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A B S T R A C T   

Within-field soil heterogeneity can lead to large variation in nitrogen use efficiency (NUE). Crop simulation 
models provide a multi-faceted approach to management considering both soil and plant interactions. However, 
research using crop models for investigating within field variation in NUE is limited, in part because of chal-
lenges quantifying spatially variable soil model parameters. Here soil apparent electrical conductivity (ECa) and 
measured soil properties were used to map spatial variations in soil characteristics across a Long-Term Experi-
ment in Norfolk, England. The relationship between plot ECa across the 3 ha experiment and agronomic data 
across three different nitrogen rates (0, 110, and 220 kg N ha-1) over five wheat years (2010–2020) was 
quantified. The Sirius crop model was parameterized for two soils representing the extremes of ECa. Sirius was 
validated using recorded plot data. Site-specific optimal nitrogen and associated leaching risks were simulated 
across 29 years of weather data. Variation in soil properties had significant impact on measured NUE. At 
220 kg N ha-1 mean observed yields across 5 years ranged from 9.0 to 10.7 t ha-1 and grain protein from 11.6% to 
11% on the low EC and high EC plots, respectively. On average fertiliser grain N recovery was 19.7 kg N ha-1 

lower on the low ECa plots. Sirius simulated the variation in yield, grain protein and grain N recovery to a good 
level of accuracy with RRMSE of 19.5%, 15.4% and 19.5%, respectively. Simulated optimal nitrogen on the low 
EC soils was on average 12 kg N ha-1 lower, with >1 in 4 years with optimal nitrogen <200 kg N ha-1. Our work 
demonstrated that using a combination of proximal soil EC scans and targeted soil sampling we can optimize the 
data requirements for model parameterisation to support site-specific N management.   

1. Introduction 

Nitrogen (N) fertiliser applications exceeding crop requirements lead 
to reduced N Use Efficiency (NUE) and therefore nutrient surplus, 
thereby reducing economic margins and increasing the risk of losses to 
the environment (Van Eerd et al., 2018). N losses can occur through 
nitrate (NO3-) leaching to water bodies, damaging aquatic ecosystems 
and posing a risk to human health (Bijay-Singh and Craswell, 2021; 
Schullehner et al., 2018). Nitrous oxide (N2O) emissions from fertiliser 
applications contribute to greenhouse gas emissions (Rees et al., 2013) 
while ammonia (NH3) emissions influence atmospheric particulate 

matter formation, a major mortality risk factor (Cohen et al., 2017). 
Improving NUE of cropping systems is therefore a global research pri-
ority (Congreves et al., 2021). 

The water holding capacity and nutrient content of soils is site- 
specific and has been shown to vary greatly within fields and farms 
(Brogi et al., 2020). For wheat (Triticum aestivum L.), in the UK, optimal 
N requirement has been shown to vary by over 150 kg N ha-1 and N 
fertiliser recovery to range between 30% and 100% within a field 
(Kindred et al., 2017, 2015). Spatially accurate nutrient applications can 
therefore improve NUE when measured as a whole field/system and 
forms the foundation of precision agriculture (Nawar et al., 2017). There 
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are several methods growers can use to determine an optimal N rate. 
Variable N applications are currently mainly driven by the balance of 
cost of inputs and price of grain, with current tools and methods focused 
on economic return, with little emphasis on any externalities to the 
environment (Banger et al., 2017). The challenge for farmers, advisors 
and researchers is balancing these two, often conflicting, demands of 
applying sufficient N to meet crop demand while minimizing environ-
mental risk (Miao et al., 2018). For example, canopy sensors most 
commonly apply more N to lower biomass areas to lift yield potential but 
are unable to take account of the drivers of the initial variation and how 
prescribed applications might interact with underlying soil properties 
(Colaço and Bramley, 2018). 

It is recognised that crop simulation models (CSM) can help farmers 
consider both economic and environmental impacts, when used with 
multi-objective optimisation to identify spatially specific management 
strategies (Finley et al., 2011; Maestrini and Basso, 2018). Crop simu-
lation models combine soil and plant process models, describing changes 
in system states in reaction to external drivers, such as weather or 
management, and how these impact interacting components including 
crop, soil and system losses (Jones et al., 2017a; Keating and Thorburn, 
2018). Despite this potential, there are few reported studies where CSM 
have been used to explain and manage within field/farm spatial vari-
ability (Cammarano et al., 2020; Ma et al., 2016). To our knowledge, to 
date no studies have been performed to calibrate and/or validate CSM 
for managing within-field spatial variability in UK wheat crops. A key 
limitation in the application of CSM for precision agriculture is the data 
required for model calibration and validation at an appropriate scale, 
with modelling studies often limited to data from a single season (He 
et al., 2017). The use of management zones, where yield crop perfor-
mance is linked to proximally sensed soil data such as soil electrical 
conductivity (ECa) and targeted samples could help reduce complexity 
in model parametrisation (Pasquel et al., 2023; Wong and Asseng, 
2006). To identify optimal management, models must also accurately 
simulate the effect of a range of management options (i.e. different N 
rates) within the range of observed soil heterogeneity and variation in 
weather (Morarl et al., 2021; Sadler et al., 2000). The accuracy of CSM 
has been shown to vary across different soils (Thorp et al., 2007) and N 
rates (Joshi et al., 2019) within the same application context, i.e., field. 
The accuracy of validation data from other precision agriculture tech-
nologies such as combine yield maps also pose problems for spatial 
validation (Kersebaum et al., 2005). Quantifying the economic and 
environmental benefits of site-specific management requires an accurate 
assessment of the spatial variability (Basso et al., 2016). 

Long-term experiments (LTE) provide data sets, collected to stand-
ardised protocols across a range of treatments (i.e. N rates) and over 
multiple years, suitable for CSM validation and development (Johnston 
and Poulton, 2018). They are critical in helping to understand NUE of 
the cropping systems or experimental treatments (Basso et al., 2009b) 
for a single soil and climate for which the experiment is situated (e.g. 
Macholdt et al., 2020). Experiments are however, often situated over 
underlying spatial variation in soil properties; this is particularly the 
case for LTE established before field level spatial variation in crop 
growth could be monitored through combine yield mapping or remote 
sensing prior to experiment set up (Cassel et al., 2000). Accounting for 
spatial variability to reduce experimental error through experiment 
design and/or statistical analysis has been well researched (Stringer 
et al., 2012) and some of these methods are already employed on the 
LTE featured in this study. However, this spatial variation, combined 
with high spatial (plot) and temporal (multiyear) data sets, collected as 
part of LTE, provide a valuable and currently underutilised resource for 
understanding the drivers of spatial variation in NUE and developing 
and validating methods to better manage this on-farm. 

In this paper we aimed to quantify the heterogeneity of soil prop-
erties within an LTE in the East of England and to link this to the spatial- 
temporal variation in yield and NUE. The Sirius CSM was calibrated for 
use at this site and cropping system. We used apparent soil electrical 

conductivity (ECa) to quantify the spatial heterogeneity of soil proper-
ties across the LTE and how crop response correlated to this observed 
variation using five years of winter wheat data across three contrasting 
N fertiliser application rates. Measured data sets on soil and crop 
properties were used to parametrise and validate the CSM across the 
extremes of this variation. The validated model is used to identify 
spatially explicit N management strategies and associated environ-
mental risk. We demonstrated how soil proximal sensing, spatial 
monitoring and targeted soil sampling can be combined with CSM as a 
tool for on-farm management decisions for UK wheat crops. 

