can include no change)

4b Change: Change:

Random draw Random draw

of replicates run for each scenario. This slightly outperforms
the marginal approach which demonstrates some evidence
of over-fitting with false changepoints estimated in a small
number of replicates (0.62−0.96%).

3.2 Temporal changes

We first evaluate GAM-PELT in terms of the ability to detect
changepoints where there is a change in the temporal struc-
ture of the dataset only (Scenarios 1a–c and 2a–c in Table 3).
Full details of the parameter settings are given in the Supple-
mentary Material. The results are shown in Fig. 1.

For Scenario 1, GAM-PELT outperforms the marginal
approach in all scenarios, correctly identifying a greater
proportion of the true changepoints alongside a lower pro-
portion of false positives. In contrast for Scenario 2, the
marginal approach is shown to outperformGAM-PELT. This
is expected as the change is at a single spatial location and
the GAM-PELT parameter estimates are unlikely to change
significantly due to this. Conversely, the marginal approach
treats each spatial location in isolation (ignoring spatial
dependencies) and therefore is better at capturing changes
that impact single locations as in Scenario 2.
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Fig. 1 Proportion of correctly identified changepoints against the pro-
portion of falsely detected changepoints for Scenarios 1 (first row) and
2 (second row). GAM-PELT: thick dashed black line and dark grey
shading, marginal approach: thick solid black line and light grey shad-

ing. Shading is a 95% confidence interval. The triangle and the square
represent the BIC penalties for GAM-PELT and marginal approaches
respectively

3.3 Spatial changes

We now evaluate the method in terms of the ability to detect
changepoints where there is a change in the spatial structure
of the dataset only (Scenario 3 in Table 3). Full details of the
parameter settings are given in the Supplementary Material.
Figure2 shows a summary of the results.

For the detection of changes in the spatial structure,
both methods performed well at detecting the timing of
the changepoints, however, in all scenarios the GAM-PELT
method was shown to outperform the marginal approach,
once again showing lower proportions of false positives. The
scenarios where GAM-PELT tends to perform much better
are 3b (all random) and 3c (structured correlation). Recall
that the marginal approach does not take account of the spa-
tial structure.

3.4 Spatio-temporal changes

The final set of simulations evaluate the ability to detect
changepoints where both the spatial and/or the temporal
structure of the dataset changes between segments (Scenario
4 in Table 3). Full details of the parameter settings are given

in the Supplementary Material. Figure3 shows a summary
of the results.

For Scenario 4a (where no change is an option between
changepoints) both methods show similar performance at
detecting the timingof the changepoints.However, theGAM-
PELT method is shown to perform slightly better; detecting
a greater proportion of the true changepoints for fewer false
positives. The stronger performance of GAM-PELT is high-
lighted for scenario 4b (where there is always a change
of some type between changepoints) with this approach
showing a higher proportion of true positives and a marked
reduction in false positives over the marginal approach. This
scenario is the most likely to be seen in practice.

3.5 Comparison to composite likelihood approach

Finally we compare the performance of GAM-PELT against
the composite likelihood-minimum description length
(CLMDL) approach proposed by Zhao et al. (2024) which
also uses PELT for the multiple changepoint search. For this
scenario we adopt the same four parameter autoregressive
spatial model utilised in the simulation studies of Zhao et al.
(2024) and simulate on an 8 by 8 regular two-dimensional
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Fig. 2 Proportion of correctly identified changepoints against the pro-
portion of falsely detected changepoints for Scenario 3. GAM-PELT:
thick dashed black line and dark grey shading,marginal approach: Thick

solid black line and light grey shading. Shading is a 95% confidence
interval. The triangle and the square represent the BIC penalties for
GAM-PELT and marginal approaches respectively

Fig. 3 Proportion of correctly
identified changepoints against
the proportion of falsely
detected changepoints for
Scenario 4. GAM-PELT: thick
dashed black line and dark grey
shading, marginal approach:
thick solid black line and light
grey shading. Shading is a 95%
confidence interval. The triangle
and the square represent the BIC
penalties for GAM-PELT and
marginal approaches
respectively
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grid (with a grid spacing of 0.25 to simulate a real geographic
grid) with 100 time points. We define a single true change-
point at t = 50, with a change in the signal strength of 0.3
in both the spatial and temporal components of the model
after the changepoint. Both the GAM-PELT and CLMDL
approaches are run for 100 replicates using their default set-
tings and set to detect a minimum segment length of 20.
Finally we run a no change scenario to evaluate both meth-
ods during situations of no change. The results are presented
in Table 4.

The CLMDL approach is shown to capture the timing of
the true changepoint in 90% of replicates, slightly outper-
forming GAM-PELT which captures the true changepoint
in 80% of replicates. However, both methods demonstrate
evidence of overfitting, with GAM-PELT less prone to this.
For the no change scenario, GAM-PELT correctly estimates
zero changepoints in 65% of replicates compared to only
6% using CLMDL. Here, CLMDL shows greater evidence
of overfitting by estimating greater than 2 changepoints in
76% of replicates compared to 9% for GAM-PELT. We do
however note here that we are reporting the performance of
eachmethod using their default penaltieswhich take different
approaches to using the penalty in the PELT algorithm (BIC
vs MDL). Both approaches could benefit from employing

smaller penalties to reduce overfitting. Finally, GAM-PELT
is shown to complete the 100 replicates for each scenario in
around 0.3h which is approximately 23 times quicker than
CLMDLwhich takes around 6.8h. This is majorly due to the
difference in computation time for evaluating the likelihood
in the two different models.

