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Abstract The biological carbon pump is a key controller of how much carbon is stored within the global
ocean. This pathway is influenced by food web interactions between zooplankton and their prey. In global
biogeochemical models, Holling Type functional responses are frequently used to represent grazing
interactions. How these responses are parameterized greatly influences biomass and subsequent carbon export
estimates. The half‐saturation constant, or k value, is central to the Holling functional response. Empirical
studies show k can vary over three orders of magnitude, however, this variation is poorly represented in global
models. This study derives zooplankton grazing dynamics from remote sensing products of phytoplankton
biomass, resulting in global distribution maps of the grazing parameter k. The impact of these spatially varying k
values on model skill and carbon export flux estimates is then considered. This study finds large spatial variation
in k values across the global ocean, with distinct distributions for micro‐ and mesozooplankton. High half‐
saturation constants, which drive slower grazing, are generally associated with areas of high productivity.
Grazing rate parameterization is found to be critical in reproducing satellite‐derived distributions of small
phytoplankton biomass, highlighting the importance of top‐down drivers for this size class. Spatially varying
grazing dynamics decrease mean total carbon export by >17% compared to globally homogeneous dynamics,
with increases in fecal pellet export and decreases in export from algal aggregates. This study highlights the
importance of grazing dynamics to both community structure and carbon export, with implications for modeling
marine carbon sequestration under future climate scenarios.

1. Introduction
The ocean plays a major role in mitigating the impact of climate change (Hoegh‐Guldberg & Bruno, 2010). It is
thought that over 20% of anthropogenic carbon dioxide emissions are stored within the global ocean (Fried-
lingstein et al., 2022). The biological carbon pump describes a suite of processes which can transport organic
carbon from the surface ocean, to depths of over 1,000 m (Turner, 2015). This pathway is responsible for
approximately 10% of the ocean's carbon inventory (DeVries, 2022). As carbon dioxide emissions are predicted to
increase over the 21st Century, it is essential to fully understand the processes underlying carbon sequestration via
the biological pump and predict how they will change in the future (Siegel et al., 2022).

Particulate organic carbon (POC) is exported out of the surface ocean as the fecal pellets of consumers or as
aggregates of phytoplankton (Siegel et al., 2022). The rate that these forms of particulate carbon are exported via
the biological carbon pump is directly influenced by zooplankton grazing. Grazing rates impact the biomass of
both predator and prey (Rohr et al., 2024) and consequently the production of algal aggregates and fecal pellets.
The production of aggregates and fecal pellets are influenced in opposite directions by grazing pressure. Slower
grazing rates, for example, reduce zooplankton biomass and the number of fecal pellets produced by consumers,
but increase the amount of prey biomass and thus algal aggregate formation. The proportion of total carbon export
attributed to these two pathways varies globally. The contribution of algal aggregates increases in high phyto-
plankton biomass regions (e.g., the high latitudes and upwelling areas) where satiated or slower grazing
zooplankton are not capable of consuming all the phytoplankton biomass (Siegel et al., 2014, 2022). In contrast,
the subtropical gyres are characterized by lower phytoplankton biomass and a community dominated by
microzooplankton grazing rapidly on small phytoplankton. The microzooplankton fecal pellets are readily
consumed by the microbial loop in the euphotic zone due to their smaller size (Calbet & Landry, 2004), resulting
in lower carbon export flux rates for this oceanic region.
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Biogeochemical (BGC) models can estimate particulate carbon using a combination of grazing rates and
mortalities (e.g., Aumont et al. (2015)). In BGC models, grazing dynamics between predator and prey can be
described by a food limited functional response (T. R. Anderson et al., 2010; Gentleman & Neuheimer, 2008;
Vallina et al., 2014). This dictates how ingestion rates change with prey density (Gentleman & Neu-
heimer, 2008). The choice and parameterization of grazing functional responses can impact estimates of carbon
export (T. R. Anderson et al., 2010). Holling Type II or Type III (Holling, 1959) grazing formulations are
commonly used (Kearney et al., 2021; Rohr et al., 2022). These formulations require two parameters: the
maximum grazing rate, g, and the half‐saturation constant, k. The half‐saturation constant represents the
concentration of prey at which half the maximum grazing rate is reached (Gentleman & Neuheimer, 2008).
Together these two parameters describe the shape and magnitude of the functional response. Ecologically, they
represent the time taken to capture and consume prey (Rohr et al., 2022)—characteristics that vary with species
physiology (Hansen et al., 1997; Hirst & Bunker, 2003). Although the functional response is described by both
parameters, population dynamics are most sensitive to change in the k value (Rohr et al., 2022), which is the
focus of this study.

Laboratory measurements of k values (Hansen et al., 1997; Hirst & Bunker, 2003) show a large range in k values
across all species studied, spanning 0.96–6,000 mgC m3. Laboratory (Hansen et al., 1997), ecological (Barton
et al., 2013) and modeling (Rohr et al., 2024) studies also point toward strong spatial variability in k values.
However, even the most complex BGC models have fixed, globally homogenous, k values. These models can
simulate spatial variability in grazing dynamics through the competition of multiple plankton functional types, but
this likely does not capture the full physiological variability. Some models use mechanisms such as multi‐prey
responses (e.g., T. R. Anderson et al., 2010, 2015) and prey preferences (e.g., Aumont et al., 2015) to further
emulate this variability, but these mechanisms are limited and there is little observational data to confirm what
emergent grazing dynamics should be (Rohr et al., 2024). Furthermore, there is uncertainty around the impact of
zooplankton grazing on carbon flux, which contributes to the large variability in global estimates of carbon export
(Boyd, 2015; Rohr et al., 2024; Siegel et al., 2014).