2. Materials and methods 

2.1. Site description, experimental design and agronomic management 

This study used data sets from three long term experiments at The 
Morley Agricultural Foundation, Morley, Norfolk, U.K (52◦33′35″N, 
01◦01′39″E, 54 m Altitude). The soil is an Endostagnic Luvisol (World 
Reference Base)/Ashley association with a topsoil sandy loam textural 
class (Cranfield University, 2023). The NFS Rotations Experiment 
(NFS-RE) investigates four cover cropping treatments grown prior to 
spring break crops with three nitrogen rates; 0% (~0 kg N ha-1), 50% 
(~110 kg N ha-1) and 100% of the recommended N dose (~220 kg N ha-1 

in winter wheat) (Fig. 1A, Table 1). These will be referred to as 0 N, 
110 N and 220 N respectively hereafter. The NFS Cultivations Experi-
ment (NFS-CE) examines four primary cultivation regimes with and 
without cover cropping before spring break crops under a farm standard 
N rate (Fig. 1A). N response trials across multiple fields and seasons has 
shown 220 kg N ha-1 to be the economic optimal N rate at Morley, 
although large temporal (year to year) and spatial (field to field) vari-
ation is recorded (Kindred et al., 2018). N rates are split over three 
timings typically mid-March (~25% of total N), second or third week in 
April (~60% of total N) and a final dose in early May (~15% of total N). 
Plots are 12x12m in NFS-RE and 12x36m (split into 12×24 and 12×12 
blocks) in NFS-CE to facilitate the use of commercial scale machinery for 
operations. Each experiment is fully replicated (four repetitions) with a 
factorial design. All plots received pesticide applications according to 
local best practice to minimize disease and weed pressures, despite these 
preventive measures, outbreaks of diseases or weeds still occur, and 
observations are recorded when such incidents happen. Other nutrients 
(P, K, Mg) and pH were managed at a field level with all plots receiving 
the recommended application, with aim to maintain soil indices at levels 
that are not crop limiting. The Straw Incorporation Experiment (SIE) at 
Morley was a long term (1984–2018) experiment monitoring changes in 
soil properties through different quantities of crop residue returns. In the 
later years, straw return was regulated using different N rates 
(0–250 kg N ha-1 in winter wheat). This experiment was located 
approximately 150 m south of the NFS-CE (Fig. 1B). 

2.2. Data collection and analysis 

2.2.1. Soil apparent electrical conductivity (ECa) 
Soil apparent electrical conductivity (ECa) was measured across the 

NFS experiments on 27/01/2020. A Dualem-1S EC scanner (Dualem 
Inc., Canada) towed behind an all-terrain vehicle equipped with a 
TOPCON (TOPCON Precision Agriculture, Europe S.L.) GPS device 
recorded the location of individual ECa measurements at <0.5 m loca-
tion accuracy. Each experiment was scanned at 6 m intervals perpen-
dicular to the plots (North to South). The timing of the measurements 
was chosen when soil water content was at or close to field capacity so 
ECa should reflect soil texture/water holding capacity (McBratney et al., 
2005). A cosmic-ray soil moisture sensor situated on-farm at Morley 
recorded topsoil moisture of 37.3% on the day of scanning and soil 
temperature was 6.7 ⁰C (Cooper et al., 2021). The maximum recorded 
topsoil moisture between August 2015 and August 2020 was 40.0%, 
confirming the scanning took place close to field capacity. ECa was 
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averaged for each plot to enable comparison with agronomic and soil 
measurements collected using a random sampling strategy within each 
plot. Plot boundaries were extracted from the tractor mounted Trimble 
RTK guidance system (accuracy <3 cm) used in marking out the 
experiment and applying experimental treatments (Fig. 1B). A large part 
of the farm including the NFS Experiments was scanned using a 
Dualem-1S EC scanner (Dualem Inc., Canada) in February 2023. This 
showed little variation in soil ECa across the SIE. The mean ECa across 
the SIE experiment and measured data for soil organic matter was 
comparable to the higher ECa and organic matter plot values recorded 
on the NFS experiments (7.5–8.5 mS/m). 

2.2.2. The relationship between soil ECa and soil physical properties and 
organic C and N 

The site-specific relationships between soil properties and ECa were 
examined using data from the NFS-CE, which has historically been more 
intensively sampled than the NFS-RE. Eight plots covering the range in 
mean plot ECa (Fig. 1A) were sampled for soil particle size at depths of 
0–30 cm, 30–60 cm and 60–90 cm. Soil particle size distribution was 
determined by sedimentation (Rowell, 2014). Soil organic carbon (SOC) 
and soil organic nitrogen (SON) were measured across the experiment in 
2018, at 0–30 cm and 30–60 cm depths (Guo et al., 2018). The linear 
relationship between soil properties and ECa was tested using Pearson’s 
correlation coefficient (r) and the coefficient of determination (r2). Soil 
profile excavations undertaken in previous studies using the NFS-CE 
(Brown et al., 2021; McKenzie et al., 2017) have noted that stone con-
tent varies considerably across the site in line with the observed varia-
tion in ECa (personal communications, N. Morris, March 2023). To 
quantify stone volume for model parameterisation, which is important 
for accurate water release characteristics, stone volume was measured 
through profile excavation on high (7.9 mS/m) and low ECa (2.9 mS/m) 

plots on the NFS-CE. A 2 kg soil sample was taken at depths between 
0 and 30 cm, 30–60 cm and 60–90 cm, soil was sieved through a 2 mm 
sieve and stone volume calculated by water displacement. 

2.2.3. The relationship soil ECa and agronomic data 
The spatial variation in crop performance, unrelated to treatment, 

across the experiment was quantified by comparing plot ECa and the 
plot level agronomic dataset for the LTE. The agronomic data from NFS- 
RE for winter wheat (Triticum aestivum L.) in 2010, 2012, 2015, 2017 
and 2020 were used. In 2010, 2015, and 2020 the wheat was grown 
following an oilseed rape crop (Brassica napus L.), in 2012 and 2017 the 
wheat followed a spring bean (Vicia faba L.) and spring oat (Avena sativa 
L.) crop, respectively. Ear numbers were assessed annually prior to 
harvest (not measured in 2017). Plot grain yield was measured using a 
SAMPO ROSENLEW 2010 (2010–2017) or HALDRUP C-85 (2020) plot 
combine harvester with a 2 m header. Plot yields are calculated from the 
mean of two 2 m x 12 m swaths through each plot. Grain protein and 
specific weight were analyzed from a composite 500 g sample from each 
plot using FOSS INFRATECH NIR scanner annually calibrated using UK 
Grain Testing Network (UKGTN) calibrations. The relationship between 
plot ECa and crop parameters of yield, grain protein, grain specific 
weight and ear numbers was quantified using linear regression analysis 
for each year and the 5-year mean. The strength of the linear relation-
ship was tested using Pearson’s correlation coefficient (r) and the co-
efficient of determination (r2). 

