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Abstract: 

Biogeochemical catchment models are often developed for a single catchment and, as a 

result, often generalize poorly beyond this. Evaluating their transferability is an important 

step in improving their predictive power and application range. We assess the transferability 

of a recently developed Bayesian Belief Network (BBN) that simulated monthly stream 

phosphorus (P) concentrations in a poorly-drained grassland catchment through application to 

three further catchments with different hydrological regimes and agricultural land uses. In all 

catchments, flow and turbidity were measured sub-hourly from 2009 to 2016 and 

supplemented with 400 – 500 soil P test measurements. In addition to a previously 

parameterized BBN, five further model structures were implemented to incorporate in a 

stepwise way: in-stream P removal using expert elicitation, additional groundwater P stores 

and delivery, and the presence or absence of septic tank treatment, and, in one case, Sewage 

Treatment Works. Model performance was tested through comparison of predicted and 

observed total reactive P (TRP) concentrations and percentage bias (PBIAS). The original 

BBN accurately simulated the absolute values of observed flow and TRP concentrations in 

the poorly and moderately drained catchments (albeit with poor apparent percentage bias 

scores; 76%≤PBIAS≤94%) irrespective of the dominant land use, but performed less well in 

the groundwater-dominated catchments. However, including groundwater total dissolved P 

(TDP) and Sewage Treatment Works (STWs) inputs, and in-stream P uptake improved model 

performance (-5%≤PBIAS≤18%). A sensitivity analysis identified redundant variables further 

helping to streamline the model applications. An enhanced BBN model capable for wider 

application and generalisation resulted.  
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1 Introduction 

Generalised scientific theories are the most powerful and ideally, water quality models should 

be applicable to all catchments. A transferable model will likely have greater predictive 

power and utility, greater confidence that the model performs well for the right reasons, and 

an ability to help inform data collection for the model’s application (Hatum et al., 2022; 

Mieleitner and Reichert, 2006; Schuwirth et al., 2019).  

Testing model transferability is therefore important. Hatum et al., (2022) demonstrated that 

transferring a model across different seagrass ecosystems, using expert elicitation to support 

model formulation, enabled forecasting and decision-making. To date, only one Bayesian 

Belief Network (BBN) aimed at modelling water quality has been tested across multiple 

catchments. Glendell et al., (2022), tested a hybrid BBN (including both discrete and 

continuous variables) to predict stream P concentrations and applied the model to seven 

Scottish catchments. The outcomes demonstrated wider ranges in the BBN predictions than 

in the observations and, given that inadequate water quality data constrains the calibration 

and validation of P models (Drohan et al., 2019), the use of high-frequency data was 

suggested as a means to reduce model predictive uncertainty (Glendell et al. 2022).  

Phosphorus retention in river catchments results from a combination of biological, physical, 

and chemical processes (Withers and Jarvie, 2008) and there is uncertainty around the 

retention rate in different catchments due to variations in P uptake and release by plants, 

adsorption to and desorption from sediment, co-precipitation, dissolution, and advection. 

Both biotic and abiotic in-stream P uptake can be significant, especially during low-flows and 

effluent exposure (Stutter et al., 2010). Its inclusion could improve process representation, 
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and therefore transferability, in process-based semi-distributed P models (Jackson-Blake et 

al., 2015) and stochastic P models (Negri et al., 2024). 

Mechanistic P models typically include processes such as calcite-P co-precipitation, sorption 

and desorption to and from suspended sediments, P exchange between the pore water and the 

water column, P entering the reach from upstream or Sewage Treatment Works (STWs), and 

epiphyte uptake (for example, the INCA-P model, (Jackson-Blake et al., 2016; Wade et al., 

2002)). Similarly, stochastic P models include estimating numerous P sources, their transport 

through the land-water continuum, and delivery to surface waters (for example, Glendell et 

al., 2022; Igras and Creed, 2020; Neumann et al., 2023). However, some BBNs modelling P 

concentrations in the stream lack representation of processes such as stream P retention, as 

well as groundwater P stores (Glendell et al. 2022, Negri et al., 2024).  

The observational evidence to quantify in-stream retention processes is difficult to find in a 

single catchment, stream, or study area, therefore gathering data and comparing across 

diverse catchments with different P pressures strengthens findings. Expert elicitation 

(acquiring experts’ opinions using formal protocols, e.g., Krueger et al., (2012) is a route to 

help model parameterization without having to set up costly site-specific experiments and is 

often used to inform on model parameter uncertainty (O’Hagan, 2019). 

The overall study aim was to test the transferability of a recently developed (BBN Negri et 

al., 2024) in a grassland catchment in Ireland, and make enhancements as necessary. The aim 

was addressed through three research objectives: application of the BBN to three additional 

catchments in Ireland with performance assessment using daily total reactive P (TRP) 

observations; addition of in-stream P removal processes using expert elicitation; and the 

assessment of whether step-wise addition of in-stream P uptake, groundwater dissolved P 

concentration, and the presence or absence of septic tank treatment or Sewage Treatment 
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Works improved model performance and transferability (in terms of reduced percentage bias 

across all four catchments). 

2 Study Areas 

This study focuses on four (< 1200 ha) agricultural catchments in the east and south of 

Ireland: Timoleague, Ballycanew, Castledockrell, and Dunleer, that are monitored by the 

Agricultural catchments Programme (ACP) from Teagasc; a programme created to monitor 

the effectiveness of Ireland’s National Action Programme under the European Union Nitrates 

Directive (Wall et al., 2011). These catchments have different agricultural land uses and 

contrasting hydrology. The catchments were chosen because agriculture is the only 

significant anthropogenic pressure (housing density is low and domestic waste is treated with 

septic tanks) (Jordan et al., 2012). The location of the four catchments is shown in Figure 1 

and further information about the catchments is given in Negri and Mellander, (2024). 
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2.1 Timoleague 

The Timoleague catchment (Figure 1, bottom left) in County Cork has an area of 758 ha, of 

which 85-89% is grassland and 4-5% tillage, the remainder being non-agricultural land use. 