We address these gaps by using an inverse modeling approach to estimate spatial variation in zooplankton k
values. We find large variations with notable implications for carbon export. We first describe our approach, then
our findings and then the implications of these for our overall understanding of zooplankton and carbon export.

2. Methodology
2.1. Overview

This study builds on the work of Siegel et al. (2014) which used satellite‐derived estimates of Net Primary
Productivity (NPP) and phytoplankton biomass to predict global grazing rates and subsequent estimates of carbon
export. The work by Siegel et al. (2014) was extended by Archibald et al. (2019) to include diel vertical mi-
grations (DVM) by zooplankton, allowing particulate organic matter to be exported via both passive sinking and
the vertical movements of organisms. We modified the model by Archibald et al. (2019) to include explicit
grazing and zooplankton biomass pools.

Here, we use a 0‐D BGC box model to infer the optimal k parameters for both microzooplankton and meso-
zooplankton, within each grid cell of a 1 × 1 degree global domain. We force this model with observed bottom‐up
controls (phytoplankton cell division rates) but allow it to prognostically compute NPP, phytoplankton biomass,
zooplankton biomass and carbon export. Phytoplankton and zooplankton biomass pools are divided into two
functional groups each (2P2Z). We then run a suite of simulations to determine what combination of k values is
required to best match satellite derived phytoplankton biomass and thus infer the spatial distribution of grazing
dynamics. Finally, to understand how more realistic zooplankton behavioral diversity influences marine carbon
cycling, we compare global prognostic ecosystem biomass and carbon export from three model scenarios: a run
using non‐optimized, globally homogenous k values derived from literature (Baseline scenario); a run using
optimized, globally homogenous k values (Global‐k scenario), and a run using optimized, locally tuned k values
(Local‐k scenario). The model inputs (Section 2.2), the ecosystem sub‐model (Section 2.3), the approach to
determine optimized k values (Section 2.4), the carbon export sub‐model (Section 2.5) and results analysis
(Section 2.6) are discussed below.
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2.2. Input Data

The model is forced by satellite‐derived phytoplankton community mean growth rates, μ. The use of μ ensures
coupling between NPP and grazing dynamics. Without this coupling, the top‐down influence of grazing dynamics
would be removed. This would make overgrazing of phytoplankton an impossibility, as there would always be
NPP regardless of what the free‐running biomass population is. μ was selected as an input over the explicit
representation of nutrients to ensure observational forcing remained.

In the Carbon‐based Productivity Model (CbPMv2) (Westberry et al., 2008), μ is computed from satellite derived
chlorophyll‐to‐carbon ratios (Behrenfeld et al., 2005). NPP can then be derived using the relationship between μ
and satellite‐derived estimates of phytoplankton carbon biomass (Pobs), where

NPP = μPobs (1)

In CbPMv2, μ is computed for the bulk phytoplankton population; however, in this study we needed to differ-
entiate the growth rates of two phytoplankton classes, to force our 2P2Z model. The distribution of particle
backscatter can partition phytoplankton carbon biomass across size classes, but not their respective growth rates.
To estimate the partitioning of growth rates into two size classes (μi) we assume a fixed allometric ratio, then
determine the values required to produce bulk NPP from the two biomass pools. The following three equations are
satisfied at each time step and location:

Pobs = PSobs + PLobs (2)

NPP = μPS PSobs + μPL PLobs (3)

μPL
μPS

= (
MPL

MPS
)

− 0.25

(4)

Both NPP and Pobs are derived from monthly climatologies presented in detail in Siegel et al. (2014). These
climatologies are then interpolated to produce daily data. NPP values come from the Carbon‐based Productivity
Model (CbPMv2) (Westberry et al., 2008), which uses observations made by the Sea‐viewing Wide‐Field‐of‐
view (SeaWiFS) satellite ocean color mission between 1997 and 2008 (McClain, 2009; Siegel et al., 2013,
2014). Phytoplankton biomass values (Pobs) are estimated using particulate backscattering coefficient data
(Behrenfeld et al., 2005; Kostadinov et al., 2010; Siegel et al., 2013; Westberry et al., 2008). Pobs is partitioned
into two size classes (PS and PL) using the slope of the particle size spectrum (Kostadinov et al., 2010; Siegel
et al., 2014). Mi represents body size for the two size classes which has an allometric scaling constant of − 0.25
applied in accordance with metabolic theory (e.g., West et al., 1997). This ensures the growth rate of small
phytoplankton is always faster than microphytoplankton. For Mi, the same lower size limit implemented to
partition Pobs is used, that is, 20 and 0.5 μm for PL and PS respectively (Kostadinov et al., 2010; Siegel
et al., 2014). A maximum value for μi is set at 2 d

− 1 to correspond with the CbPMv2 data (Westberry et al., 2008).
Observed minimum growth rates are approximately 0.1 d− 1, however the CbPMv2model extrapolates this toward
0 (Westberry et al., 2008). In our study we use a minimum growth rate within the range of these two values
(0.01 d− 1).

In the CbPMv2, all properties are assumed to be constant and distributed evenly within the mixed layer
(Westberry et al., 2008). Within this study, phytoplankton biomass is assumed to be homogeneous across the
mixed layer and negligible below the mixed layer depth as in Siegel et al. (2014). Integrated NPP is assumed
constant across the euphotic zone as per Siegel et al. (2014). To enable the calculation of μ, depth integrated NPP
is divided by the greater of euphotic zone depth (Zeu) or mixed layer depth (Zml), before dividing by volumetric
phytoplankton biomass concentration. Depth data is interpolated from monthly climatologies also presented in
detail in Siegel et al. (2014).