2.2.4. Spatial temporal variation in fertiliser grain N recovery efficiency 
Fertiliser Grain N recovery efficiency REfertN (Eq. 1) is a metric of 

NUE, defined as the percentage of N applied as fertiliser within the grain 
at harvest, accounting for background soil N levels using the unfertilized 
(0 N) control (Congreves et al., 2021): 

REfertN =
u − u0

n
× 100 (1)  

where u is the total grain N uptake in kg N ha-1 (grain yield (kg) × grain 
N (%)) at a given N treatment, u0 is the total grain N uptake in kg N ha-1 

in untreated control and n is total N applied as fertiliser applied to u in kg 
N ha-1. Grain N is calculated by dividing grain protein by 5.7 (AHDB, 
2023). The mean REfertN across the variability of measured ECa is 
calculated for the farm standard 220 N plots. Linear regression equa-
tions for Plot ECa ~grain yield and ECa~grain protein (see Supple-
mentary Material, S2) were used to generate ECa yield and grain protein 

Fig. 1. A. NFS Rotations (NFS-RE) and NFS Cultivations (NFS-CE) experiments with current N rates for winter wheat, B. Plot mean ECa across the NFS-CE and NFS- 
RE and Straw Incorporation Experiment (SIE). Plots sampled for soil data identified. Areal imagery: © 2024 Microsoft Corporation © 2024 Maxar © CNES (2024) 
Distribution Airbus DS. 

Table 1 
NFS-RE wheat crop varieties, drilling date and the N rate at full farm standard N 
(220 N).  

Year 2010 2012 2015 2017 2020 

Cultivar Oakley JB Diego Relay Evolution KWS 
Kerrin 

Drilling date 14/10/ 
2009 

13/09/ 
2011 

30/09/ 
2014 

23/09/ 
2016 

23/10/ 
2019 

N rate (kg N 
ha-1) 

200 216 210 220 215  
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N response functions for ECa ranging from 2.3 to 8.6 mS/m at 0 and 
220 kg N/ha for each year. These equations were used to calculate the 5 
year mean REfertN influenced by spatial variation in soil properties 
quantified by ECa. Not all years demonstrated a significant correlation 
between yield and grain protein with ECa at 0 N and 220 N. Therefore, 
mean values at 0 N and 220 N for plots ranging from 2.5 to 3.5 (Low EC), 
3.5–4.5, 4.5–5.5, 5.5–6.5, 6.5–7.5 and 7.5–8.5 ECa (High EC) where 
used to quantify the relationship between plot ECa and REfertN in each 
year. 

2.3. Crop modeling 

2.3.1. Sirius crop simulation model 
Sirius is a process-based crop model for wheat (Semenov, 2021). Full 

details of the model and its processes have previously been described 
(Brooks et al., 2001; Jamieson et al., 1998). In summary, the model 
simulates crop biomass production from intercepted photosynthetically 
active radiation and subsequently radiation use efficiency (RUE). A 
thermal time sub model determines leaf area index (LAI) and pheno-
logical development calculated from leaf appearance rate and final leaf 
number. Water and nitrogen stress can impact LAI development and 
subsequent RUE. A proportion of the simulated biomass at anthesis and 
predominantly new biomass formed at the beginning of grain filling are 
used to calculate grain yield. Under water stressed conditions, senes-
cence is accelerated restricting grain fill and reducing grain yield. 
Detailed modeling of soil water and N processes determine root avail-
able resources (Brooks et al., 2001; Jamieson et al., 1998). Sirius has 
previously been validated and applied to evaluate water and weather 
variations on wheat yields (Clarke et al., 2020) and nitrogen use effi-
ciency (Semenov et al., 2007) in the UK. The Sirius modelling exercises 
in this study were split into three approaches: i) parameterisation of soil 
properties from the NFS-CE and validation of cultivar parameters to 
reproduce yield response to N from two years of wheat data from the 
SIE, ii) model validation of nitrogen interactions across the measured 
variation in soil properties in the NFS experiments, and iii) use of the 
calibrated and validated model with historic weather data to determine 
economic optimal N management across the spatial variation and 
associated environmental risk. 

2.3.2. Soil parameters 
Sirius requires soil parameters including soil horizon depth, water 

holding characteristics including drained upper limit (DUL), lower limit 
(LL), saturation water content (KSAT) and percolation coefficient (kp). 
Parameters for soil nitrogen processes are also required including 
organic N content and a mineralization constant. To test the suitability 
of Sirius for modelling and managing spatial variation in soil N, the 
modeling exercise was simplified by modeling responses at the extremes 
of the recorded spatial variation in soil properties quantified using two 
ranges representing high and low soil ECa. Two representative profiles 
were created using the measured soil data. A representative high ECa 
(HEC) was calculated from the mean data from NFS-CE plots with an 
ECa of 7.5–8.5 mS m-1 A representative low ECa (LEC) used the mean 
data from plots with an ECa of 2.5–3.5 mS m-1 (Fig. 2). Its common 
practice to use measured soil texture and organic carbon to estimate soil 
water release parameters (Brogi et al., 2020; Joshi et al., 2019). Soil 
water retention characteristics for each soil layer were calculated using 
pedotransfer functions of measured soil texture and carbon content 
(Hollis et al., 2015, 2012). These were corrected for the volume of stones 
in each soil layer recorded in representative plots (Fig. 3) (Gagkas et al., 
2018). Total soil organic N (t ha-1) was calculated using measured 
organic N content, stone content and estimated soil bulk density. Soil 
percolation coefficient is dimensionless; therefore, values were used for 
each soil based on previously calibrated soils with similar available 
water content in the Sirius soil parameter files (kp HEC=5, LEC=8). 
Mineralization constant was set at 7 for both soils, the same as all UK 
soils in the Sirius soils file. Maximum rooting depth was set at 1.5 m for 

both profiles, confirmed through root observations from auger samples. 

2.3.3. Weather data 
Sirius requires daily weather measurements for maximum and min-

imum temperature, precipitation, solar radiation, wind speed and vapor 
pressure. A 29-year daily weather data set was compiled for the period 
between 1990 and 2022 (note no data were available for 2005–2007). 
Rainfall and temperature data for Morley was extracted for the weather 
station situated on farm from the MIDAS archive (UK Meteorological 
Office, 2023). Missing data for daily temperature observations were 
infilled from a nearby MIDAS station (Norwich airport) and where 
required from other private stations and a CEH COSMOS station on site 
(Cooper et al., 2021). Solar radiation, wind speed and vapor pressure 
have not historically been measured. These parameters were therefore 
calculated using synthetic measurements extracted from the NASA 
Prediction of Worldwide Energy Resources (NASA/POWER-NP) series, 
previously demonstrated as suitable for crop simulation modelling ex-
ercises (Monteiro et al., 2018). 