Stocking rates are ~2 livestock units (LU) ha
-1

 (Sherriff et al., 2015) and many of the dairy 

farms are managing soils under derogation (i.e. deviation from the EU Nitrates Directive, 

with organic N loading between 170 and 250 kg ha
-1

year
-1

), (Jordan et al., 2012), which 

indicates the catchment has high P sources (Mellander et al., 2022). In general, the soils are 

well drained except for small areas neighboring the stream at the valley bottom. The 

catchment is mostly groundwater-fed with a large proportion (60%) of TRP delivered via 

belowground pathways in winter (Mellander et al., 2016).  

2.2 Ballycanew 

The Ballycanew catchment (Figure 1, top right) is located in County Wexford. The catchment 

area is 1191 ha, with 78% grassland 14-20% tillage. None of the farms in this catchment are 

tillage only, all of them have a combination of tillage plus grassland. Two-thirds of the 

catchments’ soils (the lowlands) have poor drainage characteristics due to heavy clay 

deposits. However, farmers have improved the land for grass production with tile and mole 

drains. Due to the low soil permeability, the catchment has a flashy hydrology and a high risk 

of P loss to water through quick and erosive surface pathways during heavy rain events 

(Mellander et al., 2015). 

2.3 Castledockrell 

The Castledockrell catchment (Figure 1, bottom right) is also located in County Wexford. The 

total area is 1117 ha, typically with 39% grassland and 54% tillage. Soils are generally well 

drained with free draining brown earths underlain by slate and shale, ideal for spring barley, 

which is the main crop. However, some of the lower lying areas near the stream (east- 
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southeast of the catchment) have gley soils which are artificially drained. The catchment is 

mostly groundwater-fed with a large proportion (58%) of TRP delivered via belowground 

pathways in winter (Mellander et al., 2016). This catchment represents an exception in that 

there is a single Sewage Treatment Works (STWs) managing waste for about 75 people, 

while the remaining population (approx. 200) uses septic tanks (Jordan et al., 2012).  

2.4 Dunleer 

The Dunleer catchment (Figure 1, top left) is located in County Louth. The catchment has a 

total area of 948 ha with 49% grassland and 33% tillage. In this catchment soil drainage 

classes are a mixture of well, moderately, imperfectly and poorly drained soils (Thomas et al., 

2016a), the latter being up to 70% of the total area (Teagasc - Agriculture and Food 

Development Authority, 2018).  

3 Methods 

3.1 BBN parameterization 

We developed a catchment-specific Bayesian Belief Network that simulates flow-weighted P 

concentrations and parameterized the model using high-frequency data from the Ballycanew 

catchment (Negri et al., 2024). The BBN was parameterized with high-frequency discharge 

and turbidity data (collected every 10 minutes and summarized at daily time-step), as well as 

515 (Timoleague), 406 (Ballycanew), 408 (Castledockrell), and 392 (Dunleer) samples of soil 

Morgan P (McDonald et al., 2019; Thomas et al., 2016b), and calibrated against high- 

frequency TRP concentrations (Mellander et al., 2012). In this study, we test the BBN 

transferability by parametrizing the model for the first time for three further (8-12 km
2
) Irish 

ACP catchments. The initial BBN parametrization for each catchment was identical to that 

presented in Negri et al., (2024) and referred to here as “Structure 1”. Structures are the 

graphical definitions of BBNs, also referred to as Directed Acyclic Graphs (DAGs) 
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(Henderson and Pollino, 2010) encoding the causal (in)dependencies between variables 

(Aguilera et al., 2011). In this case, the structure represents the BBN’s P inputs, processes, 

pathways, and outputs, describing their relationships. When discussing uncertainty in 

environmental models, the word structure indicates the conceptual model (Refsgaard et al., 

2006). Where the information was available the BBN variables were parameterized with 

catchment-specific datasets (these are specified in the Supplementary Information). However, 

catchment-specific parametrization was not possible for the following nodes (i.e., BBN 

variables): “Direct Discharge”, “Septic Tank Treatment”, “Sediment Water Soluble P”, 

“Predicted Dissolved P concentration” (i.e., P that is dissolved from the soil matrix into the 

stream), and the total number of septic tanks in the catchment needed to calculate the total 

septic tank load. A detailed description of these nodes is given in Table 1. Additionally, data 

was not available for the “Septic Tank Treatment” node for Timoleague and Dunleer, and 

therefore an additional BBN structure was tested where the treatment was not implemented, 

and the distribution of P concentration across the catchment’s septic tanks was set up as equal 

to the “Unknown treatment” option (Structure 3). For the Timoleague and Castledockrell 

catchments, further model structure implementations (Structure 4, 5, 6) saw the addition of 

the node “Groundwater Dissolved P Concentration mg l
-1

” to describe the groundwater total 

dissolved phosphorus (TDP) concentration contributing to the total in-stream TRP 

concentration at catchment outlet (the details of Structure 2 will be introduced later on in this 

section). This was done with the same bootstrapping methodology that was applied to 

observed in-stream TRP concentrations in Negri et al., (2024), here applied to monthly 

samples of groundwater total dissolved P (TDP, 2009-2016) monitored in multi-level wells 

described in Mellander et al., (2016). An assumption was made that the wells near the stream 