2.3. Ecosystem Sub‐Model

A simple Phytoplankton‐Zooplankton (2P2Z) model is constructed (Table 1). To run the ecosystem model, the
global ocean is divided into a 1° latitude/longitude grid. The model is only run in grid cells with remote sensing
products for a minimum of 10 out of 12 months. This limits the model to roughly between 50 and − 50°N,
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Table 1
Model Variables, Parameters, and Forcing Fields

Parameters

Symbol Description Value Unit Refs.

dt Model time step 1 day –

k0 Microzooplankton half‐saturation constant – mgC m− 3 –

k1 Mesozooplankton half‐saturation constant – mgC m− 3 –

bZS Microzooplankton gross growth efficiency 0.3 – Aumont et al. (2015)

bZL Mesozooplankton gross growth efficiency 0.5 – Archibald et al. (2019) and T. R. Anderson et al. (2010)

gZS Maximum grazing rate of microzooplankton 2 d− 1 Rohr et al. (2022)

gZL Maximum grazing rate of mesozooplankton 2 d− 1 Rohr et al. (2022)

mP Phytoplankton mortality 0.1 d− 1 Archibald et al. (2019) and Siegel et al. (2014)

mZS Natural mortality microzooplankton 0.05 d− 1 Aumont et al. (2015) and Walker et al. (2019)

mZL Natural mortality mesozooplankton 0.005 d− 1 Aumont et al. (2015)

PS0/PL0 Phytoplankton mortality refuge 0.2 mgC m− 3 Aumont et al. (2015)

ZS0/ZL0 Zooplankton mortality refuge 1 mgC m− 3 Archibald et al. (2019) and Stock and Dunne (2010)

pZL Quadratic mortality mesozooplankton 0.02 m3mgC− 1d− 1 Aumont et al. (2015) and T. R. Anderson et al. (2015)

bact Bacterial reminerlisation rate 0.025 d− 1 Aumont et al. (2015)

aggi Phytoplankton aggregation term 0.01/0.03 m3mgC− 1d− 1 Stock et al. (2020) and Bisson et al. (2020)

pdvm Proportion of mesozooplankton that migrate 0.5 – Archibald et al. (2019)

mfec Fraction of grazing going into fecal flux 0.3 – Archibald et al. (2019) and Siegel et al. (2014)

fmet Fraction of absorbed carbon metabolized 0.5 – Archibald et al. (2019) and Steinberg and Landry (2016)

Forcing fields

Symbol Description Unit Refs.

Zml Mixed layer depth m Archibald et al. (2019) and Siegel et al. (2014)

Zeu Depth of euphotic layer m Archibald et al. (2019) and Siegel et al. (2014)

Μ Phytoplankton growth rate d− 1 Behrenfeld et al. (2005), Westberry et al. (2008), and Kostadinov et al. (2010)

Prognostic variables

Symbol Description Unit

NPP Net Primary Productivity mgC m− 2d− 1

PS Small phytoplankton biomass mgC m− 3

PL Microphytoplankton biomass mgC m− 3

ZS Microzooplankton biomass mgC m− 3

ZL Mesozooplankton biomass mgC m− 3

GZS Microzooplankton grazing rate on Small phytoplankton mgC m− 3d− 1

GZL,PL Mesozooplankton grazing rate on Microphytoplankton mgC m− 3d− 1

GZL,ZS Mesozooplankton grazing rate on Microzooplankton mgC m− 3d− 1

GZL Mesozooplankton combined grazing rate mgC m− 3d− 1

Feu Total POC flux out of the euphotic zone mgC m− 2d− 1

Falg Flux of algal aggregates out of the euphotic zone mgC m− 2d− 1

Ffec Flux of fecal pellets out of the euphotic zone mgC m− 2d− 1

Jdvm DVM‐mediated export flux mgC m− 2d− 1

Jmet Respired DIC produced in twilight zone by migrating ZL mgC m− 2d− 1

Jfec Fecal pellets produced in twilight zone by migrating ZL mgC m− 2d− 1

ER Export Ratio –
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covering approximately 2.93 × 108 km2 of the global ocean or just over 80% of its total surface area. This avoids
estimation bias in polar regions due to seasonal ice and cloud cover. The model is run with a daily time step and
spun up until quasi‐equilibrium is reached. Results are taken from the last year of the model run.

The rate of change, per day, in biomass within the mixed layer (Zml) for each size class is given by

dPS
dt

= μPSPS − GZS − aggPSPS2 − mP (PS − PS0) −
PS
Zml

dzml
dt

H(
dzml
dt
) (5)

dPL
dt

= μPLPL − GZL,PL − aggPLPL2 − mP (PL − PL0) −
PL
Zml

dzml
dt

H(
dzml
dt
) (6)

dZS
dt

= bZSGZS − mZS (ZS − ZS0) − GZL,ZS (7)

dZL
dt

= bZL (GZL,PL + GZL,ZS) − mZL (ZL − ZL0) − pZLZL2 (8)

where PS, PL, ZS, and ZL represent biomass of small phytoplankton (0.5–20 μm, pico‐ and nanophytoplankton),
microphytoplankton (20–200 μm), microzooplankton (20–200 μm) and mesozooplankton (>200 μm) respec-
tively (Calbet & Calbet, 2008; Moriarty & O’Brien, 2013; Sieburth et al., 1978). The model does not resolve
vertical or horizontal movement. Therefore, biomass represents the mean concentration within the mixed layer,
with the assumption of even distribution. Natural mortality (mi) terms have a lower threshold applied of 0.2 for
phytoplankton (Aumont et al., 2015) and 1.0 for zooplankton (Archibald et al., 2019) for model stability. Algal
aggregates are represented as quadratic mortality terms (aggi) of plankton biomass (Aumont et al., 2015). This
enables changes in biomass to be reflected in algal export. The influence of shear on aggregate formation
(Aumont et al., 2015) is not represented due to the lack of vertical movement and other physical dynamics within
the model. The last term in Equations 5 and 6 describes the dilution of biomass as the depth of the mixed layer
increases (Archibald et al., 2019; Siegel et al., 2014). H= 1 if the change in mixed layer depth is less than or equal
to zero, or H= 0 otherwise (Archibald et al., 2019; Evans & Parslow, 1985; Siegel et al., 2014). The sub‐model is
closed by a quadratic mortality term (pZL) for mesozooplankton, which represents grazing by higher trophic
levels.

