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Abstract: The Copernicus Sentinel-6 Michael Freilich (S6-MF) and Jason-3 (J3) Tandem Experiment
(S6-JTEX) provided over 12 months of closely collocated altimeter sea state measurements, acquired
in “low-resolution” (LR) and synthetic aperture radar “high-resolution” (HR) modes onboard S6-MF.
The consistency and uncertainties associated with these measurements of sea state are examined in a
region of the eastern North Pacific. Discrepancies in mean significant wave height (Hs, 0.01 m) and
root-mean-square deviation (0.06 m) between J3 and S6-MF LR are found to be small compared to
differences with buoy data (0.04, 0.29 m). S6-MF HR data are found to be highly correlated with LR
data (0.999) but affected by a nonlinear sea state-dependent bias. However, the bias can be explained
robustly through regression modelling based on Hs. Subsequent triple collocation analysis (TCA)
shows very little difference in measurement error (0.18 ± 0.03 m) for the three altimetry datasets,
when analysed with buoy data (0.22 ± 0.02 m) and ERA5 reanalysis (0.27 ± 0.02 m), although
statistical precision, limited by total collocations (N = 535), both obscures interpretation and motivates
the use of a larger dataset. However, we identify uncertainties in the collocation methodology, with
important consequences for methods such as TCA. Firstly, data from some commonly used buoys
are found to be statistically questionable, possibly linked to erroneous buoy operation. Secondly, we
develop a methodology based on altimetry data to show how statistically outlying data also arise due
to sampling over local sea state gradients. This methodology paves the way for accurate collocation
closer to the coast, bringing larger collocation sample sizes and greater statistical robustness.

Keywords: sea state; satellite altimetry; uncertainty; moored buoys; Sentinel-6 Michael Freilich;
S6-JTEX; tandem experiment; significant wave height; triple collocation

1. Introduction

Sea state observations from satellites are increasing in duration, abundance, variety
and applications. The long-term continuous altimetry record is particularly significant in
this context, having begun in 1992 and affording us the capability to investigate long-term
variability on a global scale from remote observations [1,2]. The continuity and stability of
this record is, therefore, of great importance, and to that end, since the TOPEX/Poseidon
mission [3] launched in August 1992, the Jason series of satellites [4] has maintained
the same reference orbit and ensured a consistency of measurement to the present day.
The growing abundance of sea state observations from other missions, spanning a variety
of platforms and instruments with heterogeneity in spatiotemporal coverage, further
motivates the continuation and maintenance of a consistent long-term record. For example,
the European Space Agency (ESA) Sea State Climate Change Initiative (CCI) employs this
reference record extensively when intercalibrating missions as part of the production of its
multimission sea state Climate Data Records [5].

With the approaching retirement of Jason-3 (J3), ESA’s Sentinel-6 Michael Freilich
(S6-MF) mission [6] launched in 2020 and formally succeeded J3 as the long-term altimetry
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reference mission in April 2022. To ensure smooth operational continuity, S6-MF commis-
sioning involved a unique 12-month S6-MF/J3 Tandem Experiment (S6-JTEX) such that
S6-MF followed J3 in the reference orbit, lagging by approximately 30 s, providing the
opportunity to generate a substantial record of closely collocated altimetry measurements
from these two missions, including sea surface significant wave height (Hs). J3, launched
in 2016, obtains measurements of Hs derived from the onboard Poseidon 3B altimeter in
low-resolution (LR) mode. Carrying a Poseidon 4B altimeter, S6-MF can similarly acquire
measurements of Hs in LR mode. However, the newer instrument is a nadir-pointing dual-
frequency synthetic aperture radar (SAR) altimeter designed to provide high-resolution
(HR) altimetry measurements. As such, measurements of Hs are made concurrently in both
LR and HR modes, providing a valuable opportunity to assess their respective characteris-
tics and, for the first time, to evaluate the performance of the new S6-MF SAR interleaved
mode [7] directly against S6-MF LR and J3.

In spite of the advancement in the altimetry measurement record for sea state, ques-
tions about uncertainty in observations persist. These stem, in part, from a lack of precise,
long-term and quality-controlled direct in situ measurements. While a small number of
in situ records date back many decades, their long-term stability remains questionable [8,9],
and further, their sparsity limits our knowledge to a small number of global locations,
generally far from the coast and in the northern hemisphere. Information about in situ
measurement uncertainty is usually entirely absent, and varies between platforms, owing
to differences in operating agency, measurement payload, local conditions and so on. While
recent efforts have been made to improve quality control information associated with some
important records, such as the U.S. National Data Buoy Centre (NDBC) buoy database [10],
our enormous reliance on buoy data persists nonetheless, even as the satellite record con-
tinues to expand. Dodet et al. [11] conducted an in-depth investigation of uncertainty
through intercomparison of measurements with a global set of moored buoys, drawn from
the Copernicus Marine Service In-situ TAC (https://www.marineinsitu.eu/dashboard, ac-
cessed on 20 April 2024), and model hindcast, using the so-called triple collocation analysis
(TCA) [12]. The results from this study established estimates of random error and biases
for a range of altimeters, with the lowest errors stated to be around 5%.

Such studies are facilitated by at least two important factors, but these also lead to
various limitations in subsequent analyses. Firstly, the analysis of errors is achieved by
exploiting in situ measurements at sites in deep water (>50 m). Areas closer to land (<50 km)
are excluded to avoid the possibly deleterious effect of radar back-scatter, and the difficulty
of analysing over local sea state gradients. Consequently, the analysis of coastal locations,
which are often of great interest and unobserved in any other way, are intentionally pre-
cluded. Secondly, a large number of collocations improves the statistical robustness of
results. Typically many thousands of collocations are required—Dodet et al. worked with
some 250,000 collocated data records from numerous missions and spanning three decades.
However, although researchers may be able to eliminate the spurious performance of
some in situ platforms through their own quality control schemes, ultimately, individual
platforms may exhibit quite different biases and errors (see e.g., [11] Figure 3), leading to
an analysis that necessarily averages over the entire dataset. The exclusion of platforms is
also undesirable since it further reduces sample size and statistical robustness.