(less than 40 m from the stream) contribute the most to stream TRP (Mellander et al., 2016), 

hence we only used data from these wells for the parameterization. For all catchments, a 
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model structure including the in-stream P uptake derived in the expert elicitation workshop 

was parameterized, and labelled Structure 2 for the Ballycanew and Dunleer catchments, 

Structure 5 for the Timoleague catchment, and Structure 5 and 6 for the Castledockrell 

catchment. For the Castledockrell catchment the Sewage Treatment Works loads were 

included in the finalized BBN labelled Structure 6. This was done by incorporating the P 

concentration (mg l
-1

) after tertiary treatment (Truncated Normal (µ= 1.44; ơ= 1.61, (Glendell 

et al., 2022), in this case truncated at 0), and the design size (130 people) found through the 

Irish Environmental Protection Agency (EPA) data. This is consistent with the fact that  

STWs with tertiary treatment are required to keep the orthophosphate concentration below 2 

mg l
-1

 for their effluent discharge (Fitzsimons et al., 2016). The model structure and the 

datasets used for the finalized parametrization are specified for each catchment in the 

Supplementary Information, and a summary of each Structure’s specifications is given in 

Table 3.
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3.2 In-stream P uptake 

P uptake is complex with multiple components based on physical, chemical, and biological 

processes (Withers and Jarvie, 2008). Whilst uptake rates might be available for specific 

components (e.g., algal uptake, large plant uptake, sediment uptake), this study focusses on 

providing an overall effect from the combined processes in each catchment for each season 

via expert elicitation because the necessary data to quantify uptake rates was not available for 

the catchments. Here P uptake was framed as the percentage (%) of in-stream P that is 

removed by both biotic and abiotic uptake. A simplified version of the methodology 

presented in Mzyece et al., (2024) for expert elicitation was used to determine P uptake for 

the four catchments for four seasons. We selected 6 key papers describing UK-led 

experiments on this topic (Bowes et al., 2016; Jarvie et al., 2002; Stutter et al., 2021, 2010; 

Wade et al., 2001; Withers and Jarvie, 2008), and invited four authors of these papers to 

contribute to our elicitation exercise as experts who have published on the topic of P uptake 

in rivers. Three accepted, one declined. The elicitation process then comprised of three steps: 

1) The Sheffield Elicitation Framework (SHELF) e-learning course for experts (Gosling, 

2018), which the experts took on their own, 2) a preliminary exercise where the experts were 

asked to complete an elicitation table per catchment, providing their personal judgement on 

the two tertiles, T1 and T2, (33
th 

and 66
th

 quantiles) and the median M (50
th

 quantile) 

percentage in-stream P uptake for each season. Initially, the upper limit of the distribution 

was fixed at 100% removal and the lower limit at 0% removal. To aid the experts with their 

judgements, supporting documentation containing both a summary of the literature on in-

stream P removal and information on the four catchments, was provided to the experts ahead 

of time (published in an evidence dossier in Negri and Mellander, 2024). For the scope of this 

elicitation, we aimed to quantify global uptake (see, for example, the quantities in bold under 

the column ‘P retained’ in Table 1 Negri and Mellander, (2024)) and asked the experts to 
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provide judgement on what was the likely P uptake based on their experience of other river 

systems. 3) Preliminary prior Normal distributions were fitted with the SHELF R package 

version 1.8.0 (Oakley, 2020) to the elicited distributions at Step 2 and presented to the experts 

during the workshop. In the workshop, the experts were asked to discuss the preliminary 

distributions and to agree on a single consensus distribution per season per catchment. Based 

on what emerged during the discussion, and to facilitate consensus, distributions were re-

fitted and plotted in real time for the experts to examine. The final consensus distributions 

were then used to parameterize the “In-stream P uptake” node in the BBNs, and the updated 

BBN was subsequently tested against in-stream TRP observations.  

3.3 Sensitivity Analysis 

Sensitivity analysis was done to understand the effect of using non-catchment specific data 

on model transferability for the variables listed in Table 1. For direct discharge presence (0-

100%) or absence (0-100%), the relative fraction of direct discharge presence/absence was 

varied in 5% steps, with the probabilities for the two categories summing to 100%. To assess 

the impact of number of septic tanks within each catchment boundary on in-stream P 

concentration, increases of two septic tanks per step were applied, ranging from 30 to 150 

septic tanks. This range assumed 2.4 people per household (and therefore per tank) for these 

scarcely populated catchments. To understand the effects of varying the Water Soluble P 

(WSP, described in Table 1) we applied a stepwise variation (0.1 increments) on the 

parameters of the Lognormal distribution used in the Ballycanew catchment: the mean (-

2≤µ≤ 2) and, separately, the same variation on the standard deviation (0≤ơ≤ 2). The Gamma 

distribution has two parameters (shape, k, and scale, ꝋ) that together control the shape of the 

distribution. These parameters do not correspond directly to physical values (unlike, for 

example, the mean value of a Normal or Poisson distribution) and are always >0. Here we 

stepped through these parameters in increments of 0.1 over the range 0.1≤k≤ 2 and 0.005 
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increments over the range 0.05≤ꝋ≤1 for the WSP node parameterized for Castledockrell. For 

the “Predicted Dissolved P Concentration, 0.02 stepwise increases were applied to the β 

parameter (-1≤β≤1), and 0.005 stepwise increases were applied to the α (0≤α≤0.2). The 

sensitivity analysis was conducted independently for each parameter in each catchment, (no 

nodes were varied simultaneously) and carried out only for the finalized and best performing 

model structure in each catchment (specifically, Structure 5 for Timoleague, Structure 6 for 

Castledockrell, and Structure 2 for Dunleer). The analysis was performed using rSMILE 

version 2.0.10 (BayesFusion, 2019a), an API engine available in R which can perform the 

same Bayesian inference operations performed by GeNIe Modeler (BayesFusion, 2019b), the 

software used to design the BBNs. In each catchment, the parameter variations were applied 

to predict the TRP concentration (in the model, the target node is called “In-stream P 

concentration [mg l
-1

]” and it describes the variable of interest). The effects of changing the 

input parameters on the full distributions was assessed visually by comparison against the 

distribution from “simulation 0” (the initial BBN parameterization). The effects of the 

presence of the nodes “Septic Tank Treatment”, “Groundwater Dissolved P Concentration mg 

l
-1

”, the nodes relative to in-stream P uptake, and those pertaining to the STWs in 

Castledockrell were tested by comparing distributions derived from different model structures 

to those obtained from the original BBN. 