Zooplankton growth is the product of gross growth efficiency (bi) and grazing (T. R. Anderson et al., 2015).
Grazing rates (Gi) are based on Holling Type III (Holling, 1959) functional responses, where

GZS =
gZS PS2

k20 + PS2
ZS (9)

GZL,PL =
gZL PL2

k21 + PL2
ZL (10)

GZL,ZS =
gZL ZS2

k21 + ZS2
ZL (11)

Table 1
Continued

Prognostic variables

Symbol Description Unit

DER DVM Export Ratio –

DRR Respiration Ratio –

RD Weighted depth of respiration –

ffec Fraction of fecal pellets in the euphotic zone –

pmet Fraction of metabolism in the twilight zone –
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k0 and k1 are half‐saturation constants and gi are maximum grazing rates. There is no prey preference (Aumont
et al., 2015) for mesozooplankton grazing and no multiple prey feeding response (T. R. Anderson et al., 2010,
2015) as this fundamentally changes the relationship between k and the prey distribution (T. R. Anderson
et al., 2015; Gentleman et al., 2003; Rohr et al., 2022). The grazing terms allow for two‐way coupling between
zooplankton and their prey, so that grazing rates are influenced by both predator and prey biomass. A Type III
functional response is chosen due to increased stability, its suitability to coarse resolution global models and
improved reproduction of seasonal population dynamics compared to Type II (Rohr et al., 2022, 2024).

2.4. Optimization of Grazing Dynamics

This study aims to assess the impact of locally tuned grazing dynamics on outputs from a coupled ecosystem‐
carbon export model. To do this three scenarios are considered (Section 2.1). The same ecosystem‐carbon
export model and bottom‐up forcing is used for all three scenarios and all parameters except k are kept con-
stant. For the Baseline and Global‐k scenarios, the same pair of k values is used for every grid cell location (i.e.,
they are globally homogeneous). For the Baseline scenario, the median k values from 40models reviewed by Rohr
et al. (2022) are used. These are 40 and 80 mgC m− 3 for microzooplankton and mesozooplankton, respectively.
For the Global‐k scenario, a single pair of globally optimized values are used. For the Local‐k scenario, k values
are locally tuned, at every grid cell location. The optimization process for both the globally optimized pair, and
locally tuned values is detailed below.

For each model grid point, the optimum half‐saturation constant for both microzooplankton (k0) and meso-
zooplankton (k1) grazing is assessed using an inverse modeling approach. Multiple simulations of the model are
run, each with a different set of k0 and k1 values. The output of the model is then compared to the climatological
seasonal cycle of phytoplankton biomass (Behrenfeld et al., 2005; Siegel et al., 2013, 2014; Westberry
et al., 2008). The k values that most closely reproduce these satellite‐derived biomass values are then selected as
the “optimum” k values. To find the optimum values, a cost function is used. Several different cost functions were
analyzed which produced consistent results (Figures S1 and S2 in Supporting Information S1). The cost function
presented here (Equation 12) is the sum of the normalized absolute average error (Stow et al., 2009) for both small
phytoplankton and microphytoplankton, computed across the full seasonal cycle. This represents the degree of
agreement in the size and alignment of the seasonal cycle between model and observations. Here, the term
“observations” refers to the satellite‐derived phytoplankton biomass. A value of zero indicates a perfect match
and alignment with observations.

Cost = nAAEPS + nAAEPL (12)

where,

nAAEP(i) =
AAEP(i)

σo
(13)

AAEP(i) =∑
|P(i)obs − P(i)mod|

n
(14)

σo is the standard deviation of the observed data, which represents observed temporal variance in the seasonal
cycle; n is the total number of observations across the climatological year; i is the size class and P(i)obs and P(i)mod
are observation and model values of phytoplankton respectively. The absolute average error is normalized by the
standard deviation of the observed climatology, to enable comparisons of relative errors in high and low pro-
ductivity regions. Due to the uncertainty in zooplankton observational estimates (Strömberg et al., 2009) a
zooplankton term was not included in the cost function.

To maximize computational efficiency, two routines of k optimization are carried out. The first coarse resolution
routine uses 15 log spaced values of k0 and k1 (mgC m

− 3): 16, 20, 26, 33, 43, 54, 70, 89, 114, 146, 187, 239, 306,
392 and 501. These are within the range of empirical and model estimates presented in Rohr et al. (2022). The
model is run for each possible pair of half‐saturation constants, at every grid cell (i.e., a total of 225 (15 × 15) runs
at each grid cell). The pair of half‐saturation constants that produces the lowest cost are then selected as the
optimal values at that location. The result is a distribution of optimal k values across the global ocean.
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To improve the resolution of our optimization, a second optimization routine is then carried out. At each location,
the sampling input of k values is calculated by first taking the optimum k values from the coarse optimization run.
Next, an upper and lower limit for input values is calculated by±10% in each direction from the optimized values.
Numbers are rounded to the nearest integer. The model is then run for every pairing of integers between these two
limits at that location. The cost function is then reevaluated at each grid cell location and a new optimized pairing
of k values selected. For example, if the coarse optimization identifies k0 = 20 and k1 = 26 as optimal, we then
rerun the simulation for all integer values (and pairings) of 18 ≤ k0 < = 22 and 23 ≤ k1 < = 29.