The challenge of collocating altimetry observations with buoy (or model) data is
characterised by the need to reconcile infrequent snapshots of Hs, derived from rapid
along-track sampling, with near-continuous time series of Hs at a quasi-stationary position.
At 1 Hz observation frequency, the altimeter covers approximately 7 km of the ocean surface
between successive measurements. On the other hand, data buoys tend to derive integral
parameters by sampling waves for 10 to 30 min. For practicality, a fixed spatiotemporal
match-up criteria for sampling is typically applied to all collocations [13] because the
assessment of sites on a case-by-case basis is onerous. Recently, Campos [14] made updated
recommendations with respect to spatiotemporal sampling criteria. However, inaccuracies
in the match-up, such as representativity error, and site-related problems (e.g., platform
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mal-operation) can lead to increased uncertainty. In order to better address this, Jiang [15]
has proposed a method to explicitly evaluate representativity and environmental and
random errors using only altimeter and in situ observations. Using the dataset of the Sea
State CCI [16], they conclude that, over a large aggregate global sample for deep-water
buoys, different classes of error are approximately equal, and go on to compute altimeter
random error more precisely. J3 was found to have similar error characteristics to the
previous Jason satellites, with an error increasing with Hs, from 0.15 m (1 m Hs),rising
to 0.25 m (7 m Hs). These errors are somewhat smaller than those found by Dodet et al.,
although, questionably, errors in older altimeters, such as TOPEX/Poseidon, were found to
be smaller still.

The aforementioned studies, and others [1,17], limit their analysis to deep-water
moorings in order to control for errors that might otherwise be associated with local coastal
morphology and resulting gradients in sea state variability. A few studies, however, have
attempted to provide analyses of altimeters closer to the coast. Timmermans et al. [18]
assessed the limitations of altimetry information to evaluate extremes near the coast. In that
case, only a small number of sites were considered, and the collocation methodology
did not account for local sea state gradients. Nencioli and Quartly [19] used 17 buoys
situated up to a few kilometers from the coast, operated by the National Network of
Regional Coastal Monitoring Programmes [20], to validate altimetry observations both
from Sentinel-3 SAR and pseudo-LRM modes. They applied a detailed methodology to
evaluate how best to compare altimeter and buoy data, concluding that coastal morphology
was a hugely important factor in the collocation approach. They investigated sea state
gradients in complex coastal regions by computing comparison statistics with buoys from
along-track data. Match-up criteria for the final analysis were further informed by the
use of a high-resolution coastal hindcast to establish regions of representativity for each
buoy. In contrast, using a much larger global set of coastal buoys, Bué et al. [21] computed
agreement statistics with a number of altimeters. They employed a methodology that
closely collocated altimetry with buoy data based on the distance to coast and concluded
that altimeters slightly overestimate Hs in coastal regions.

The use of coastal buoys is desirable in terms of their abundance, compared to their
deep-water counterparts, and also creates new opportunities for coastal research. However,
collocation has to be meticulous, and disagreements between altimeter and buoy data
are often not readily explained by any single factor [19]. In the event of disagreement, no
studies cited here explicitly attempt to identify whether buoys themselves may be providing
erroneous data. Other aspects of disagreement, such as seasonal conditionality, are also
overlooked. Furthermore, high-resolution wave hindcast data that can resolve gradients at
similar scales to altimeters, particularly near the coast, are expensive to produce and are
unlikely to be available generally. And while altimetry data can be exploited directly to
examine sea state gradients [22], to date they have seen little application with respect to
understanding and explaining discrepancies and errors with respect to other data sources.

Finally, the aforementioned studies used data from one or more altimeters that did not
observe the same sea state concurrently. Data from altimeter–altimeter collocation available
in the S6-JTEX tandem phase provides a rare opportunity to compare results from different
instruments but under the same conditions. Previously, the Copernicus Sentinel-3A and B
satellites were placed in a tandem configuration for six months [23]. Using TCA, Sentinel-3
SAR mode altimetry was found to have to the lowest error by a small margin compared to
buoys and ERA5 reanalysis, although the results were limited by few collocations. This
experiment also lacked the collocation of both LR and HR data acquisition.

Given the imperative to understand uncertainties in the long-term altimetry record,
particularly linked to a transition between reference missions, in this work, we use the
collocated S6-MF LR, HR and J3 data from 12 months of the S6-JTEX tandem phase to
evaluate uncertainties in observations of Hs. In the locality of the North East Pacific, we
undertake a detailed examination of the tandem data, principally via collocation with data
from moored buoys located in deep water. After an initial examination of the tandem data
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in Section 3.1, TCA is presented in Section 3.2. We then proceed to evaluate the effect of
the altimeter sampling area on Hs mean bias in Section 3.3. Subsequently, the impact of
individual buoys on analyses of Hs mean bias are examined in Section 3.4, and finally a
detailed spatial analysis at selected buoy sites is conducted in Section 4. The implications of
these results, particularly with respect to their application to coastal regions, are discussed
in Section 5.

2. Data and Methods

In this section, we describe the Hs observations obtained from J3 and S6-MF, and other
sea state datasets used in the paper, together with the statistical tools and methods used to
evaluate the uncertainties across these different datasets.