3.4 Model evaluation 

The model structures were evaluated by comparing the predicted TRP concentrations with the 

available observed TRP concentrations (available as daily mean, mg l
-1

) (2009-10-01 to 

2016-12-31) by: calculating percentage bias (PBIAS) in the R package hydroGOF version 

0.4-0 (Zambrano-Bigiarini, 2020), plotting and visually comparing the full posterior 

distributions, and comparing median concentrations. PBIAS calculation and visual 

assessment are recommended when modelling P in catchments with a prevalence of diffuse 
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sources, as in these instances models struggle to produce good Nash-Sutcliffe statistics 

(Jackson-Blake et al., 2015). In addition, for the model version containing the “In-stream P 

removal”, the Normal distribution allows for negative concentrations due to the potential for 

release of in-stream P (considered to be plausible by the expert elicitation). For the purposes 

of model evaluation these were resampled into zeros prior to analysis.  

4 Results and Discussion 

4.1 BBN Parameterization 

The results of the preliminary BBN parametrization are shown in Figure 3, where the density 

plots from all model structures are shown against the distribution fitted to the observations. 

When comparing the TRP distributions and boxplots of Structure 1 (in green) against the 

observed (light brown), the figure shows that the model performs well for Ballycanew and 

Dunleer, and less well for the Timoleague and Castledockrell catchments. For Timoleague 

and Castledockrell, the initial parameterization (Structure 1) overpredicts the stream P 

concentration by 65-82% (data not shown), which is a consequence of the parameterization 

being tailored for a surface-driven catchment instead of a groundwater-driven one. Specific 

details of the each of the models’ performances are discussed in section 4.4. The state-of-the-

art high-resolution and long-term monitoring data available in these catchments could also 

facilitate other model structures besides the ones considered in this study. For example, soil 

chemistry data could be leveraged to improve process representation for the groundwater-

driven catchments, because the presence of aluminium-rich or iron-rich soils is known to 

impact P solubilization and transfer to the groundwater table (Mellander et al., 2016). 

4.2 In-stream P uptake 

During elicitation, consensus was reached by initially focusing on the first catchment 

(Timoleague), first comparing summer and winter, then spring and autumn. Consensus about 
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the other three catchments was then reached by comparison with the first. For wintertime, the 

experts agreed to use -100% as the lower limit which represents complete sediment P release 

into the water column and biotic uptake close to zero. For wintertime in Timoleague, 

averaged values (tertiles and median) and fitted a Normal distribution were used (Figure 2). 

For summertime in Timoleague, expert consensus had the probability density centred on a 

43% removal rate, and this was the same for autumn and spring. For Ballycanew, the experts 

decided to reduce P removal by 30%, due to the high flashiness of the catchment. The experts 

considered the catchment P saturation and loading to be the most influential factors in 

determining in-stream uptake, catchment flashiness was considered less important. As a 

result, the mean P uptake was similar across catchments (Table 2). The consensus also 

reflected that, even though Castledockrell is less flashy than Ballycanew, the two catchments 

have similar P uptake because high loading in Castledockrell due to a Sewage Treatment 

Works and septic tanks. An exception is made for Castledockrell in the wintertime, with 

tertiles and median values similar to Timoleague, and therefore the same parameterization 

(Table 2). For Dunleer, the wintertime uptake was considered very low, then the rest of the 

seasons were considered comparable to Timoleague. Overall, the experts had greater 

confidence estimating P removal in the colder seasons (winter and autumn), than in the 

warmer ones, where the distributions are wider and more uncertain (Figure 2). Furthermore, 

the experts suggested that visual aids such as photos of the river corridor could assist in 

estimating uptake, allowing the approximate width and depth of ditches and rivers to be 

estimated, as well as the presence of submerged and emergent vegetation and algae to be 

assessed. This is especially important because increased riparian vegetation and algae can 

lead to decreased dissolved P concentrations (Bowes et al., 2016; Chase et al., 2016). The 

distributions obtained were used in each catchment model to calculate the in-stream P load 

reduction (Equation 1): 
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Equation 1 

𝑟 = (1 − 𝑁𝑜𝑟𝑚𝑎𝑙 (µ𝑠; ơs)) ∗ 𝐿  

where 𝑟 is the in-stream reduced load, 𝐿 the total catchment load, and N (µ𝑠; ơs) is a Normal 

distribution with a seasonal dependent mean and standard deviation (specified in Table 2), 

and the loads are expressed in T month
-1

.
 
In the BBN, the seasonal monthly distributions are 

child nodes of a deterministic node termed “Season”, which indicates the meteorological 

seasons.  