2.3.4. Cultivar parameterisation and N response validation on the SIE 
It is common practice to use previously calibrated model parameters 

for cultivars (cv) with similar phenological development, yield potential 
and geographic distribution to the validation data set (Gaso et al., 2021). 
Sirius has been calibrated and validated for cv Claire, which remained on 
the UK Recommended List (RL) until 2018 (AHDB, 2023b) and has been 
used extensively in UK wheat breeding programs (Powell et al., 2013). 
Data from 2017 and 2012 RL trials demonstrated other wheat cultivars 
(cv JB Diego, cv Evolution, cv KWS Kerrin, cv Relay and cv Oakley) had 
similar phonological parameters (e.g. start of stem extension (GS 31: 
BBCH Scale (Meier, 1997)) and maturity (GS 91) to cv Claire. Therefore, 
the previously calibrated phonological parameters describing crop 
development for cv Claire were used in this study. However, in RL trials, 
yields of cv Claire were on average 2–10% lower compared to the va-
rieties grown on the NFS-RE and SIE (see Supplementary Material, S1). A 
significant proportion of this gap is likely to be due to reduced yields 
from poorer disease resistance (Powell et al., 2013) which is not 
accounted for in Sirius. To reflect the higher yield potential of the 
modern varieties grown on the NFS-RE the maximum leaf size and 
maximum grain weight parameters for cv Claire were increased from 
0.07 to 0.08 and 0.45–0.5, respectively. This is supported by measured 
data of modern UK elite cultivars in the WIGIN data sets (DEFRA, 2019). 
All other parameters remain unchanged as previously reported (Clarke 
et al., 2020; Senapati et al., 2019). 

The SIE was cropped with cv JB Diego and cv Relay in 2014 and 2015 
respectively, both varieties were grown on the NFS-RE (Table 1). The 
incremental N doses and recorded harvest dates provided valuable 
supplementary validation of Sirius before its application to the NFS-RE 
experiment. Sirius was validated for maturity date, grain yield, grain 
protein and grain N offtake, defined by Eq. 2: 

u = y × ((p/5.7)/100) (2)  

where u is the grain N offtake in kg N ha-1, y is yield in kg ha-1, p is grain 
protein in % and 5.7 is the conversion factor for converting grain protein 
to grain N (AHDB, 2023a). 

The soil parameters for HEC soil were used for the SIE as the trial 
mean ECa was comparable to the corresponding plots on the NFS-CE. 
The agronomy input data (drilling date, nitrogen applications and tim-
ings) used in Sirius were as applied in the experiment. Initial soil inor-
ganic mineral N was set at 20 kg N ha-1 reflecting the measured soil 
mineral N (0–90 cm) prior to N fertiliser application in the spring. 

2.3.5. Validating Sirius cross the spatial variation on the NFS-RE 
Sirius was validated with measured data of mean yield, grain protein 

and total grain N offtake for plots with HEC and LEC on the NFS-RE the 
using the model parametrised for measured soils data. 
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Fig. 2. linear relationship between Soil ECa and A. clay and sand factions, B. soil organic Carbon, C. soil organic Nitrogen at 30 cm depth intervals to 90 cm on the 
NFS-CE. Braces represent the range of data points used to generate Soil parameters for Sirius representative of the Low ECa (LEC) and High ECa (HEC) plots across the 
NFS experiments. 
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Drilling dates, nitrogen applications and timings were taken from 
agronomic farm data and expected ear numbers were adjusted based on 
recorded ear counts. Measured soil mineral N was set at 20 kg N ha-1. 
Model accuracy was assessed using the Root Mean Square Error (RMSE), 
as defined by Eq. 3: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑

i=1
(yi − ŷi)

2

√

(3)  

where yi is the observed data, ŷi is the simulated data and n is the 
number of comparisons. The RMSE was normalised (RRMSE) by 
dividing by the mean of observed data for easier cross study comparisons 
and can be assessed against quantitative performance criteria. Model 
performance is considered “excellent” if RRMSE <10%, “good” between 
10% and 20%, “fair” if between 20% and 30%, and “poor” if >30% 
(Jamieson, 1991). 

2.3.6. Soil specific modelled response to N 
To determine the economic optimal N for both soil types, an industry 

standard N response experiment was simulated for the 29-year weather 
record. Treatments and timings were as set out according to Kindred 
et al., (2018) and comprised of six N treatments ranging from 0 to 
360 kg N ha-1, including an estimated optimum N of 220 kg N ha-1. The 
linear plus exponential function (George, 1984) was used to estimate 
yield response to N, as defined in Eq. 4: 

y = a + b.rN + c.N (4)  

where y is yield in t ha-1 at 85% dry matter, N is fertiliser rate in kg N ha-1 

and a, b, c and r are parameters determined by statistical fitting. Opti-
mum N rates were derived through Eq. 5: 

NOpt = [ln(k − c) − ln(b(ln(r) ) ) ]/ln(r) (5)  

where k is the breakeven ratio between fertiliser N (£/kg) and grain(£/t), 
here a breakeven ratio of 0.006 (tonnes grain per additional kg N) was 
based on 2023 grain and fertiliser prices (AHDB), n, b, c and r are defined 
in Eq. 4. 

Sirius was run for the 29-year weather data set at the mean soil 
specific NOpt, simulating wheat grain yield, in-season N leaching and 

soil mineral N at harvest. 
Unlike the modeling in 2.3.5 and 2.3.4, in which some plots have 

historically received below optimal N, this modeling exercise assumed 
previous crops had crop specific optimal N. Therefore, soil mineral N at 
sowing was assumed to be 30 kg N ha-1 in line with the long term 
average autumn soil N recorded on farm (TMAF, 2023). Cumulative 
probability functions were used to interpret the variation in NOpt be-
tween the two soil types as well as modeling results. All data handling 
and statistical analysis was performed in R programing language (R Core 
Team, 2023). Crop modeling was performed through the native win-
dows application for Sirius (Sirius, 2023). 

3. Results 

3.1. Spatial variation across a LTE 

3.1.1. Spatial variation in soil properties 
Plot mean soil ECa ranged from 2.3 mS/m to 8.6 mS/m across the 

NFS experiments (Fig. 1B). Soil ECa was significantly correlated to both 
clay and sand content at 0–30 cm and 30–60 cm depths (Fig. 2 A) ac-
counting for 68%-89% of the variation in sand and clay content at these 
depth intervals. ECa was not significantly correlated to sand and clay 
content at 60–90 cm depth. Clay and sand content ranged from 15.9% to 
20.3% and 60.3–68.9% respectively at 0–30 cm depth, and from 15.3% 
to 30.8% and 49.2–66.9% respectively at 30–60 cm depth. There was no 
significant relationship between ECa and soil organic C or N at 0–30 cm, 
however both were significantly correlated to ECa at 30–60 cm, with 
ECa explaining 36% of the recorded plot variation in C and 27% of the 
recorded plot variation in N at 30–60 cm depth (Fig. 2B&C). Stone 
content was higher on the lower ECa plots (Fig. 3), especially at depth 
(39% and 44% at 30–60 cm and 60–90 cm depth, respectively). The 
measured soil data was used to parametrise Sirius for two soil profiles 
representing the variation in ECa across the NFS-RE (see Supplementary 
Material, S3). The calculated available water capacity (150 cm) was 
105 mm for LEC and 148 mm for HEC profiles. The significantly lower 
soil organic N at 30–60 cm combined with the higher stone volume 
(lower fine earth material) resulted in slightly smaller pools of soil 
organic N in the LEC (6 t ha-1) compared to HEC (7 t ha-1). 