2.1. Geographic Location and In Situ Wave Observations

The study area is limited to the eastern North Pacific. We primarily exploit data from
a number of moored buoys in this area, considered to be offshore (OS) and in deep water
(>50 m). The nine buoys, eight (WMO 46001, 46002, 46005, 46006, 46066, 46059, 46078,
46085, yellow diamonds) operated by the NOAA National Data Buoy Center (NDBC,
https://www.ndbc.noaa.gov/, accessed on 20 April 2024), together with Coastal Data
Information Program (CDIP, [24], https://cdip.ucsd.edu/, accessed on 20 April 2024)
station 166 (WMO 46246), close to the Ocean Weather Station PAPA [25] (grey), are shown
in Figure 1, and denoted with large diamond-shaped symbols. Numerous buoys located
much closer to the coast are also shown for reference, but, with the exception of WMO
46098 and 46244 (CDIP station 168) operated by the NSF Ocean Observatories Initiative
(https://oceanobservatories.org/, accessed on 20 April 2024), data from these are not
explicitly analysed.

Figure 1. Study region in the eastern North Pacific. Larger diamonds denote offshore (OS) buoys
located in deep water that are used primarily in this study. Numerous buoys nearshore (NS),
marked with smaller diamonds, are shown for reference. Colours indicate the agency or organisation
responsible for buoy operation.

https://www.ndbc.noaa.gov/
https://cdip.ucsd.edu/
https://oceanobservatories.org/
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For buoys operated by NDBC, data are, in fact, available from multiple sources that
are known to be inconsistent for some (mostly historic) data. The most comprehensive
of these, recently produced by the U.S. Army Corps of Engineers (USACE), is an inde-
pendent, quality-controlled and consistent (QCC) measurement archive that captures the
best available NDBC observations with verified metadata [10]. However, one drawback
of its direct use in this study is that data processing of records concluded in August 2021,
which lies approximately half way through the S6-JTEX tandem phase. This dictates the
use of observations directly from NDBC that may be subject to less rigorous quality checks
and that lack metadata. However, substantial impacts upon reliability and stability in
these long-term in situ records tend to result from changes that occur infrequently over
decadal timescales, such as hull replacement, or significant positional drift. Given the
recency and 12-month duration of the tandem phase data examined here, we do not expect
data degradation during this time. Furthermore, data from the NDBC-operated moored
buoys used in this study were compared with the USACE QCC dataset for the tandem
period available, and found to be entirely consistent. The single platform used that is not
maintained by NDBC is CDIP 166 (WMO 46246) near Ocean Station PAPA. No additional
quality records are available at this site.

To better understand long-term operation and data availability, Figure S1 (Supplemen-
tary Material) shows operational coverage of the platforms identified in Figure 1 between
2017 and 2021. OS buoys are shown at the bottom and separated from those closer to the
coast by the horizontal black line. Operating agency is denoted by colour, where the over-
lapping yellow (NDBC) and orange (USACE) bars show the difference in the availability of
data passing quality control as a result of the USACE QCC analysis. In addition, the letters
A, B and C noted against the USACE data indicate measurement payload changes. These
are not considered explicitly in this study but serve to demonstrate the range of variation
across platforms. Many other issues, such as changes in hull type and positional drift, can
be identified using the USACE data but are not considered here.

2.2. Satellite Altimeter Products: Jason-3, Sentinel-6 LR and HR

Altimeter data from all instruments were obtained during the tandem phase, beginning
18 December 2020 until 31 December 2021. (Additional data during early 2022 were not
used.) For J3 only, data from 2017 to 2021 were also employed. The J3 Geophysical
Data Record processing baseline F v1.01 [26] provides along-track 1 Hz observations of
significant wave height processed from the onboard Poseidon-3B altimeter. In this paper,
we use the Ku band-corrected significant wave height swh_ocean, together with quality
control indication from swh_ocean_quality, swh_ocean_rms and swh_ocean_numval. For S6-
MF, along-track “Non-Time Critical” (NTC) 1 Hz observations of significant wave height
for both LR and HR modes are used in the F06 baseline processing from EUMETSAT
(https://data.eumetsat.int, accessed on 20 April 2024). The variable ocean_swh is computed
from the ocean retracker including all instrumental corrections. Quality control indicators
follow the convention of J3, with the same variable names provided. Note that for S6-MF,
only a single retracker (“ocean retracker”) is available.

For all altimeter datasets, data quality control is enforced by selecting 1 Hz data
points that are flagged as good (swh_ocean_quality = 1), or discarding points with values of
swh_ocean_rms above 1 or swh_ocean_numval below 16.

Relationships in Hs variability are established using standard statistical metrics. Tem-
poral separation of observations is limited to 30 min although no adjustments are made,
by moving average for example, to better align observations in time in order to avoid
smoothing out extremes. The distribution of temporal separation over an increasingly large
number of samples tends to a uniform probability distribution.

2.3. Statistical Methods

Standard statistical approaches, including the evaluation of mean bias, linear corre-
lation and linear regression, are employed in order to assess consistency between satel-

https://data.eumetsat.int
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lite and in situ data. Note that root-mean-square deviation (RMSD) differs from root-
mean-square error (RMSE), which is derived from a linear regression model. In addition,
in Sections 3.2 and 3.4, uncertainty distributions on error variance estimates (from TCA),
and Hs mean bias, are estimated using a standard permutation bootstrap method (see
e.g., [27]) with 5000 iterations.

2.4. Triple Collocation Analysis

Triple collocation analysis (TCA) [12,28] is a powerful method of evaluating random
error where at least three independent measurements of the same quantity are available.
Errors associated with each dataset, interpreted as zero mean random error with respect to
the ground truth, are calculated without assuming any particular measurement dataset is
perfect. However, the validity of its use is dependent on satisfying numerous assumptions,
including the independence of the observation errors [12]. Consequently, application to
sea state usually employs triplets of data from moored buoys, a numerical model and
satellite altimetry, where error independence can be reasonably justified. TCA can therefore
be applied to the tandem data; but noting that altimeter–altimeter observation errors are
unlikely to be independent, tandem data must therefore be evaluated independently in
a TCA. Furthermore, linear dependence between the datasets is also required, which is
potentially problematic for the evaluation of S6-MF HR data that are known to exhibit a
nonlinear sea state-dependent bias (see Figure 2).