 

4.3 Sensitivity Analysis 

The sensitivity analysis showed that the three tested BBNs are not sensitive to changes in the 

variables representing septic tank “Direct Discharge” (% of tanks that discharge the effluent 

directly into the stream), and “Sediment Water Soluble P” (that is, P released into the stream 

by sediments). One BBN showed sensitivity to changes in the β parameter used for the node 

“Predicted Dissolved P concentration”. Details of the sensitivity to the Predicted Dissolved P 

concentration” node are shown for one catchment (Dunleer) in the Appendix. This shows the 

log10(TRP) concentration boxplot for each parameter value against the “simulation 0” (in 

light green) overlayed with a sample of the full distribution plotted as dots. The equation in 

the node “Predicted Dissolved P concentration” was derived from Thomas et al., (2016b), and 

is an aggregated result of catchment-specific regression models, which were not available at 

the time of model parametrization. It would be instructive to reparametrize the BBN if/when 

these individual models become available, and to compare the results of a corresponding 

sensitivity analysis on this new model structure with these results.  

Sensitivity analysis is a pivotal component of model calibration and design, however, 

methodologies for conducting it for hybrid BBNs aren’t readily accessible in the software 

used for BBN parameterization or in R packages, and therefore require bespoke coding for 
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implementation. For example, Glendell et al., (2022), conducted a sensitivity analysis on a 

discretized version of their hybrid network, which causes loss of information (Uusitalo, 

2007), and makes the BBN sensitive to the chosen discretization. Similarly, Piffady et al., 

(2021) tested the sensitivity of a discretized BBN by varying nodes deemed important across 

a reasonable range. Here we provided a preliminary approach to the sensitivity analysis of a 

hybrid BBN without triggering discretization.  

  

4.4 Model evaluation 

Results of the model evaluation are shown in Figure 3, which shows boxplots with the 

median, interquartile range with the whiskers extending to the highest and lowest datapoints, 

and a representative selection of datapoints, from ten-thousand simulated realizations of each 

BBN structure tested. These are summarized in Table 3, where predicted log10 TRP 

concentrations are compared to the observations (daily time-step, data from 2009 to 2016). In 

the surface-drained catchments (Figure 3, Ballycanew and Dunleer, right-hand side), the 

distribution of log10(TRP) concentrations predicted by the BBN models is not sensitive to the 

structure of the BBN. The BBN parameterized in Negri et al., (2024) (Structure 1) can 

reproduce the mean and median observed P concentrations in the Ballycanew and Dunleer 

catchments. For Ballycanew, the percentage bias is within acceptable ranges (close to the 

50% departure from observations or less, shown in Table 3). For Dunleer, a bias of 94% is 

still considered acceptable because the mean predicted concentration was 0.11, whilst the 

observed was 0.10 mg l
-1

. The addition of an in-stream P removal node improved the ability 

of the model to replicate the mean and median in-stream P concentration in these two 

catchments (Table 3, comparing Structure 1 and 2), by introducing a linear scaling factor. 

Further, the percentage bias in Dunleer went from 94% to 45% with the addition of removal, 

however, because the concentrations being predicted are small, small changes in their 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

17 
 

absolute values represent large changes in bias, therefore bias values should be looked at 

critically in context with mean TRP concentrations, as shown in Table 3. For the two 

groundwater-dominated catchments (Timoleague and Castledockrell), the introduction of 

groundwater TDP concentration (Structures 4, 5, and 6) improved the simulated TRP 

concentrations: in the final structure, the predicted median was the same as the observed, 0.05 

(Timoleague) and 0.02 mg l
-1

 (Castledockrell). This could not be achieved in the 

Castledockrell catchment with a process-based model such as SimplyP (Hawtree et al., 2023), 

even though the BBN and SimplyP deploy similar strategies to represent below-ground 

processes. An improvement in percentage bias (from 40% to -5%) is provided by the addition 

of in-stream P removal in the Timoleague catchment (also in Table 3, comparing Structure 4 

and 5), however, the bias was already within the 50% departure from observations, which 

indicates that this remains a secondary process, at least if compared to correctly representing 

groundwater concentrations (Structure 4).  

Knowledge of the type of septic tank treatment adopted (i.e., comparing Structure 1 to 

Structure 3), provides little to no advantage (concentrations remain unvaried), except for 

better representing the available datasets. Increasing the structural complexity of the BBN 

had the most impact in the Castledockrell catchment, where the percentage bias of posterior 

simulations has decreased more than twenty-fold (Table 3, comparing Structure 1 with 

Structure 6). To further demonstrate this, monthly predicted log10(TRP) concentrations 

(yellow bars) are plotted as histograms against daily observed log10(TRP) concentrations 

(blue bars, grouped by month) across all model structures developed for the Castledockrell 

catchment in Figure 4. This shows the progress made in adapting Structure 1 in this 

catchment (top histograms), where yellow and blue are not overlapping, up to the last model 

structure (Structure 6, bottom panel), which shows good correspondence between predicted 

and observed TRP concentrations. The addition of P removal had the added benefit of 
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improving seasonality in the BBN predictions, which was not a behaviour that emerged in the 

first parameterization; however, the observations still show stronger seasonality patterns than 

the simulations. A summary table of these results is reported in the Supplementary 

Information, where, for each catchment, monthly predictions from the first versus the final 

model version are compared against the observations. Percentage bias shows that the final 

and best performing model in each catchment performs best in dry conditions (summer 

months). However, in Dunleer and Ballycanew, the model predicts the mean concentration 

better in winter than in summer. This is notable, as predicting P concentrations correctly in 

summer may be more relevant from the point of view of assessing ecological impacts in 

running waters than predicting them during the ecologically less active winter period. In the 

groundwater-dominated catchments, the final model is better constrained than in the runoff-

dominated catchments (Ballycanew and Dunleer), as evident when comparing the predicted 

upper (µ+ơ) concentrations versus the observed in Table 5 of Supplementary Information. 