3.1.2. Spatial temporal variation in crop performance 
The variation in soil properties across the NFS-RE quantified through 

ECa showed significant relationships to key crop measures and their 
interactions with N rate (Fig. 4). Except for 2012 at 220 N, a significant 
correlation between ECa and grain yield was observed at all N rates in all 
years (Fig. 4A). Across the 5 years, plot ECa explained 71%, 87% and 
79% of the variation in plot yield at 0 N, 110 N and 220 N, respectively. 
The range of 5-year mean yield between the LEC and HEC plots was 
9.0–10.7 t ha-1 at 220 N, 7.5–9.5 t ha-1 for 110 N and 4.2 and 5.5 t ha-1 

at 0 N, respectively. In 2012, 110 N and 220 N yields were similar and 
0 N yields were similar to other years at 110 N. In 2017 and 2020 the 
yield response at 220 N compared to 110 N appeared to be smaller on 
plots with lower ECa than those with relatively higher ECa. 

The relationship between grain protein and plot ECa was generally 
the inverse for that of yield (Fig. 4B). In 2010, 2017 and 2020 a sig-
nificant negative correlation between ECa and grain protein was 
recorded at 220 N. No significant correlation was recorded in 2012 and 
2015. At 110 N a significant negative correlation was recorded in 2010 
and 2020, a significant positive correlation in 2012 and no correlation in 
2015. At 0 N a significant negative correlation was recorded in 2010, 
2015, 2017, and 2020. Across the 5-year mean there was a significant 
negative correlation between grain protein and plot ECa at 220 N and 
0 N explaining 36 and 43% of the plot variation in grain protein, 
respectively. The mean grain protein for the measured range in plot ECa 
ranged from 11.6% to 11% at 220 N and 7.8% and 7.2% at 0 N ha. The 
plots defined as LEC on average exceed the 11% optimal grain protein 
for yield for feed wheats (AHDB, 2023a). 

Fig. 3. Stone volume by 30 cm soil depth (0–90 cm) and images of recon-
structed profile excavation for HEC (7.5–8.5 mS/m) and LEC (2.5–3.5 mS/m). 
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Fig. 4. Linear relationship between plot ECa and wheat performance metrics (2010–2020) and their 5-year means, (A) grain yield, (B) grain protein, where the black 
line at 11% represents the optimal grain protein for yield, (C) grain specific weight and (D) ear numbers (no ear numbers were recorded 2017). The asterisk (*) in 
2010 yield plot represents influential outlier when calculating grain N fertiliser recovery. 
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Plot mean ECa was significantly correlated to grain specific weight in 
2015, 2017 and 2020 at 220 N, in 2010 and 2015 at 110 N and in no 
years at 0 N (Fig. 4C). Across the five years on average there was a 
significant correlation with ECa and specific weight at 220 N and 110 N 
explaining 34% and 43% of the variation, respectively. ECa was 
significantly correlated to ear numbers in 2010 and 2015, but not in 
2020 at 220 N (Fig. 4D). No significant correlation was recorded in any 
years at 110 N but was significantly positively correlated in 2010 and 
2012 at 0 N and negatively correlated in 2015. On average across the 5 
years ECa was positively correlated to ear numbers at all N rates. 

3.1.3. Spatial temporal variation in grain fertiliser N recovery 
The 5-year mean grain fertiliser N recovery (calculated using 

regression equations for the linear relationship between ECa, grain yield 
and grain protein at 0 N and 220 N) ranged from 46.7% to 56.0% from 
low to high ECa (Fig. 5). This equates to an average 19.7 kg N ha-1 

variation in REfertN. LEC plots had 8% lower REfertN in 2015, 2017 and 
13% in 2020 compared to the HEC plots. Smaller (0–5%) differences 
were recorded in 2010 and 2012. In 2010 the LEC plots were strongly 
influenced by an outlier in the yield data (Fig. 4A), resulting in higher 
REfertN, this observation contradicts the overall trend of lower yields on 
the low ECa plots in that year. 

3.2. Crop simulation modeling 

3.2.1. Sirius validation SIE 
The updated parameters for cv Claire simulated maturity date within 

one day of recorded harvest date in 2014 and 3 days in 2015 for cv JB 
Diego (2014) and cv Relay (2015). Correctly simulating the longer 
growing season in 2015 (Fig. 6A). The calibrated parameters explained 
82% of the variation in yield across the two years (Fig. 6B). Sirius 
showed good model performance in describing variation in yield 
(RRMSE of 10.8%), grain protein (RRMSE of 18.1%) and grain N offtake 
(RRMSE of 18.9%) under different N rates across the two years with the 
updated cultivar parameters (Fig. 6A, B and C). 

3.2.2. Sirius validation across spatial variation on the NFS -RE 
Sirius was validated for its ability to simulate the observed spatial 

variation in crop growth in response to the extremes in variation in soil 

available water capacity and organic N across the NFS-RE using two soil 
profiles representative of the extremes of the spatial variation in soil 
properties (LEC and HEC). Sirius showed good model performance at 
simulating yield (RRMSE: 19.5%), grain protein (RRMSE: 15.4%), and 
total grain N offtake (RRMSE: 19.5%) across both soils profiles, N rates 
and years (Table 2). 

At 110 N and 220 N Sirius overestimated yields on both soils, pri-
marily because of higher simulated yields in 2012 and 2017 (Fig. 7A). 
Whilst simulated yields were slightly worse on LEC soils, the influence of 
the different soil properties on yield, grain protein and grain N offtake 
was captured in model performance (Fig. 7A). At 220 N across all years 
Sirius simulated 1.2 t ha-1 lower yields, 0.6% higher grain protein and 
18 kgN ha- lower grain N offtake on the LEC soils compared to HEC soils. 
These values were similar to LEC soil observed data that showed 1.5 t ha- 

1 lower yields, 0.6% higher protein and 23 kg N ha -1 grain N offtake 
compared to HEC soil. On the HEC plots observed yields were higher at 
110 N than 220 N on the LEC plots (7.9 t ha-1 compared with 7.7 t ha-1). 
The mean simulated yields align with this pattern, with simulated yields 
of 8.3 t ha-1 at 110 N on the HEC, surpassing the 8.1 t ha-1 simulated 
yields on LEC plots at 220 N (Table 2). 

Sirius overestimated grain protein at all N rates and on average by 
0.7% at 220 N for both soils. Sirius was unable to simulate proteins 
lower than 8.55% (1.5% grain N) despite recorded grain proteins being 
recorded as low as 6.3% (1.1% grain N) at 0 N in the observed data set 
(Fig. 7B). The errors in grain yield and grain protein did not seem to 
propagate to total grain N offtake which showed comparable RRMSE 
(Fig. 7C). 

3.2.3. Modelling soil specific economic optima N rates and environmental 
The mean NOpt across 29 years of simulated N response trials was 

12 kg N ha-1 lower on the lower available water capacity LEC soil 
(234 kg N ha-1 and 222 kg N ha-1 for the HEC and LEC soils, respec-
tively) (Fig. 8A). Large seasonal variation was observed on both soil 
types. The cumulative frequency distributions for NOpt were similar 
above c. 235 kg N ha-1 on both soil types, although there was a smaller 
cumulative probability at NOpt on the LEC soil (HEC=0.46, LEC=0.35). 
For the LEC soil there was a greater distribution of seasons with NOpt 
below 200 kg N ha -1 (cumulative probability: 0.31/greater than 1 in 4 
seasons) compared to the HEC (cumulative probability 0.1/1 in 10 
seasons). The mean simulated yield was 10.8 t ha-1 and 12.3 t ha-1 for 
the LEC and HEC respectively (Fig. 8B). Simulated growing season N 
leaching (sowing-harvest) was higher on the LEC soil with a mean 
leaching loss of 20.7 kg N ha-1 compared to 12.8 kg N ha-1 on the HEC 
soil (Fig. 8C). Small difference in surplus soil N at harvest were simu-
lated with higher (78.5 kg N ha-1) values on the LEC soil compared to 
the HEC soil (66.9 kg N ha-1) (Fig. 8D). 