Figure 2. Significant wave height anomalies between (A) J3 and S6-MF LR, (B) buoy data and
(C,D) S6-MF HR for overpasses at OS buoy locations sampled at 100 km radius. The relationship
between J3 and S6-MF HR can be modelled robustly with linear regression using simple functions of
Hs. Residuals from the fitted model are shown in (D), where outliers have been removed.
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The methodology requires that datasets be calibrated to the ground truth, which for
wave data is assumed to be obtained from moored buoys. We employ the approach of [28],
which differs to that of [12] in regards to data calibration. The latter method may be used
to obtain a linear calibration as part of the analysis, whereas, for application in this study,
we calibrate the data prior to error evaluation using linear regression. Subsequently, errors
are calculated following [28], using Equation (S1) (Supplementary Material). Uncertainty
on the error variance estimates is calculated using a bootstrap method applied to the
collocation dataset (see, e.g., [27]). Triplets of data are composed of altimeter, buoy and
ERA5 reanalysis hourly data [29] on a 0.5-degree grid. ERA5 data are linearly interpolated
in space to match the location of the buoy. Note that ERA5 does not assimilate data from
either J3 or S6-MF. An example of the geographic collocation setup of a data triplet is shown
in Figure S2 (Supplementary Material).

2.5. Analysis of Sea State Gradients at Buoy Locations

In Section 4, sea state gradients at buoy locations are evaluated in the following way.
The 9.9-day repeat of the Jason reference orbit results in approximately 36 repeat passes
per year, and for J3 up to 180 in total, between 2017 and 2021 (inclusive). Under normal
operation, most buoys report a measurement of sea state at least every hour, resulting
in possible temporal collocation within 30 min. Where more than one measurement is
reported per hour, the measurement closest in time to the altimeter passage is used. No
temporal interpolation or smoothing is performed.

At points along J3 tracks that pass within the sampling area of any buoy, the repeated
observations can be paired with those from buoys and used to evaluate summary statistics,
such as mean bias and correlation. An example of the collocation setup is shown in
Figure S2 (Supplementary Material). In order to obtain a spatial gradient, the 1 Hz altimeter
data are “binned” along-track with respect to the closet point to the buoy. In this study,
a bin size of 10 km is used. Given that the ground separation between successive 1 Hz
points is approximately 7 km, up to two 1 Hz points may land in any 10 km bin. For two
points, the average is taken.

3. Data Intercomparison and TCA at Offshore Locations

In this section, we intercompare the various Hs observations. In Section 3.1, using
standard statistical methods, we evaluate agreement between the measurements of Hs from
the tandem datasets and moored buoys. In Section 3.2, TCA is applied to each altimeter
dataset, together with moored buoys and ERA5 reanalysis. Finally, in Sections 3.3 and 3.4,
we focus on Hs mean bias between individual buoys and altimeters to identify how the col-
location approach affects agreement with each of the buoys in the ensemble. Discrepancies
driven by spatial gradients in particular are identified and evaluated through a detailed
analysis in Section 4.

3.1. Tandem Data Intercomparison with In Situ Data

The tandem data are collocated along-track, with a 30 s lag for S6-MF. For intercom-
parisons of wave height over distances of 10–100 km, sea state is not expected to vary
appreciably during the lagged period. Given our primary interest of intercomparison with
in situ data, initially, comparison of the three tandem datasets is limited to the ground track
sections within 100 km of the nine OS buoy sites (see Figure 1). Median values of 1 Hz
observations are computed, resulting in a single observation per overpass.

Firstly, LR data from J3 and S6-MF are compared. The anomaly (J3–S6) is shown in
Figure 2A, together with a number of statistical measures. A total of 870 overpasses took
place, with the data showing near-perfect correlation. A mean bias of ≈0.01 m and an RMSD
of ≈0.06 were observed. Outliers are few in number. For Hs greater than 5 m, observations
become sparse. In contrast, the comparison between J3 and collocated buoy data (Figure 2B)
shows considerable random error and increased mean bias. There also appears to be a
negative bias at higher values of Hs. Disagreement is linked to representativity error,
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local spatial gradients in sea state variability and sampling methodology. These issues are
explored in greater detail in Section 4.

A comparison of J3 and S6-MF HR data is shown in Figure 2C. The effect of the
sea state-dependent bias in the HR data is evident, resulting in a bias in the mean of
−0.24 m. Also, a number of outliers are apparent and likely linked to inconsistent quality
control flagging in the S6-MF data. However, linear regression modelling, based on simple
functions of collocated J3 Hs, can be fitted robustly and is found to explain 99.8% of the
variance. Residuals from such a model are shown in Figure 2D. In this case, residual outliers
exceeding 3 s.d. of the distribution are assumed to be spurious and have been removed.
Agreement between J3 and S6-MF HR is found to be very similar to S6-MF LR. Mean bias is,
in fact, found to be close to zero, with an RMSD of 0.06 m. The linear relationship between
the J3 and S6-MF HR is given by,

ĤsJ3 = a(HsS6)
1
2 + b(HsS6) + c, (1)

where the coefficients a, b and c are found to be −0.5654, 1.0930 and 0.4390, respectively.