4 Data application

The GAM-PELTmethod was applied to air quality (AQ) sta-
tion data from the United Kingdom (UK) Automatic, Urban
and Rural Network (AURN). This network of 175 monitor-
ing sites around the UK provides measurements of several
key air pollutants at a frequency of up to 1h. More details
about the data can be found in the supplementary material.
The period 1st February - 31st August 2020 (213 days) was
chosen as this covers the timeline of the UK’s first nation-
wide COVID-19 lockdown, whereby impacts on pollutant
concentrations would be expected to be seen in some effect
at all monitoring locations. We focus on 2 primary (directly
emitted) pollutants namely nitrogen dioxide (NO2;measured
at 74 spatial locations) and particulate matter of size smaller
than 2.5 micron (PM2.5; 30 spatial locations), and 1 sec-
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Table 4 Comparison of
GAM-PELT and CLMDL under
different scenarios

Method Scen %Cpt Capture %m = 0 %m = 1 %m >= 2 Run time

CLMDL no cng – 6 18 76 6.7h

1 cpt 90 0 11 89 6.8h

GAM-PELT no cng – 65 26 9 0.34h

1 cpt 80 4 24 72 0.29h

The true changepoint is classed as captured if the method estimates a changepoint within 10 of the true
changepoint. The run time is based on running the 100 replicates in parallel using 7 cores on an intel i7
processor

ondary pollutant (formed in the atmosphere and thus behaves
differently), namely ozone (O3; 30 spatial locations). Here,
the data was aggregated to daily averages which provided
complete time series for all pollutants at the respective loca-
tions. If there were incomplete time series one could add
an appropriate missing data handling procedure to the GAM
fit within each segment. GAM-PELT was run with default
settings (including BIC penalty) with the exception of the
minimum segment length which was set to 15 days. A sum-
mary of the output is shown in Fig. 4.

GAM-PELT detects common changepoints at all spatial
locations on the 26th March 2020 for O3, 21st March 2020
for PM2.5, and 27th March 2020 for NO2, which correspond
to the days around the nationwide UK lockdown on the 23rd

March 2020.When the lockdown was introduced there was a
sudden reduction in travel to work and other economic activ-
ity, and therefore an associated reduction in the emission of
air pollutants that would be seen UK-wide. The changepoint
for PM2.5 occurs slightly before the nationwide lockdown
however, in the week before the national lockdown many
people started working from home as a precaution which
could account for an earlier change in particulate emis-
sions. Figure4 also shows the spatial components of the
underlying GAM model before and after the onset of the
lockdown period. Here, particularly for NO2 and O3, there is
a noticeable shift in the nationwide spatial distribution of the
pollutants when the lockdown commenced. Finally, change-
points that could be attributed to the first events of lifting
the UK lockdown (Phased re-opening of schools from the
1st June 2020) are also detected for all pollutants (4th June
2020 for O3, 11th June 2020 for PM2.5 and 7th June 2020 for
NO2).

5 Conclusion

We have developed a new spatio-temporal changepoint
detection method (GAM–PELT) that can detect changes in
spatially linked multivariate time series data. This method is
implemented by utilising a generic GAM model (fitted on
the spatial location and observed time of the data) in con-
junction with the PELT search algorithm to detect changes

in the underlying spatio-temporal dependencies between the
time series. When compared to a marginal approach (where
a univariate model is applied to each spatial location in
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Fig. 4 Top plot: GAM-PELT changepoints across AURN stations
measuring O3 (squares), NO2 (triangles) and PM2.5 (circles). The
changepoints most likely associated with the start of the UK lockdown
(23rd March 2020—dashed blue line) are shown in red. Maps: spatial
component of GAM before (left column) and after (right column) the
start of lockdown along with locations of AURN measurement stations
for each pollutant. (Colour figure online)
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isolation), the GAM–PELT method is shown to perform
more efficiently in simulation studies at detecting the true
changepoints and demonstrates less evidence of over-fitting.
Furthermore, when treating each location in isolation, if 2
changepoints occur at different locations at the same time
step, the multivariate power cannot be leveraged. As the
GAM–PELT approach explicitly models the spatio-temporal
dependencies between locations, our approach can detect
common changepoints across the entire network of points.
The effectiveness of the method was demonstrated through
an application to an air quality dataset over the UK, where
GAM-PELT was able to detect changepoints that may be
linked to the onset and gradual lifting of the UK COVID-
19 lockdown in 2020. Finally, when benchmarked against
the existing state-of-the-art CLMDL approach of Zhao et al.
(2024), GAM–PELT is shown to perform better at detecting
the timing and number of true changepoints whilst demon-
strating a runtime that is over 20 times faster.

It is important to note that any changepoint approach is
sensitive to the model and penalty choices (C in (5)) made.
Whilst not considered here, if the GAM model form is not
constructed to be sensitive to the underlying changes within
a given dataset, then the approach is unlikely to identify
changepoints. In practice, slight overestimate of, for exam-
ple, spline or tensor orders is preferable to underestimation,
dependingonwhich coefficients the changemanifestswithin.
Similarly for the penalty, C , if it is set too small then spu-
rious changepoints may be detected, equally, too large and
changepoints may be missed. Typical choices for C include
theSIC/BIC (used here),MBIC (Zhang andSiegmund2007),
and data-driven methods based on the steepness of a scree-
type plot (Lavielle 2005), or supervised learning (Hocking
et al. 2013).
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