For the Global‐k scenario, the globally homogenous pair of k values are estimated by globally integrating the cost
function for each k pairing. The pair that produce the lowest cost value from this global integration are selected for
the Global‐k scenario. The results from the coarse resolution optimization routine are used for this integration. For
the Local‐k scenario, the optimum pair of k values estimated for every grid cell (from the second optimization
routine) are used.

2.5. Carbon Export Sub‐Model

The Archibald et al. (2019) carbon export model is used to examine the impact of grazing parametrization in this
study. The carbon export model consists of two modules: the euphotic and twilight zone modules. In this study,
the twilight zone component has remained unchanged from its description in Archibald et al. (2019). However, a
few changes have been made to the euphotic zone module to reflect the use of fully coupled grazing terms and the
use of μ as an input instead of NPP. These changes are described below.

Carbon export out of the euphotic zone (Total Export Flux) is the sum of the passive sinking flux (Feu) and DVM‐
mediated flux (Jdvm).

Total Export Flux = Feu + Jdvm (15)

Feu = Falg + Ffec (16)

Feu is the sum of microphytoplankton algal aggregates (Falg) and fecal pellets produced by mesozooplankton
grazing (Ffec). Sinking algal aggregates from the euphotic layer (Falg) are estimated as

Falg = Zeu (1 − bact) (aggZL PL2 + 0.5 mP PL) (17)

where the microphytoplankton aggregation term and 50 % of microphytoplankton linear mortality contributes to
sinking aggregates (Aumont et al., 2015). As in Aumont et al. (2015), the remaining 50 % of the linear mortality
term is classed as small POC, which is retained in the euphotic zone. bact is the proportion lost to bacterial
remineralization (Aumont et al., 2015). Small phytoplankton do not contribute to algal export in the model, as its
smaller cell size means aggregates are assumed to contribute to the microbial web in the euphotic zone, rather than
sinking export flux (Archibald et al., 2019; Calbet & Landry, 2004).

Euphotic zone sinking fecal pellets (Ffec) and fecal pellets produced in the twilight (Jfec) are estimated as

Ffec = (pdvm ffec + (1 − pdvm)) (mfec GZL) Zeu (18)

Jfec = pdvm (1 − ffec) (mfec GZL) Zeu (19)

where GZL is the combined grazing rate for mesozooplankton on both prey types (GZL,PL + GZL,ZS), pdvm is the
proportion of mesozooplankton that participate in DVM, mfec is the fraction of grazed carbon expelled as fecal
pellets and ffec is the proportion of fecal pellets expelled in the euphotic zone. DVM is treated as a single event and
POC is a single pool of carbon that decays exponentially (Archibald et al., 2019). All carbon export parameter
values (Table 1) were kept consistent with those detailed in Archibald et al. (2019). In this study, micro-
zooplankton do not vertically migrate and their fecal pellets do not contribute to export flux as their smaller pellet
size means they are assumed to be consumed by the microbial loop in the euphotic zone (Archibald et al., 2019;
Calbet & Landry, 2004).
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Finally, the production of respired dissolved inorganic carbon (DIC) in the
twilight zone (Jmet) is estimated as

Jmet = pmet pdvm fmet (GZL − mfec GZL) Zeu (20)

where pmet is the fraction of total metabolism that occurs in the twilight zone
and fmet is the fraction of absorbed carbon that is metabolized. The contri-
bution of both Jmet and Jfec to DVM‐mediated flux (Jdvm) is then described by

Jdvm = Jmet + Jfec (21)

2.6. Analysis

To analyze the output data from the optimization of grazing dynamics and the
ecosystem‐carbon export model, several additional metrics are considered.

2.6.1. Grazing Dynamics

The biomass‐weighted k value (BW‐k) combines both k0 and k1 values. It
considers the optimal k value for each zooplankton class and their relative

abundance at every grid cell location (BW‐k= (k0 ZS+ k1 ZL)/Z). This reflects the emergent grazing dynamics of
the entire zooplankton community. The half‐saturation constant and maximum grazing rate can be related to the
prey capture efficiency, ɛ. The prey capture efficiency is calculated by dividing the maximum grazing rate (See
Table 2) by the half‐saturation constant for each grid cell (Rohr et al., 2022) (ɛ = g/k2). To understand the
relationship between k and both NPP and prey biomass, a linear regression is fitted to log‐normalized data.

2.6.2. Carbon Export

The export ratio represents the proportion of NPP exported as carbon from the euphotic zone. DVM export ratio
(DER) is DVM‐mediated export as a fraction of total carbon exported from the euphotic zone. The DVM
respiration ratio (DRR) is the amount of respiration carried out by migrating zooplankton as a fraction of the
integrated respiration from the twilight zone (Zeu—1,000 m). The weighted depth of respiration (RD) is the
increase in depth of DIC production and oxygen utilization, as a result of zooplankton vertical migrations. Carbon
export metrics are described in further detail in Archibald et al. (2019).

3. Results
3.1. Distribution of Locally Tuned Grazing Dynamics

Local‐tuning of k values results in high variability in inferred grazing dynamics (Figure 1 and Figures S1–S4 in
Supporting Information S1). k values span a range of 537 mgC m− 3 (Table 2). High k values are generally
associated with highly productive regions (Figure 1c). Lower values are generally associated with the less pro-
ductive subtropical oligotrophic gyres, with the exception of the eastern South Pacific, where maximum k values
(551 mgC m− 3) are estimated for microzooplankton. Maximum k values are also found in the high latitudes of the
southern hemisphere.