3.2. Triple Collocation Analysis

TCA can be applied to the tandem data, but while J3 and S6 offer an abundance of data
closely collocated in space and time, Figure 2 shows that both LR mode data and HR data
are highly correlated (cor = 0.999). It is therefore far-fetched to assume that observation
errors are independent, which violates an important assumption under the TCA method
(see Section 2.4). Each of the three tandem datasets was therefore evaluated independently
(together with buoy data and ERA5) in the TCA. In this case, altimeters and ERA5 were
pre-calibrated using linear regression with respect to the buoy data, assumed to be unbiased
with respect to the ground truth. To remove the nonlinear bias component, S6-MF HR was
calibrated in a similar way to Equation (1), but setting buoy data as the response variable
in place of J3. Using a 100 km radius, 535 collocations are available. The reduction here
with respect to the sample sizes seen in Figure 2 is due to buoy outage. Coefficients of the
regression relationships are shown in Table 1.

Table 1. Calibration coefficients for each dataset, following Equation (1) but where the estimator is
with respect to buoy data (ĤsBuoy). Note, the nonlinear term with coefficient a was included only for
S6-MF HR data.

Coefficients
Dataset a b c

Jason-3 - 1.028 −0.046
Sentinel-6 LR - 1.026 −0.026
Sentinel-6 HR −0.687 1.157 0.4868
ERA5 hourly - 1.104 −0.174

Figure 3 shows the results from TCA using each tandem dataset individually, each
together with the OS buoys shown in Figure 1 and ERA5 hourly (0.5 degree) reanalysis.
Altimeter estimates of Hs appear to be the lowest, although the sampling error (black error
bars show 1 s.d.) is clearly quite large compared to the differences between the datasets, so
the results must be interpreted with caution. For example, differences in errors between the
different tandem datasets appear to be very small, and are clearly not resolved. To illustrate
the impact of data availability, a similar analysis is carried out with the J3 record from 2017
to 2021 (inclusive) and shown in Figure S3 (Supplementary Material). The improvement in
statistical robustness from the larger sample size is apparent (3002 vs. 535), and gives rise to
some changes in the relative error magnitudes. However, noting the size of the uncertainty
estimates on the error variances, even a few thousand samples appears to be insufficient
to completely resolve the differences between the tandem datasets in this case. Note that
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representativity error affects all collocations and may contribute to the higher error values
associated with buoy data and ERA5.

Figure 3. Standard deviations of estimated mean error variance from TCA for each of the tandem
datasets (groups 1, 2 and 3) compared with buoy data and ERA5 reanalysis. Uncertainty in the result
is denoted by black bars showing 1 s.d.

To summarise the TCA results, there are a number of issues that affect the imple-
mentation and validity of this type of analysis; however, we emphasise two aspects in
particular. Firstly, representativity error obscures the true error variance computed with
the TCA, and is linked strongly to the collocation methodology. At deep-water sites, where
collocation is conducted over, e.g., <100 km, this is generally assumed to be small owing to
a high degree of spatial sea state homogeneity in those areas. Secondly, as already noted,
large numbers of collocations are required for statistically robust results, particularly where
there is little difference between datasets, as is the case here for the tandem data. Seen in
Figure 1, even within this particular region, many more buoys are potentially available.
However, these are mostly located much closer to the coast, which demands a more detailed
collocation methodology. Closer to the coast, gradients in sea state variability are likely to
be stronger [19] and consequently have a more dramatic impact on collocation approach.

In fact, we can examine both of these issues in much the same way. We begin, in
Sections 3.3 and 3.4, by evaluating the Hs mean bias between altimeter and buoys to see
how individual locations and buoys contribute to the overall bias evaluation. Later, in
Section 4, local sea state gradients are evaluated using the altimetry data directly to show
how gradients can affect the mean bias under different sampling methodologies.

The results of the TCA and its potential application for the tandem data are discussed
further in Section 5.2.
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3.3. Hs Mean Bias for Tandem Data

In this section, using all OS buoys, we examine Hs mean bias specifically, and eval-
uate how this is affected by changes in radius using a typical systematic isotropic sam-
pling method.

The Hs mean bias between S6-MF LR and the buoys is shown in Figure 4. In this case,
the sampling radius showing the closest agreement is approximately 60 km (≈−0.008 m),
with the bias remaining relatively stable between 35 and 75 km. However, bias with
individual buoys can be seen to be highly variable, with only four buoys contributing to the
analysis for most sampling radii. The blue shading shows that the altimetry data density
diminishes fairly rapidly with decreasing sampling radius. Furthermore, at least two buoys,
46066 and 46059, suffer from data sparsity during the tandem phase (see Figure S1), which
gives rise to large biases that are not clearly shown in the figure. These biases are likely
associated with stronger seasonal waves.

Figure 4. Overall Hs mean bias (thick red line) for S6-MF LR, and for individual buoys (thin orange
lines), as a function of sampling radius. For each buoy, orange triangles show the bias value for
100 km sampling. Total 1 Hz points and total collocations are shown by light blue and dark blue
shading, respectively. For reference, blue dots and the coloured scale on the right side indicate the Hs
mean. The bias at buoy 46059 lies off the scale (negative), and buoy 46246 has been excluded entirely
due to extreme negative bias.

The Hs mean bias for S6-MF HR is shown in Figure 5. The overall behaviour with
decreasing sampling radius is remarkably similar although the bias is clearly larger, and on
average closer to zero. Statistical noise remains high, owing to the small number of samples,
so it is difficult to attribute the difference of 0.01 to 0.02 m between the two S6-MF modes.
Finally, for comparison, a similar analysis is shown in Figures S4 and S5 for the one- and
five-year J3 records, respectively. For the tandem phase, J3 is extremely similar to S6-MF



Remote Sens. 2024, 16, 2395 11 of 22

LR, but showing a slightly increased bias (0.015 m). However, for the five-year record,
stability in the mean is much improved and found to lie between 0.01 and 0.02 m.

Figure 5. Similar to Figure 4 but for S6-MF HR. Hs mean bias is slightly larger, and closer to zero on
average when compared to S6-MF LR.