Table 4 shows both the observed and the marginal probabilities of Environmental Quality 

Standard of 0.035 mg l
-1

 (EQS) exceedance in each catchment and across two model 

structures. The Table shows that even though the models can work for two catchments and is 

improved by the inclusion of P removal, the model predicts a lower probability of exceeding 

the EQS than the observational data in the two P risky catchments (Ballycanew and Dunleer). 

Meanwhile, the prediction of EQS exceedance for the Timoleague catchment is either under- 

or over- predicting by 8%, depending on BBN model structure, while at Castledockrell, the 

prediction of exceedance for the final model is 10% lower than the observed. These findings 

suggest that the BBN may be best used as Decision Support Tool by calculating the quantiles 

of monthly predicted concentrations as seen in Negri et al., (2024) or the monthly mean and 

upper and lower limits (µ±ơ, as shown in the Supplementary) rather than as a discrete 
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probability of EQS exceedance, due to the predicted distributions being wider and more 

skewed than the observations, also seen in Negri et al., (2024). 

5 Conclusions 

This study is the first application of a BBN aimed at predicting stream P concentrations in 

four Irish agricultural catchments. We set out to test the transferability of a hybrid BBN 

targeting P pollution across agricultural catchments with diverse dominant hydrological 

processes. The initial BBN proved to be transferrable between catchments dominated by 

surface or mixed hydrological pathways, irrespective of land use, but less so between 

catchments dominated by sub-surface delivery. Inclusion of groundwater total dissolved P 

(TDP), Sewage Treatment Works (STWs) inputs, and in-stream P uptake improved model 

performance in all four catchments and made the BBN more transferable, though at the cost 

of increased complexity and data requirements. 

In this work, we explored two strategies to improve model structure: bootstrapping to 

estimate the groundwater TDP concentration, and expert elicitation to assess in-stream P 

removal. The addition of groundwater TDP loads improved the predictions in sub-surface-

driven catchments. Expert elicitation aided the P uptake parameterization, which lacked 

generalizable data, highlighting a research gap. However, we found that in-stream P uptake 

remained a secondary process compared to the representation of P transfers via both surface 

and subsurface pathways when simulating daily P concentrations. 

To avoid discretizing the continuous distributions that form critical components of the BBN 

nodes prior to sensitivity analysis, we implemented a method to evaluate the effects of 

parameter variation on the full posterior distribution of the target node, by varying the 

parameters of interest while holding the others fixed. This demonstrated the transferability of 
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non-catchment specific data to further catchments and found redundant parameters in the 

sediments and septic tanks components of the model.  

Testing BBN applicability also revealed constraints in this study related to the limited 

presence of BBN studies conducted in catchments comparable to those examined in this 

research, and the fact that few modelling studies have been performed in our study 

catchments. Therefore, future work should involve the use of other modelling approaches in 

these catchments, allowing the intercomparison of models parameterized with high-frequency 

datasets. Given the scope of the Agricultural Catchments Programme, in the future, the BBNs 

developed here present an effective tool for modelling of catchment-scale effects of water 

quality mitigation measures.  
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Appendix 

 Appendix Results of the sensitivity analysis on the two parameters for the “Predicted Dissolved P concentration” node, β 

(slope, top plot) and α (intercept, bottom plot) displayed as boxplots showing the median (central line), interquartile range 

(box) for the log10(TRP) concentration (mg l-1) distribution of each simulation, filled black points show the scatter of the 

realizations. Values assumed for each parameter in each simulation are shown on the x axis, the boxplots of the “simulation 

0” are shown in light green. Results are shown for the model Structure 2 for the Dunleer catchment. 
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Figure 1 Location of the four study areas within the republic of Ireland, and overview of each study area. Top left: Dunleer, 

top right Ballycanew, bottom left: Timoleague, bottom right: Castledockrell. Location of the high-resolution monitoring 

kiosk and hydrometric station at the catchment outlet is shown as a dot. Magenta lines represent streams and yellow lines 

represent artificial drainage (this is not available for the Dunleer catchment). 
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Figure 2 Consensus Normal distributions grouped by season. The y axis shows the probability density function, the x axis is 

the agreed upon plausible range for in-stream P uptake (%). Different colours show the distributions for each catchment. 

For the winter season, Castledockrell and Timoleague are overlapping; for spring and summer, Timoleague and Dunleer are 

overlapping; and for the autumn, Timoleague, Castledockrell, and Dunleer are overlapping.  
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Figure 3 Predicted and observed log10(TRP) concentrations for each of the four catchments. The grey density shows the 

distribution obtained by simulated realizations from the BBN (all plots except the rightmost of each panel), filled points the 

scatter of the realizations (100 samples per catchment), coloured boxplots show the median (central line), interquartile 

range (box) and highest and lowest datapoints (shown by the whiskers). Observations are shown in the rightmost plot in 

each panel, where the grey density shows the distribution fitted to the full suite of observations, filled points the scatter of the 

realizations, the light brown boxplots show the median (central line), interquartile range (box) and the 95% quantile range 

for the distribution. Data outside the instrument’s limit of detection (0.01-5.00 mg l-1) were excluded from the plot, and the 

text shows the number of valid samples for each model (with 10000 being the maximum number of available samples 

generated by the model). This plot was produced with the ggdist R package version 3.3.0 (Kay, 2023). A complete 

description of the finalized model structures is given in the Supplementary Information for the Timoleague, Dunleer, and 

Castledockrell catchments, a description of Structure 1 is given in Negri et al., (2024). 
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Figure 4 Histograms of monthly log10(TRP) concentrations (mg l-1). Observations are shown in blue, predictions obtained 

from each model structure adapted for the Castledockrell catchment are shown in yellow. The dark grey box indicates 

concentration values below the limit of detection (0.01 mg l-1).  
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Figure 3 Predicted and observed log10(TRP) concentrations for each of the four catchments. The grey 

density shows the distribution obtained by simulated realizations from the BBN (all plots except the 

rightmost of each panel), filled points the scatter of the realizations (100 samples per catchment), 

coloured boxplots show the median (central line), interquartile range (box) and highest and lowest 

datapoints (shown by the whiskers). Observations are shown in the rightmost plot in each panel, 

where the grey density shows the distribution fitted to the full suite of observations, filled points the 

scatter of the realizations, the light brown boxplots show the median (central line), interquartile range 

(box) and the 95% quantile range for the distribution. Data outside the instrument’s limit of detection 

(0.01-5.00 mg l
-1

) were excluded from the plot, and the text shows the number of valid samples for 

each model (with 10000 being the maximum number of available samples generated by the model). 