4. Discussion 

4.1. Spatial variation in soil properties and influence on grain yield and 
NUE 

Variations in ECa measured across the NFS-RE exhibited a strong 
correlation with sand and clay factions at 0–30 cm and 30–60 cm 
depths. This aligns with previous research demonstrating a positive 
linear relationship between soil ECa and clay content (Domsch and 
Giebel, 2004; McBratney et al., 2005). However, these relationships are 
likely to be site-specific, as ECa is also influenced by soil mineralogy, 
depth (Mcbratney et al., 2005) and, as observed in this study stone 
content. The stone content was considerably higher in the LEC soil and 
increased with depth and was likely to have a large influence on soil 
hydraulic properties and other soil physical processes (Naseri et al., 
2019). Stones (>2 mm) are not easily sampled during most regular 
restricted diameter soil core sampling and often, as performed here, 
more intrusive pits are required (Rytter, 2012). It would have been 
desirable to quantify stone content at depth across the entire range of 

Fig. 5. Grain N recovery efficiency (2010–2020) by plot ECa ranges 2.5–3.5 
(LEC), 3.5–4.5, 4.5–5.5, 5.5–6.5, 6.5–7.5 and 7.5–8.5 (HEC). Red line = Grain N 
recovery efficiency across range of ECa from regression equations for the five 
year mean grain yield and protein. 
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ECa, however at a field or farm scale this is labor intensive, at an 
experimental level it also is destructive of natural soil formation, with 
likely long-term impacts on the sampled area. Where multiple factors 
such as variation in texture and stone content or soil depth influence 
ECa, relying on pre-described models derived from soil databases or 
non-local data sets might lead to inaccuracies in soil parameter 

estimation. It is more reliable to develop farm or even field specific 
relationships/regressions for field zones derived from proximal data (e. 
g. ECa) and specific soil properties that consider all local influences on 
water retention characteristics of a soil (Brogi et al., 2020; Wong and 
Asseng, 2006). Here, we used sampled data from the extremes of the ECa 
range across the NFS experiments to reflect how targeted samples across 

Fig. 6. Comparison of observed and simulated data for wheat performance. (A) Recorded date of harvest compared to simulated maturity date at 200 kg N ha-1, with 
error bars representing the maximum and minimum across N rates. (B) Observed yield compared to simulated yield. (C) Simulated grain protein compared to 
observed grain protein. (D) Observed grain N offtake compared to simulated grain N offtake (Eq. 2). 

Table 2 
Model validation across 5 wheat years on the NFS-RE for the two representative soil profiles, High ECa (HEC= plots 7.5–8.5 mS/m) and Low ECa (LEC=plots 2.5–3.5 
mS/m).   

N (kgN ha-1) 0 110 220   

Soil HEC LEC HEC LEC HEC LEC Mean 
Yield Observed 5.0 3.7 7.9 6.5 9.2 7.7 6.7 
(t ha) Simulated 4.3 3.5 8.3 7.4 9.3 8.1 6.8  

RMSE 1.2 0.8 1.3 0.1 1.5 1.7 1.1  
RRMSE 24.6 22.0 16.2 17.5 16.7 21.8 19.5 

Grain protein Observed 7.1 8.1 9.1 9.4 11.0 11.6 9.4 
(%) Simulated 8.6 8.6 9.2 9.5 11.7 12.3 10.0  

RMSE 1.5 0.8 1.6 1.2 1.6 1.9 1.4  
RRMSE 20.6 10.8 17.3 13.1 14.3 16.1 15.4 

Grain N offtake Observed 62 54 128 109 178 155 114.2 
(kgN ha) Simulated 65 53 132 122 188 170 121.9  

RMSE 15 12 19 19 33 30 21.3  
RRMSE 24.0 22.9 15.1 17.5 18.5 19.1 19.5  
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observed variation could be used to parametrize CSM spatially. The 
variation in ECa was explained by observed variation in texture, stone 
content and organic C resulting in soil with contrasting available water 
capacities (LEC=105, HEC=148 mm) and inorganic N. This is particu-
larly important when these variations in soil properties, mapped 
through proximal sensors such as ECa, have a strong and temporally 
stable influence on crop performance, as seen in this study. 

The NFS experiments were situated in the relatively dry, east of 
England with an average annual rainfall of 676 mm at Morley. It is 
estimated that 30% of UK wheat is grown on drought prone soils, 
causing average yield losses of 10% (Ober et al., 2013). In four of the five 
years, a lower ECa, here demonstrated to represent a lower plant 
available water capacity, resulted in a significant reduction in yield at all 
N rates. In 2012 no significant correlation between ECa and yield was 
recorded at 220 kgN ha-1 and only a small significant yield response was 
recorded at 150 kg N ha-1. April to July 2012 was the wettest summer on 
record in England, therefore it is likely that, even on the lowest ECa soils, 
soil water was not a limiting factor where N was applied. However, a 
significant correlation and large yield response between soil ECa and 
yield was still recorded at 0 N. The relationship between NUE and water 
uptake efficiency (WUE) is understood to be co-limiting (Quemada and 
Gabriel, 2016; Sadras, 2004) with N fertilization shown to improve WUE 
in cereals (Cossani et al., 2012). This co-limitation likely explains why 

we still see higher grain yield on high ECa soils compared to low ECa 
soils at 110 N and 0 N. Using the linear regression equations for the 
five-year mean regressions between soil ECa and yield and grain protein, 
REfertN was estimated to be 9.3% lower on the plots with the lowest ECa 
compared to the highest. This correlation raises environmental con-
cerns, as it implies that under standard nitrogen application rates, areas 
with the lowest NUE also align with elevated leaching risk, primarily 
due to their increased sand and stone content. These correlations and 
inferences, drawn from an LTE dataset, can be applied on the farm. By 
integrating ECa measurements with targeted soil sampling (e.g. Brogi 
et al., 2020), combine yield mapping (Adhikari et al., 2023), and tech-
nologies such as on-the-go near-infrared spectroscopy for grain pro-
tein/N mapping (Long and McCallum, 2015), farms can initiate the 
spatial mapping of NUE. This process would allow the identification of 
areas with elevated environmental risks and potential economic in-
efficiencies. Although such analysis can help farms identify areas where 
a change in management might be required, determining economic and 
environmental optimal management strategies is still difficult. 