To conclude, Hs mean bias appears to be fairly stable even up to 75 km sampling
radius. It is clear that bias, calculated using the respective altimeters, shows only small
differences ≈0.01 to 0.02 m, which are considerably smaller than the spread of Hs mean
bias for individual buoys. In fact, some buoys, such 46246, exhibit very large deviations.
We explore the reasons for this in the next section.

3.4. Hs Mean Bias at Each Site

The results in the previous section show, even for deep-water sites offshore, that Hs
mean bias varies quite widely depending on which buoy is used. While this is clearly a
function of different errors, such as representativeness or possibly environmental effects,
bias remains large even as the sampling radius is reduced to recommended scales of around
25 to 50 km [14]. This might be anticipated in coastal areas when sea state gradients can be
strong, but offshore, this is somewhat surprising. Fortunately, it is readily possible to use
the altimeters to interrogate the buoy data for discrepancy.

Away from land interference, satellite altimeters operate in the same way everywhere,
so, compared to a collection of buoys, are not expected to introduce location-specific biases
linked to operational variation. This provides a consistent measurement system against
which buoy data can be compared. For each of the nine OS buoys, the mean bias with
respect to J3 is calculated. To improve statistics beyond the single year of the tandem
phase, this analysis exploits the five-year J3 record from 2017 to 2021. Large absolute
values of mean bias may indicate the degraded operation of a buoy. In order to assess
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statistical significance, the sampling distribution of mean bias is obtained using a bootstrap
sampling approach. The entire sample from all buoys is used to estimate the population,
and data pairs (J3 and buoy) are sampled randomly with replacement. For each buoy,
N data pairs are selected, where N is the number of samples observed at that particular
location, and a mean bias is calculated. This process is repeated 5000 times, yielding an
empirical probability distribution from which the probability of occurrence of the observed
mean bias can be estimated. Initially, a sampling radius of 100 km is used, with results
shown in Figure 6.

Figure 6. Each panel shows the observed mean bias (blue line) and how it compares to the estimated
probability distribution based on random sampling across all sites. The altimeter tracks, their
identifier and their distance of closest approach to the buoy are included in each panel.

The observed mean bias for each buoy is denoted by a blue line. In addition, the num-
ber of altimeter tracks, their identifier and their distance of closest approach to the buoy are
included in each panel. Note that N samples for each location is approximately the number
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of collocated tracks, multiplied by 180 (the number of passes in 5 years). The estimated
probability of random occurrence of the observed mean bias is also shown.

Given the variety of factors that can contribute to mean bias, results must be carefully
interpreted. While the mean bias for most buoys appears small, and consistent with
the overall population estimate, the observed mean bias at 46246 is found to be highly
improbable. Since, in this case, the minimum buoy–altimeter distances are not large (18
and 51 km), the outlying bias suggests some kind of platform-specific issue. Buoys 46066,
46002 and 46005 all exhibit probabilities around a few percent, also suggesting possible
systematic conflict with the altimeter.

However, differences in Hs due to large buoy track separations (up to 89 km in
these cases) can contribute to bias, so we expect the results to change with more spatially
constrained sampling. The same analysis is therefore conducted for altimeter sampling at
50 km radius, the results of which are shown in Figure 7.

Figure 7. Similar to Figure 6 but for 50 km sampling. Buoys 46002 and 46006 are excluded due to lack
of collocations.
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With a smaller sampling radius, fewer observations are made. In fact, 46002 and 46006
are now excluded from the analysis since no J3 tracks lie within 50 km. Furthermore, fewer
samples per buoy in general leads to an increase in the variance in the estimated sampling
distribution. This reduces our ability to resolve discrepancies. However, with altimetry
observations now taken closer to each buoy, we expect to see increased agreement across
the collection of buoys, which is in fact the case. The overall mean bias for all buoys is now
closer to zero. This can be seen from the sampling distribution shown in each panel, which
is shifted by ≈+2 cm. As a result, low bias at some individual buoys, such as 46066 (top left
panel), is now entirely consistent with the overall sampling distribution.

However, in spite of the increase in overall uncertainty, a number of buoys still
appear problematic. Again, the mean bias at 46246 remains highly improbable. This is
consistent with results presented in Section 4.1 that show Hs mean bias is particularly low
everywhere, and largely independent of sampling radius. Furthermore, 46001 still appears
to be statistically anomalous, in fact it increased from ≈0 to 2 cm. More dramatically, 46085
has swung from a negative mean bias of 4 cm to a positive bias of 3 cm. These changes are
perhaps unsurprising because the number of sampled altimeter tracks has been reduced
from four to one. Furthermore, a closer look at the site of 46085 reveals a gradient in mean
bias, running approximately south to north, that is driven largely by the winter (ONDJFM)
conditions. Local spatial gradients are examined in detail in Section 4.

4. Spatial Analysis Using Jason-3

In the open ocean, sea state conditions are generally expected to be homogeneous over
a fairly large area around a buoy site. Sampling at 25 km to 50 km has been found to be
optimal [14]. Considering the results in the previous section, which show disagreement
between altimeters and buoys, for two sites in particular, we apply the approach described
in Section 2.5 to examine some comparison statistics. The visualisation using R [30] is
provided by ggmap [31]. We first consider the results at the location of 46246, which shows
particularly low Hs mean bias, followed by 46085, which showed a bias that changed
from negative to positive with decreasing sampling radius. Again, for improved statistical
robustness, the five-year J3 record is used.

For reference, the along-track bias and correlation from J3 for all OS buoys (similar to
Figure 8) are shown in Figures S6–S14.
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Figure 8. Using 10 km bins to select 1 Hz observations along-track, linear correlation between J3 and
buoy 46246 is shown for the period 2017 to 2021. Reading the figure from left to right, two J3 tracks
(white lines), one ascending and one descending, lie within the sampling radius of 100 km (black
circle). For reference, grey circles show 50 and 25 km. The highest correlation (>0.99) can be seen on
the ascending track closest to the buoy, at approximately 25 km spatial separation.