This plot was produced with the ggdist R package version 3.3.0 (Kay, 2023). A complete description 

of the finalized model structures is given in the Supplementary Information for the Timoleague, 

Dunleer, and Castledockrell catchments, a description of Structure 1 is given in Negri et al., (2024). 28 
Figure 4 Histograms of monthly log10(TRP) concentrations (mg l

-1
). Observations are shown in blue, 

predictions obtained from each model structure adapted for the Castledockrell catchment are shown in 

yellow. The dark grey box indicates concentration values below the limit of detection (0.01 mg l
-1

). 30 
 

Table 1 Variables for which catchment-specific data was not unavailable in the Timoleague, Castledockrell, and Dunleer 

catchments. These parameters were chosen for a preliminary sensitivity analysis to understand their effects on the targeted P 

concentration and inform model transferability. 

Node 
Septic Tank 

Treatment 

Direct 

Discharge 

Number of 

Septic Tanks 

Sediment Water 

Soluble P (WSP) 

[mg kg-1] 

Predicted Dissolved P 

Concentration  

[mg l-1] 
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Description 

Probability of 

having “unknown”, 

“primary” or 

“secondary” 

treatment of the 

effluent in a septic 

tank. 

Probability 

of ST 

discharging 

directly into 

the stream. 

Septic tanks 

within 

catchment 

boundary. 

Describes the 

phosphorus released 

from the sediments 

into the stream. 

Defined as the best 

fitting distribution, 

fitted with the 

SHELF R package 

version 1.8.0 

(Oakley, 2020a) to 

observed Water 

Extractable P in the 

catchment sediments 

(Shore et al., 2016) 

when data was 

available. 

Describes the Water 

Extractable Phosphorus 

(WEP) dissolved from 

the soil matrix into the 

stream. Defined with the 

linear model: Predicted 

Dissolved P = β(WEP)-α, 

where β =0.08, α =0.158, 

derived from (Thomas et 

al., 2016b), whereby 

WEP stands for Water 

Extractable P. An 

assumption is made that 

when the linear model 

yields a negative value, 

that is resampled as a 

zero. This equation is not 

catchment specific. 

Timoleague Unavailable. 
As 

Ballycanew. 

As 

Ballycanew. 
As Ballycanew. Same everywhere. 

Ballycanew 

Probabilities based 

on a survey 

conducted within 

WaterProtect, a 

research project 

supported by the 

European Union 

research and 

innovation funding 

programme 

Horizon 2020 

[grant no. 727450]. 

Probabilities are 

reported in Negri et 

al., (2024) 

Assumed. 

Available 

from data (88 

tanks). 

Defined as a 

Lognormal 

distribution (µ=-0.9, 

ơ=1), fitted with the 

SHELF R package 

(version 1.8.0, 

Oakley, 2020) to 

observed Water 

Extractable P in the 

catchment sediments 

(Shore et al., 2016). 

Same everywhere. 

Castledockrell 

Probabilities based 

on a survey 

conducted within 

WaterProtect, a 

research project 

supported by the 

European Union 

research and 

innovation funding 

programme 

Horizon 2020 

[grant no. 727450].  

As 

Ballycanew. 

As 

Ballycanew. 

Defined as a Gamma 

distribution (k=1.03, 

ꝋ=0.44).fitted with 

the SHELF R 

package (version 

1.8.0, Oakley, 2020) 

to observed Water 

Extractable P in the 

catchment sediments 

(Shore et al., 2016).  

Same everywhere. 

Dunleer Unavailable. 
As 

Ballycanew. 

As 

Ballycanew. 
As Ballycanew. Same everywhere. 
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Table 2 Characteristics of seasonal P uptake as discussed by the experts during the workshop, including re-defined lower 

and upper limits of uptake, and the elicited parameters for the Normal distributions. A mean (µ) of 0.10 corresponds to 10% 

mean uptake.  

 

% P uptake 

justification 

Normal distributions parameters fitted from consensus 

Timoleagu

e 
Ballycanew Castledockrell Dunleer 

lower 

limit 

consensus 

upper  

limit 

consensus 

µ ơ µ ơ µ ơ µ ơ 

Winter -100 +100 

To describe the fact 

that there can be 

release of P (-100%) 

rather than uptake 

(+100%) 

0.12 0.10 0.08 0.06 0.12 0.10 0.10 0.05 

Spring 0 80 

Uptake can never be 

100%, but the 

experts agree on 

absent or negligible 

P release 

0.35 0.21 0.24 0.15 0.08 0.06 0.35 0.21 

Summer 10 80 

Biological uptake 

always present, so 

lower limit cannot be 

0% 

0.43 0.12 0.30 0.05 0.35 0.21 0.43 0.12 

Autumn 0 65 

Uptake can never be 

100% and is lower 

than in spring, but 

the experts agree on 

absent or negligible 

P release 

0.25 0.07 0.18 0.04 0.25 0.07 0.25 0.07 
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Table 3 Overall results of the different BBN versions for the four catchments, concentrations (mg l-1) outside the instrument 

limit of detection (0.01-5.00 mg l-1) have been excluded from the analysis. Both observed and predicted TRP concentrations 

were log-transformed before calculating the statistics, and then converted back to normal values. A positive bias indicates 

overestimation. 