One method is to use grain protein concentrations as a retrospective 
diagnostic tool. Current UK feed wheat recommendations specify that 
optimal grain protein content for yield is 11% (equivalent to 1.9% N), 
and N rates could be adjusted by 25 kg N ha-1 for every 0.5% above or 
below this benchmark (AHDB, 2023a). Using the 5 year mean linear 

Fig. 7. Sirius validation for the NFS-RE at 0 N, 110 N and 220 N on the Low ECa (LEC=plots 2.5–3.5 mS/m) and High ECa (HEC=plots 7.5–8.5 mS/m) plots for A; 
grain yield, B; grain protein, C: grain N uptake. 
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relationship, grain proteins ranged from 11.5% in the lowest EC plots to 
10.8% in the plots with the highest ECa under current farm standard N 
rates. Therefore, based on current recommendations, N rate could 
potentially be lowered by 25 kg N ha-1 on areas with the lowest ECa. 
This conclusion is potentially supported by the relationship between 
yield and ECa in 2020 and 2017. In 2020, only a small increase in yield is 
recorded from 220 N compared with 110 N in plots with the lowest ECa. 
A similar, but less pronounced trend is seen in 2017. In these years the 
smaller response to 220 N on the low ECa soils suggests NOpt rates 
might be below the farm standard 220 N as suggested by the grain 
protein data. However, the effectiveness of grain protein as a N man-
agement tool is still debated. Sylvester-Bradley and Clarke (2009) 
showed that grain protein explained NOpt in 70–80% of small plot N 
response experiments and was useful in indicating NOpt. However, 
within a precision agriculture context (Kindred and Sylvester-Bradley, 
2014) reported that within field grain protein at NOpt varied consid-
erably, concluding that multiple N response experiments in every field 
and season would be required, although clearly impossible, for a precise 
assessments of site-specific N response. However, CSM can allow us to 
simulate virtual experiments, complementing ‘real’ experiments, but 
these need to be evaluated relative to the real system (Jones et al., 
2017b). 

4.2. Crop simulation models as a precision agriculture tool for UK wheat 

4.2.1. Model calibration and validation 
UK wheat cultivars exhibit large diversity and turnover (Curtis et al., 

2018), including variation in phonological development (Sheehan and 
Bentley, 2021) and NUE (Barraclough et al., 2010). Therefore, accurate 
cultivar parameters, reflecting this diversity are essential for applied 
modeling on farm. In this study a calibration procedure updated pa-
rameters for cv Claire. These parameters demonstrated good model 
performance when modelling two of the varieties grown in this study 
including good simulation of maturity date, grain protein, yield and 
grain N offtake. Using parameters representative of wheat grown across 
a region is common practice (Delgado et al., 2005; Jin et al., 2017). 
However, cultivar specific parameters would likely improve model 
performance and improve relevance of modeling derived recommen-
dations (Miao et al., 2018). Collecting additional experimental data, 

particularly around crop phenology following standardized protocols 
(Manschadi et al., 2021; Pasley et al., 2023) from LTE with high variety 
turnover or long running annual variety trial series could expand 
available cultivar parameters to support wider applications of CSM. This 
can identify varieties most suited to a hyper local environment or soil 
type (Paz et al., 2003). 

For CSM to support spatially specific N management they must 
accurately simulate crop N dynamics and yield across expected ranges of 
N, soil, and weather (Morarl et al., 2021; Sadler et al., 2000; Sadler and 
Russell, 1997). The validation of the Sirius model against observed 
spatial variation in crop growth within the NFS-RE demonstrated it’s 
suitability for inferring appropriate agronomic management decisions. 

Across both soils representing the extremes of observed variation in 
the NFS-RE Sirius demonstrated good model performance, as evidenced 
by the RRMSE for yield (19.5%), grain protein (15.4%), and total grain 
nitrogen offtake (19.5%) over various nitrogen rates and years. The 
largest errors in yield simulation occurred in 2012, with a RRMSE of 
23.4%. This year had higher than normal spring and summer rainfall 
(Kendon et al., 2013), creating favorable conditions for the foliar disease 
Septoria leaf blotch (Zymoseptoria tritici). Record levels of the disease 
were reported in the UK in 2012 (Gosling and Roberts, 2017), and on the 
NFS-RE trial, 15–28% infection was recorded on the 220 N plots, with 
smaller levels of infection on the 0 N and 110 N treatments (NIAB, 
personal communication, January 2024). It has been reported that for 
every 1% of leaf area infected, there is a potential yield loss of 0.67% 
(Gosling and Roberts, 2017). Since Sirius does not model the impact of 
disease on crop growth, it only simulated yields and response to N 
without accounting for this observed yield loss from disease. This un-
derscores the need for the development of improved pest and disease 
modules for crop simulation models (Donatelli et al., 2017) particularly 
in high disease pressure areas. The only year in our dataset where sig-
nificant disease pressure was recorded was in 2012. This suggests in 
most years (4 out of 5) good control was achieved through fungicide 
sprays, and therefore N management considerations could assume 
minimal losses from disease pressures. The overestimation in yield in 
2017 cannot be explained by disease pressures. However, there was 
significant grass weed populations (Fescuta) recorded in the trial that 
would likely reduce yield potential (NIAB, personal communication, 
January 2024). Sirius appeared to effectively capture the impacts of 

Fig. 8. Sirius simulation results for HEC (brown) and LEC (yellow) soils displayed as cumulative probability using 29 years of weather data. (A) simulated NOpt, (B) 
simulated yield at NOpt, (C) simulated within growing season N leached, (D) simulated surplus N. 
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water stress in 2010, the year with the lowest simulated and recorded 
yields at 110 N and 220 N, a year marked by a very dry spring in eastern 
England with recorded impacts on agriculture (DEFRA, 2010). 

Sirius overestimated yield on average by a greater proportion on the 
LEC at 110 N and 220 N. This could be explained by the nature of the 
physical characteristics of these soils. Sandy and stoney soils with lower 
available water capacity have lower cation exchange capacities and can 
be potentially more prone to other nutrient limitations and yield 
limiting influences (Alfaro et al., 2004; Huang and Hartemink, 2020). 
Previous studies have demonstrated that model performance can vary 
spatially when soil properties influencing crop growth are unaccounted 
for in model structures (Paz et al., 1999; Thorp et al., 2007). 

In the 0 N plots, the lowest Sirius simulated grain protein was 8.6% 
(1.5% grain N), which was equivalent to the minimum grain N limit 
within Sirius (Jamieson and Semenov, 2000; Sinclair and Amir, 1992). 
This threshold is based on relatively old data sets (Spiertz and Ellen, 
1978). On the NFS-RE the lowest recorded grain protein was 6.6% (1.1% 
grain N). This is comparable to minimum recorded in other data sets 
using modern UK wheat varieties without N fertilization (Hawkesford 
and Riche, 2020). Mechanistic models like Sirius should be continuously 
updated as our understanding of the system (i.e. new cultivars) changes 
(Keating, 2020; Stockdale and Gaunt, 1997). As demonstrated here LTE 
conducted under controlled and repeated conditions provide the plat-
forms for updating model accuracy and relevance (Johnston and Poul-
ton, 2018). 

No comparable studies for wheat in the UK have been identified, 
highlighting the novelty of the application of CSM for managing spatial 
variability in UK wheat. Cammarano et al., (2020) found the DSSAT 
model explained 72% of the variation across spring barley yields from 
management zones in a field in Scotland, comparable to 77% in this 
study. The RMSE for yield of 1.3 t ha-1 (RRMSE=19.5%) is comparable 
to other spatial model evaluations in wheat outside of the UK (Basso 
et al., 2011a; Ward et al., 2018; Wong and Asseng, 2006). Basso et al., 
(2009a) reported a RMSE of 0.2 t ha-1 (r2=0.91) using the DSSAT model 
across management zones for an Italian field, when the model was 
initialized with measured soil moisture contents at sowing. Initial soil 
moisture and mineral N content may have improved model performance 
across the NFS-RE (Cammarano et al., 2021). Model accuracy would also 
be improved using cultivar specific parameters for each growing season 
and recorded weather data instead of synthetic data for some variables. 
Although no significant difference across the NFS-RE was reported in the 
years in this study there are likely to be small differences in crop 
response to experimental treatments not currently accounted for in 
Sirius. For example, modeling approaches could include the impact of 
management practices such as tillage in future applications (Basso et al., 
2011b; Bertocco et al., 2008). 