Zooplankton functional groups are characterized by different grazing dynamics. Microzooplankton k values
estimated from local optimization are, on average, lower than mesozooplankton (median k values are 18 and 27
mgC m− 3 respectively), suggesting faster grazing for the smaller size class (Table 2 and Table S1 in Supporting
Information S1). In addition, the globally optimized pair of k values (estimated for the Global‐k scenario ‐ see
Section 2.4) are 33 mgCm− 3 and 392 mgCm− 3 for micro‐ and mesozooplankton respectively. Microzooplankton
are generally characterized by more efficient grazing than mesozooplankton, with the exception of the oligo-
trophic gyres (Figure S5 in Supporting Information S1).

The distribution of grazing dynamics also differs between zooplankton size classes. This is particularly evident in
equatorial upwelling regions, where microzooplankton and mesozooplankton communities are characterized by
low and high k values respectively (Figures 1a and 1b). These differences result in divergent relationships be-
tween k values, NPP and prey biomass for the two size classes. High k0 values are associated with low NPP and

Table 2
Locally Tuned Microzooplankton (k0) and Mesozooplankton (k1)
Half‐Saturation Constants Estimated Using the Cost Function

Local‐k k0 k1

Median 18 27

Geometric mean 27 38

Biomass‐weighted mean 31 49

Range 14–551 14–551

IQR 17(14–31) 38(14–52)

Global‐k 33 392

Baseline 40 80

Note.Half‐saturation constant values are in mgC m− 3. Global‐k and Baseline
scenario k values are included below for comparison (NB: average statistics
cannot be provided for these two scenarios due to the same value being used
for every grid cell in the model domain).
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prey biomass, whilst high k1 values are associated with high NPP and prey biomass (Figure S6 in Supporting
Information S1).

3.2. Impact of Locally Tuned Grazing Dynamics on Model Skill

Locally tuned k values improve model skill in comparison to globally homogenous k values (Figure 2). Mean cost
(Equation 12) is reduced by 43% in the Local‐k scenario, compared to the Global‐k scenario. Therefore, the use of
locally tuned k values improves the model's ability to reproduce satellite‐derived phytoplankton biomass
(Figure 3). In comparison, the use of optimized globally homogenous k values (Global‐k) has a limited ability
(− 14%) in reducing model cost from the Baseline scenario. Reduction in cost values due to local‐tuning is most
evident in the tropics and subtropics, particularly productive upwelling regions (Figure 2). Despite improvements,

Figure 1. Locally tuned k values. (a) Microzooplankton half‐saturation constants (k0) estimated using the cost function
(Equation 12). (b) Mesozooplankton half‐saturation constants (k1) estimated using the cost function. k values are in mgC
m− 3. (c) Biomass‐weighted k values (BW‐k) which considers the optimal k value for each zooplankton size class and their
relative abundance. BW‐k reflects the overall grazing dynamics of the entire zooplankton community. The maximum and
minimum values on the color bar represent the maximum/minimum k values sampled in the optimization.
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microphytoplankton biomass estimates are the greatest source of error (78%) in the Local‐k cost function (Figures
S7 and S8; Table S3 in Supporting Information S1).

3.3. Ecosystem Impact

The reproduction of the remotely sensed small phytoplankton biomass distribution is greatly improved with the
implementation of locally tuned k values (Figures 3 and 4a–4d). The use of optimized globally homogenous k
values (Global‐k) improves the reproduction of observed small phytoplankton but shows little of the regional
variability found in observations (Figures 4a and 4c). This regional variability is only reproduced when locally
tuned grazing dynamics are implemented (Figure 4d) highlighting the importance of top‐down drivers for this size
class. Without optimized grazing dynamics, a large overestimation of small phytoplankton biomass in equatorial
upwelling occurs (Figures 3a and 4b). The Local‐k model does a good job in estimating global small phyto-
plankton biomass with an annual mean (±S.D.) of 9.40± 3 mgC m− 3, in comparison to 11.89± 6 mgC m− 3 from
satellite‐derived estimates (Siegel et al., 2014) (Figure 4a). NPP is 52 and 43 Gt C yr− 1 for the Local‐k and Global‐
k runs respectively, compared to 87 Gt C yr− 1 for the non‐optimized baseline run (Figure S9 in Supporting
Information S1).

Figure 2. Cost values representing the difference between observations of phytoplankton biomass and the model
phytoplankton biomass (Equation 12). (a) Cost values from the Baseline model scenario (non‐optimized k values).
(b) Percentage change in cost values in the Global‐k scenario compared to the Baseline scenario. (c) Percentage change in
cost values in the Local‐k scenario compared to the Baseline.
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Microphytoplankton observational distributions are reproduced well in all three model versions showing little
difference when locally tuned grazing dynamics are applied (Figures 4e–4h), suggesting the distribution for this
functional group is determined primarily by realistic bottom‐up drivers. However, all three models overestimate
biomass in equatorial upwelling areas (Figure 3). In the Local‐k model, microphytoplankton has a global mean
(±S.D.) of 3.05 ± 3 mgC m− 3, compared to 2.62 ± 5 mgC m− 3, from satellite‐derived estimates (Siegel
et al., 2014) (Figure 4e). In the subtropical oligotrophic gyres, microphytoplankton biomass estimates appear to
closely emulate observations, despite higher cost values in this region. This is due to the low biomass in the
region, which results in small changes producing large error values with normalization.