   
Structure 

1 

Struct

ure 

2 

Structure 

3 

Struct

ure 

4 

Structure 

5 

Struct

ure 

6 

observa

tions 

 

  

Negri et al., 

(2024) 

Negri 

et al., 

(2024)

+ in- 

stream 

remov

al (no 

ST 

treatm

ent in 

Dunle

er) 

Negri et al., 

(2024), no ST 

treatment 

no ST 

treatm

ent + 

GW 

TDP 

no ST treatment +  

GW TDP + 

in-stream P removal 

no ST 

treatm

ent +  

GW 

TDP + 

in-

stream 

P 

remov

al + 

STWs 

130 

p.e. 

T
im

o
le

a
g

u
e 

mean 

mg 

l-1 

0.14 - 0.14 0.08 0.05 - 0.05 

lower limit 

(µ-1ơ) 
0.05 - 0.05 0.05 0.03 - 0.03 

upper limit 

(µ+1ơ) 
0.40 - 0.41 0.11 0.08 - 0.09 

median 0.14 - 0.15 0.07 0.05 - 0.05 

5th quantile 0.02 - 0.02 0.05 0.03 - 0.02 

25th 

quantile 
0.08 - 0.07 0.06 0.04 - 0.04 

75th 

quantile 
0.21 - 0.21 0.09 0.08 - 0.08 

PBIAS % 285 - 291 40 -5 - - 

B
a

ll
y

ca
n

ew
 

mean 

mg 

l-1 

0.08 0.07 - - - - 0.06 

lower limit 

(µ-1ơ) 
0.03 0.03 - - - - 0.03 

upper limit 

(µ+1ơ) 
0.21 0.17 - - - - 0.11 

median 0.10 0.08 - - - - 0.06 

5th quantile 0.02 0.02 - - - - 0.01 

25th 

quantile 
0.05 0.04 - - - - 0.04 

75th 

quantile 
0.14 0.12 - - - - 0.14 

PBIAS % 80 49 - - - - - 

C
a

st
le

d
o

ck
re

ll
 

mean 

mg 

l-1 

0.11 - 0.10 0.03 0.02 0.02 0.02 

lower limit 

(µ-1ơ) 
0.04 - 0.04 0.01 0.01 0.01 0.01 

upper limit 

(µ+1ơ) 
0.29 - 0.29 0.05 0.04 0.05 0.04 

median 0.13 - 0.13 0.02 0.02 0.02 0.02 

5th quantile 0.02 - 0.02 0.01 0.01 0.01 0.01 

25th 

quantile 
0.07 - 0.06 0.02 0.01 0.02 0.02 

75th 

quantile 
0.18 - 0.19 0.04 0.03 0.03 0.04 

PBIAS % 445 - 453 34 12 18 - 

D
u

n
le

er
 

mean 

mg 

l-1 

0.11 0.09 0.11 - - - 0.10 

lower limit 

(µ-1ơ) 0.03 0.03 0.03 
- - - 0.06 

upper limit 

(µ+1ơ) 0.38 0.28 0.39 
- - - 0.16 

median 0.12 0.09 0.12 - - - 0.09 

5th quantile 0.01 0.01 0.01 - - - 0.05 
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25th 

quantile 0.05 0.04 0.05 
- - - 0.06 

75th 

quantile 0.27 0.20 0.28 
- - - 0.14 

PBIAS % 94 45 97 - - - - 

Abbreviations: ST septic tanks; GW TDP groundwater total dissolved phosphorus; STWs sewage treatment works; p.e. 

people equivalent. 

Table 4 Marginal probability of exceeding EQS limits in the four catchments  

 Probability to exceed EQS limits 

 
2010-2020 data 

(Mellander et al., 

2022) 

2009-2016 data 
 model in Negri 

et al., (2024) 

model with in-stream P 

removal  

 
Hourly mean 

concentration 

Daily mean 

concentration 
Structure 1 

Final structure (a 

different one for each 

catchment) 

TIMOLEAGUE 81% 80% 72% 88% 

BALLYCANEW 94% 88% 65% 61% 

CASTLEDOCKRELL 29% 28% 46% 18% 

DUNLEER 99% 99% 58% 55% 

Table captions 
Table 1 Variables for which catchment-specific data was not unavailable in the Timoleague, 

Castledockrell, and Dunleer catchments. These parameters were chosen for a preliminary sensitivity 

analysis to understand their effects on the targeted P concentration and inform model transferability.

 .............................................................................................................................................................. 30 
Table 2 Characteristics of seasonal P uptake as discussed by the experts during the workshop, 

including re-defined lower and upper limits of uptake, and the elicited parameters for the Normal 

distributions. A mean (µ) of 0.10 corresponds to 10% mean uptake. ................................................... 32 
Table 3 Overall results of the different BBN versions for the four catchments, concentrations (mg l

-1
) 

outside the instrument limit of detection (0.01-5.00 mg l
-1

) have been excluded from the analysis. 

Both observed and predicted TRP concentrations were log-transformed before calculating the 

statistics, and then converted back to normal values. A positive bias indicates overestimation. .......... 33 
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Graphical abstract 

 

 

Highlights 

 Pilot study testing transferability of Bayesian Network for P losses  

 Sensitivity Analysis of a hybrid network identified redundant variables  

 Expert elicitation supports model parameterization of uncertain process 

 Models should prioritize P transfer pathways over in-stream cycling  