4.2.2. Model application 
The validated CSM was used to simulate 29 years of N response ex-

periments on the extremes of variation recorded across the NFS-RE. The 
mean NOpt for both soils (HEC=234, LEC=222 kg N ha-1) exceeded the 
current farm standard N rate of 220 kg N ha-1. As previously described, 
Sirius tended to overestimate yields on both soils at 110 N and 220 N, as 
a result of being unable to simulate impacts on yield such as disease. This 
overestimation of yield potential is likely to have increased the simu-
lated NOpt. Modeling derived recommendations should therefore be 
interpreted as recommendations at maximum potential yield and be 
altered based on season-specific conditions and influences (Cho et al., 
2012). Modeling results suggest that the LEC have a lower NOpt 
compared to the higher yield potential HEC soils. This is in line with 
other studies using models to determine N management strategies in 
rainfed agricultural systems (Albarenque et al., 2016). Modelling N 
response over 29 years of recorded weather data provided a temporal 
data set that allows response probability to be evaluated so growers can 
incorporate risk management into their N management 
decision-making. Analysis shows there is a much greater chance (31%) 

of NOpt being below 200 kg N ha-1 on the LEC soil than HEC soil (10%). 
Farmers in the UK and across Europe are under pressure to meet 
greenhouse gas emissions reduction targets, which will likely require a 
reduction in overall N use (Squire et al., 2022). Recent geopolitical 
circumstances have also put pressure on N fertiliser availability resulting 
in some farms making decisions where best to reduce nitrogen appli-
cations (spatially and rotationally, i.e. which crops) (Ben Hassen and El 
Bilali, 2022). The modeling exercise here suggested significant N fer-
tiliser reductions would be less economically detrimental on the LEC 
than the HEC soils. 

An advantage of CSM is their ability to infer system responses to 
management decisions. Here we used Sirius CSM to simulate in-season 
nitrate leaching and N surplus from model derived NOpt. The LEC soil 
had higher in season N losses, with Sirius simulating the effects of the 
free draining properties of the lower AWC soil. The majority of N loss 
was from available soil mineral N at sowing (assumed to be 30 kg N ha- 

1), and a simple modeling exercise of running the model without any N 
applications confirmed this. These results are in line with measured 
quantities of overwinter leaching in wheat crops (Webb et al., 2000). 
The calculated simulated N surplus was higher on the HEC soils, despite 
the higher simulated yields. This is likely a result of a combination of 
higher NOpt resulting in higher fertiliser rates, lower levels of N losses 
through leaching, and higher soil organic N levels resulting increased 
soil mineralized N. The relatively high post-harvest N surplus is in line 
with other studies demonstrating that NOpt can still result in large 
quantities of surplus N (Thorp et al., 2006). N surplus and leaching risk 
potential should be considered together, as a soil with high surplus N 
and lower leaching risk may not pose the same environmental risk as a 
soil with lower surplus N and greater potential for over winter leaching. 
This poses interesting policy and management considerations as well as 
identifying limitations with this modeling exercise. In this study 
modeling was performed on 29 independent seasons, with model being 
reset for each simulation. The LTE, and most farming systems follow a 
rotation of multiple crops and crop types. Therefore, using the model 
over a single crop and season we fail to track model variables across 
multiple years (Thorp et al., 2007), to account for how the soil type, 
simulated N surplus and leaching risk interact across a rotation. This 
would allow for management techniques i.e., rotation/cropping as well 
as N rates to be designed to minimize environmental risk associated with 
these modeled states. Such approaches are possible with multi-crop 
models such as DSSAT and APSIM (Jones et al., 2003; Keating et al., 
2003). However, such rotational modeling is intrinsically more complex 
requiring multiple crop specific cultivar parameters and modelling er-
rors are prone to accumulate over seasons (McNunn et al., 2019). Whilst 
the Sirus model was validated for yield and grain protein, it would be 
beneficial to validate of other simulated responses such as post-harvest 
soil N, or N lost over winter. These data sets are harder to obtain and less 
frequently monitored in LTE but would greatly improve the validation of 
models as spatial management tools. CSM vary in their simulations 
when using the same spatial data sets as inputs. Future work should 
compare the results of multiple models in model ensembles for spatial 
applications in UK wheat crops (Wallor et al., 2018). There is also the 
need to develop appropriate mechanisms to appropriately identify 
economic and environmental impacts of management options. Some 
studies have used a risk-based approach such as setting appropriate 
thresholds for modeled N losses (e.g. < 30 or 40 kg N ha-1 in 80% of 
simulated seasons (Basso et al., 2007; Thorp et al., 2006)). However, 
such targets will likely need to be site specific based on the associated 
local environmental risk factors (Burt et al., 2011). 

Crop models enable exploration of system responses to multiple it-
erations. In this study, we demonstrated the capability of simulating 
spatial variations within an LTE using soil specific NOpt and typical 
drilling dates, N timings, and splits. Future research should employ 
experimental modeling techniques to analyze NOpt variation response 
to within-field spatial properties and determine the effects of N appli-
cation timing, drilling date, and plant populations on management and 
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system responses. Moreover, findings can guide optimal management 
decisions for specific weather events and climate change scenarios could 
be incorporated to investigate high-resolution on-farm impact of future 
weather patterns. 

Keating and Thorburn, (2018) express concern that models are not 
being used to make positive differences in real world situations. Here we 
demonstrated an application of modeling to inform on farm manage-
ment using LTE data sets. The next logical steps are to take these 
methodologies to inform management decisions on farm. It is our aim to 
do this using a new type of long-term monitoring study at Morley that 
records spatially explicit data sets across rotations suitable for model 
validation (TMAF, 2023). 

5. Conclusion 

Results showed large spatial variation in soil properties across a LTE. 
Soil ECa was strongly correlated to both the variation in soil properties 
and temporal and spatial patterns in crop growth and performance 
quantified using LTE data sets. This demonstrated how proximal soil 
sensing and targeted farm-specific soil measurements can be used to 
generate soil maps that can be used to explain the variation in yield 
across farms and fields. Furthermore, we demonstrated how such data 
sets could be used to calibrate and validate crop simulation models to 
guide spatial management of N in UK wheat crops. The Sirius CSM 
performed to a good level of accuracy in simulating yield and grain N 
offtake. Simulations can be improved with more complete data sets 
suitable for model validation, particularly initial parameterisation and 
environmental risk such as N loses and post-harvest N. We demonstrated 
that spatially explicit, economic optimum N management plans and risk- 
based N management decisions can be made from experimental 
modeling and CSM outputs. Further work is needed to demonstrate CSM 
spatial accuracy on a wider range of soil types, and testing the reliability 
of different models for management recommendations. LTE with high 
spatial-temporal data sets and quantified spatial variation are suitable 
places to test this. 
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