4.1. Site Analysis at 46246

CDIP 166 (WMO 46246) is a Waverider buoy near Ocean Weather Station “PAPA” [25].
It lies far offshore (49.9N 145.2W) in a water depth exceeding 4000 m. The geographic
orientation of the Jason reference ground tracks (white lines, partially obscured) with respect
to the buoy location (yellow diamond) is shown in Figure 8. The large black circle shows
100 km radius around the buoy within which altimetry data were sampled. For scale reference,
circles with radii of 25 and 50 km are shown in grey colour. Ascending and descending tracks
(passing from left to right) provide information in two quasi-orthogonal directions. Satellite
observations along both directions are not concurrent, so the joint properties of the sea state
along these different paths cannot be determined using these data alone. However, the buoy
generally provides a continuous (hourly) time series from which relationships between the
two tracks can be inferred independently.

The coloured segments along-track shown in Figure 8 are the correlation between the
altimeter measurements and the buoy, calculated in the following way: The position along
each track closest to the buoy is used as a reference to define data bins of length 10 km.
Following bin allocation, the observations form a set of time series (one series per bin) that
can be temporally matched with buoy data to generate standard statistical measures.

Considering Figure 8, altimeter–buoy correlation is shown for all collocations through-
out the 2017 to 2021 J3 record (complete “annual” data). The results appear to be physically
consistent with good agreement in temporal variation between the two sources. Correlation
remains high (>0.98) at most locations along-track with the highest values, approaching
unity, at the smallest spatial separation (≈20 km) between altimeter and buoy, on the
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ascending track. A slight, approximately meridional, gradient is apparent, and statistical
noise appears to reduce the smoothness in bin-to-bin variation. Using isotropic sampling,
the circles suggest that close to 25 km sampling would capture the highest correlation.
However, beyond ≈25 km, the strength of agreement appears to be anisotropic, owing to
the spatial gradient.

Figure 9 shows the same analysis approach but for Hs mean bias. In this case, the al-
timeter measures a lower mean value of Hs than the buoy everywhere (between −0.10 and
−0.15 m), even where the altimeter–buoy separation is within 25 km. Unlike correlation,
a gradient is not apparent. Following the results found in Section 3.4, which showed this Hs
mean bias to be an extreme outlier compared with the complete set of buoys, we conclude
that there is some specific deficiency associated with the operation of buoy 46246.

Figure 9. Similar to Figure 8, but for Hs mean bias.

4.2. Site Analysis at 46085

NDBC buoy 46085 showed an Hs mean bias that changed from negative to positive
with decreasing sampling radius. Similar to Figure 9, the along-track mean bias for seasonal
(AMJJAS, top panel; ONDJFM, bottom panel) analysis is shown in Figure 10. The gradient
observed is strongest during ONDJFM, and suggests that sampling within a radius of
100 km would capture both positive and negative bias. However, as the sampling radius
is reduced, the positive bias becomes more dominant, which is the effect also seen in
Figures 6 and 7, in Section 3.4.

In this case, a spatial sea state gradient is apparent, and clearly affects the choice of
collocation methodology. The points along the altimeter tracks closest to the buoy show a
positive bias. However, a near-zero bias can be seen at distances in excess of 50 km from the
buoy, suggesting that the area of representation for the buoy is anisotropic, with a gradient
running approximately south to north. We conclude here that, even offshore in deep water,
sea state gradients are relevant to collocation, but that even under recommended criteria
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(e.g., [14]) disagreement is often present and not easily explained. The analysis here has
been limited to Hs mean bias, but we speculate that even greater discrepancy would be
found for more extreme sea states.

Figure 10. Similar to Figure 9, seasonal Hs mean bias (AMJJAS, top panel; ONDJFM, bottom panel)
between J3 and buoy 46085 is shown for the period 2017 to 2021. A spatial gradient is readily apparent,
being strongest in the winter months, where the closest altimeter points are biased positive.
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4.3. Summary

Detailed spatial analysis using altimetry data at buoys 46246 and 46085 has shown that
disagreement between altimeters and buoys readily occurs for a range of reasons. In the
case of 46246, no explanation is immediately apparent although it appears to be more likely
due to buoy maloperation rather than spatial representation. Similar disagreements are
readily identified at other buoy sites (see, e.g., Figures S6–S15). For example, the Hs mean
bias at 46066 (Figure S6) shows a seasonal variation in bias—positive during AMJJAS and
negative during ONDJFM—which is not readily explained.

While a comprehensive description of properties and disagreement at all sites is
beyond the scope of this paper, it is clear that a range of error sources are introduced into
larger aggregate analyses, like the TCA in Section 3.2, which affects our ability to obtain
robust results.

5. Discussion
5.1. Consistency and Uncertainty in S6-JTEX Tandem Data

Accuracy and stability in the long-term altimetry record for sea state are critically
important for climate studies. Within this area of study, this analysis demonstrates that
differences in the records for both J3 and S6-MF LR are small, and cannot be easily resolved
through typical intercomparisons with data from buoys and reanalysis. For example,
a mean difference of 0.01 m and an RMSD of 0.06 m between J3 and S6-MF compares with
mean differences of 0.05 to 0.10 m, or more, and 0.29 m, respectively, for some widely
used buoys. While a sea state-dependent bias affects S6-MF HR data, this issue is linked
to instrumental operation and its correction is subject to ongoing technical investigation
and revision. However, the correlation between combinations of all three tandem datasets
is extremely high, which clearly shows that independent random errors are very small.
Uncertainties associated with the collocation methodology, and the buoys themselves,
further limit our ability to resolve these differences.