Figure 3. Absolute bias in modeled small phytoplankton (PS) and microphytoplankton (PL) biomass in comparison to
satellite derived biomass (P(i)mod ‐ P(i)obs). Three model scenarios are shown: Baseline (non‐optimized k values), Global‐k
(globally optimized k value) and Local‐k (locally tuned k values). Observational phytoplankton biomass values were
calculated as per Siegel et al. (2014), using particulate backscattering coefficient data (Behrenfeld et al., 2005; Kostadinov
et al., 2010; Siegel et al., 2013; Westberry et al., 2008).
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Local‐tuning of k values improves zooplankton biomass estimates in comparison to observations (Figures 4i–4l
and Figure S10 in Supporting Information S1). When only optimized homogenous global values are used, global
mesozooplankton biomass is underestimated, with a mean (±S.D.) of 1.72± 0.81 mgCm− 3 compared to 5.52± 9
mgCm− 3 from Strömberg et al. (2009) (Figure 4i). This is as a result of the very high k value for mesozooplankton
(392 mgCm− 3), resulting in very low grazing and therefore biomass. In contrast, mean (±S.D.) mesozooplankton
biomass from the Local‐k model is 5.07 ± 3 mgC m− 3. All model versions underestimate mesozooplankton
biomass in the higher latitudes of the northern hemisphere. Mean microzooplankton biomass estimates are greatly
reduced with the implementation of locally tuned grazing dynamics, from 29.09 ± 23 mgC m− 3 in the Global‐k
run to 8.85 ± 11 mgC m− 3 in the Local‐k run (Table 3).

3.4. Impact on Carbon Export

Local‐tuning of k values decreases mean total carbon export by >17% (Table 3). The magnitude of change de-
pends on the homogenous k values used for comparison (− 35.64% in comparison to the Baseline and − 17.07% in

Figure 4. Small phytoplankton (PS), microphytoplankton (PL), microzooplankton (ZS) and mesozooplankton (ZL) biomass distributions estimated by the three model
scenarios: Baseline, Global‐k and Local‐k. Satellite‐derived biomass distributions are included for reference (not available for ZS). a & e are calculated as per Siegel
et al. (2014), using particulate backscattering coefficient data (Behrenfeld et al., 2005; Kostadinov et al., 2010; Siegel et al., 2013; Westberry et al., 2008). Satellite‐
derived mesozooplankton biomass (l) is from Strömberg et al. (2009).
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comparison to the Global‐k scenario). Export values are generally high, with a total export flux of 7.19 Pg C yr− 1

for the Local‐k scenario and 8.16 Pg C yr− 1 and 10.94 Pg C yr− 1 for the Global‐k and Baseline scenarios
respectively.

The routing of carbon is impacted by the implementation of locally tuned grazing dynamics (Figure 5). In the
Local‐k scenario, more carbon is exported as fecal pellets and less as algal aggregates, compared to the Global‐k
scenario (Table 3). When k values are locally tuned, carbon exported from pellets and aggregates are more similar
in magnitude (annual mean of 36.91 and 20.52 mgC m− 2d− 1 respectively) compared to model runs with ho-
mogenous k values. In contrast, in both the Baseline and Global‐kmodel runs carbon export is dominated by algal
aggregates. Local‐tuning of k values also results in increased export (>21%) via vertically migrating zooplankton
compared to the Global‐k model run (Figure 5, Table 3).

The differences in Global‐k and Local‐k estimates from the Baseline are, in certain regions, on the scale of the
values seen in the Baseline scenario. This is evident in the large standard deviations shown in Table 3. In the
regions with the top 5% largest deviation in normalized export fluxes, between the Local‐k and Baseline estimates,
changes in annual average export exceed 76%. Productive upwelling regions, that are characterized by high
carbon export rates, are the regions of greatest change from the local‐tuning of k values (Figure 5). Changes in
export estimates mirror changes in zooplankton grazing rates, for example, changes in fecal export from the
euphotic zone (Ffec) and DVM‐mediated export flux (Jdvm) are inversely proportional to those of meso-
zooplankton grazing.

Mesozooplankton grazing on microzooplankton is a greater contributor to carbon flux than grazing on micro-
phytoplankton. In the Local‐k model, 80% of mesozooplankton grazing constitutes grazing on microzooplankton
(GZL,ZS), however this is decreased from 91% (Baseline‐k) and 99% (Global‐k) with homogenous k values.

Table 3
Comparison of Mean Global Carbon Export Estimates From the Three Model Scenarios

Baseline Global‐k Local‐k

Mean S.D. Mean S.D. Mean S.D.