Overall, consistency between J3 and S6-MF appears to be very high and any discrep-
ancies are well within the uncertainty bounds usually associated with intercomparisons of
diverse sources of reference sea state data. Although the study area is somewhat limited,
any substantial deviation from the results here would be surprising. However, a wider
study, involving coastal locations such as those shown in Figure 1, would provide greater
statistical robustness and facilitate an examination of whether the results are similar for
coastal wave climates.

5.2. Limitations of (Triple) Collocation with Moored Buoys

Studies of sea state variability continue to rely heavily on in situ measurements from
moored buoys, although their reliability can often be questioned [8]. The results of this
study readily show that well-used data can be statistically questionable. While some
programs, such as the Coastal Data Information Program [24] and the National Network of
Regional Coastal Monitoring Programmes [20], operate fairly numerous buoys with a focus
on reliability and quality assurance for long-term climate records, the primary application
is coastal monitoring, usually resulting in buoy placement that is challenging for altimeter
collocation. This is unfortunate, since, for short-term studies focusing on a single or joint
mission, such as the S6-JTEX configuration, convenient collocations are limited to a fairly
small number of deep-water offshore sites. This, in turn, reduces the statistical robustness
of results. However, a number of solutions are available.

The results in this paper show how sea state gradients can be examined in coastal
areas directly from altimeters, without the need for additional observation or (expensive)
coastal numerical modelling. This can be explored further by using concurrent altimeter
datasets, which are readily available. This information can be used to develop a reliable
coastal collocation methodology, potentially providing access to a large number of coastal
buoys, but also has the added benefit of providing valuable information about the coastal
oceans. We strongly advocate for advancement in this area. Furthermore, we have also
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shown how potentially unreliable buoys can be identified, and in this context call for a
more explicit interrogation of buoy data on a per-platform basis. This information is also
valuable to buoy operators.

Finally, given the challenges of collocation, another avenue to exploit altimetry data,
potentially well suited to the tandem phase, where closely collocated altimetry data are
abundant, is to try to avoid the issue of collocation with buoys altogether. The recent
work of Jiang [15] suggests that double collocation methods (as opposed to TCA) can
successfully evaluate uncertainties in altimeters, also providing detailed information about
other error sources, including representativity error. Although they suggest that their
particular approach will not work well with numerical hindcast data in place of buoys, it
may in fact be possible to evaluate absolute errors, similar to those from TCA, by using only
two data sources, where one is a calibrated model. In that case, the abundant collocated
tandem data could be exploited over the entire ocean, hugely augmenting the available
data for analysis.

5.3. Coastal Collocation with Buoys

Few studies address the issue of coastal collocation in detail. Nencioli and Quartly
(2019) [19] provide a detailed examination of wave height data from Sentinel-3 (PLRM and
SAR HR mode) in the southwestern U.K., following an approach similar to that described
in Section 4. However, their methodology benefits from the use of a high-resolution coastal
wave hindcast, which is not always available. Furthermore, they consider the in situ buoys
to be accurate representations of the ground truth, and do not exploit altimetry data to
search for possible conflicts in the way described in Section 3.4. They note, however, that
both the distance from altimeter to buoy and the distance from the coast are not typically
robust approaches for good collocation. Another recent example [21] attempts a global
analysis for coastal collocation by employing a sampling scheme, based loosely on that
of [19], whereby buoy data are compared with altimetry at the same distance to the coast.
However, while this may be reasonable in some areas, in general, variation in surface wave
properties does not follow coastal contours.

A full coastal analysis is beyond the scope of this paper, but to illustrate the point
Figure 11 shows that at 46244, lying within 25 km of the coast, the Hs mean bias actually
varies seasonally, such that during winter months (ONDJFM) its minimum lies further
offshore by approximately 10 to 15 km. We speculate that this is linked to seasonal coastal
processes such as wind sheltering or local currents. Regardless of the cause, clearly the
gradient is varying seasonally over a distance of some kilometres, so an annual analysis
will necessarily average over this gradient, potentially introducing uncertainty. In this case,
the method of [21] would seem to be reasonable in AMJJAS when the sea state is similar at
both the altimeter and buoy at a similar distance to coast, but would introduce bias during
ONDJFM, since the spatial gradient has changed orientation.

Furthermore, as shown in Section 3.4, the buoy itself may be statistically questionable.
Figure S15 shows another example, buoy 46098, whereby the reference track passes directly
over the buoy, and the Hs mean bias can be seen to be positive (≈0.1 m) everywhere, in both
AMJJAS and ONDJFM. This is similar to 46246 (Figure 9), but with the added advantage of
almost zero representativity error, and suggests a platform-specific bias, again possibly due
to degraded operation.

Considering all of these findings, we advocate for the development of a data-informed
approach to determine the best collocation strategy, either offshore or closer to the coast.
Nencioli and Quartly [19] employ a selection criteria for altimeter–buoy collocations based on
threshold values of statistics, such as correlation and RMSE. However, their method is based
on comparisons with numerical model hindcast and we suggest that a similar approach
could be developed from our analysis, using only altimeters and buoys. Alleviating the
need for model data makes the method more regionally accessible. Indeed, sea state
gradients determined directly from observations may serve to better validate models.
Finally, in this context, it is unclear whether 1 Hz data are most suitable, since clearly within
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a few kilometres of the coast the altimeter radar footprint will start to be affected. The
calculation of gradients using 20 Hz altimeter sampling, following [19], would provide
considerably higher spatial resolution.

Figure 11. J3 (2017 to 2021) 1 Hz observations at 46244 binned at 10 km along-track. Mean bias (left
panels) and correlation (right panels) are shown. For reference, grey circles show 50 and 25 km radius.
Notice that the Hs mean bias lies further offshore by at least 10 to 15 km during winter months.
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