Export flux (mgC m− 2d− 1) 93.48 127.46 69.44 107.14 61.74 88.32

NPP (mgC m− 2d− 1) 752.18 715.79 379.36 283.08 459.04 291.66

Export ratio 0.09 0.05 0.12 0.10 0.10 0.08

PS (mgC m− 3) 13.95 6.39 6.65 1.49 9.40 2.86

PL (mgC m− 3) 4.04 3.52 4.38 4.03 3.05 3.32

ZS (mgC m− 3) 16.69 11.59 29.09 29.91 8.85 11.21

ZL (mgC m− 3) 4.66 3.62 1.72 0.81 5.07 2.70

GZS (mgC m− 3d− 1) 6.33 8.08 3.00 2.63 3.73 3.38

GZL (mgC m− 3d− 1) 4.66 3.62 1.72 0.81 5.07 2.70

GZL,PL (mgC m− 3d− 1) 0.11 0.25 1.7 × 10− 3 4.1 × 10− 3 0.21 0.31

GZL,ZS (mgC m− 3d− 1) 1.12 1.91 0.06 0.12 0.88 0.84

Falg (mgC m− 2d− 1) 68.54 88.19 68.28 104.98 36.91 72.32

Ffec (mgC m− 2d− 1) 20.70 33.14 0.97 1.84 20.52 18.76

Jdvm (mgC m− 2d− 1) 4.24 6.53 0.20 0.36 4.31 3.65

DER 0.03 0.02 3.2 × 10− 3 2.3 × 10− 3 0.10 0.06

DRR 0.03 0.02 2.7 × 10− 3 2.0 × 10− 3 0.11 0.06

Note. NPP = Net Primary Productivity. Falg = Euphotic export flux of algal aggregates. Ffec = Euphotic export flux of fecal
pellets. Jdvm = DVM‐mediated export flux. GZL =Mesozooplankton grazing rate on all prey types. GZS =Microzooplankton
grazing rate on all prey types. GZL,PL = Mesozooplankton grazing on microphytoplankton. GZL,ZS = Mesozooplankton
grazing on microzooplankton. PS = Small phytoplankton biomass. PL = Microphytoplankton biomass. ZS = Micro-
zooplankton biomass. ZL = Mesozooplankton biomass. DER = DVM export ratio. DRR = DVM respiration ratio.
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4. Discussion
One of the largest sources of uncertainty in the marine carbon cycle is zooplankton grazing (Rohr et al., 2023). In
this study we used an inverse modeling approach to estimate spatial variation in zooplankton grazing dynamics
and explored the subsequent impact of these dynamics on modeling marine ecosystems and carbon export. The
focus of this study was the grazing parameter k, which is frequently used in global biogeochemical (BGC) models.
We found that local‐tuning of k results in high variability of inferred grazing dynamics. The local‐tuning of k
values improved the model's ability to reproduce satellite‐derived phytoplankton biomass. Consequently, esti-
mates of mean total carbon export decreased by > 17% compared to global tuning, with a greater proportion of
export as fecal pellets and less as algal aggregates.

Figure 5. Changes in carbon export due to grazing parameterization. Three model runs are presented: Baseline, Global‐k and Local‐k. The outputs from the Baseline run
are presented in plots (a–f). Plots (g–l) show the absolute change when changing the model input from the baseline run (non‐optimized k values) to the Global‐k run
(globally optimized k values). Plots (m–r) show the absolute change when changing the model input from the baseline run to the Local‐k run (locally tuned k values).
Falg= Euphotic export flux of algal aggregates. Ffec= Euphotic export flux of fecal pellets. Jdvm=DVM‐mediated export flux.GZL=Mesozooplankton grazing rate on
all prey types. GZS = Microzooplankton grazing rate on all prey types.
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4.1. High Variability of Inferred Grazing Dynamics

Local optimization suggested high k values were generally associated with eutrophic ocean regions. This is
consistent with a study in review (Rohr et al., 2024) which used an inverse modeling approach to infer high
community k values for a single zooplankton group (combining k0 and k1) in equatorial upwelling regions and
higher latitudes. In equatorial upwelling regions, communities are dominated by suspension‐feeding copepods
(Steinberg & Landry, 2016), whose slower grazing rates enable diatom blooms to form (Rohr et al., 2024). In the
high latitudes, higher k values reduce grazing pressure on phytoplankton stocks. High latitude regions are
characterized by fast growing phytoplankton species such as diatoms (Murphy et al., 2021), however, their
growth is restricted by environmental conditions. Indeed, a review by Schmoker et al. (2013) found low
phytoplankton growth rates in polar regions, compared to temperate locations. Higher k values in high latitude
regions would prevent prey stocks from becoming fully depleted in the winter and allow spring/summer blooms
to occur.

Generally low k values were estimated in the subtropical oligotrophic gyres, where communities are dominated by
faster grazing microzooplankton, in particular pico‐ and nano‐sized flagellates (Calbet & Calbet, 2008).
Anomalous high k0 values inferred in the hyper‐oligotrophic South Pacific gyre (Ras et al., 2007) are in
disagreement to the study by Rohr et al. (2024) and coincide with an underestimation of NPP, small phyto-
plankton biomass and near‐zero growth rates. This suggests that in this region, small phytoplankton growth rates
used to force the model may be too low. Growth rates are derived from observed NPP, which is divided by the
greater of euphotic and mixed layer depth. The South Pacific gyre is characterized by a deep euphotic layer, which
may have produced unrealistically low growth rates and anomalous k values for this size class. In addition, the
lack of explicit representation of temperature within the model may affect growth and grazing rates in these
extreme environments. The 1P1Z 3D model in Rohr et al. (2024) includes temperature which may negate these
issues.

In this study, mesozooplankton showed on average, higher k values, and therefore slower prey capture times. This
is consistent with ecological understanding (Barton et al., 2013). As the maximum grazing rate, g, was held
constant across the model domain, variation in the k value represents variation in the prey capture rate, rather than
consumption (Rohr et al., 2022). For both size classes, average half‐saturation constants were in the lower quartile
of empirical values (Hansen et al., 1997; Hirst & Bunker, 2003; Rohr et al., 2022). However, empirical estimates
are from laboratory measurements of samples collected from a very narrow range of locations, with the majority
from coastal regions in the northern hemisphere (e.g., fjords in Norway, coastal USA and UK, Japan) and none
representing the open ocean (Hansen et al., 1997; Hirst & Bunker, 2003). These are also of individual species and
are unlikely to be representative of the community mean values estimated here for each 1° grid cell (Rohr
et al., 2022).

Locally tuned k values produced global distributions of grazing rates (Gi) that are consistent with other studies
(Archibald et al., 2019; Siegel et al., 2014). Archibald et al. (2019) used satellite‐derived estimates of NPP and
phytoplankton biomass to predict global grazing rates. Mean GZS was 4.17 mgC m− 3d− 1 and mean GZL,PL was
0.98 mgCm− 3d− 1 in Archibald et al. (2019). These represent grazing mortalities from satellite observations on
phytoplankton, so include grazing losses by other groups not considered here (e.g., mesozooplankton grazing on
small phytoplankton). However, the Local‐k model improves the reproduction of these observationally derived
grazing rates in comparison to globally homogenous k values (Table 3), with the potential to help address the
uncertainty in global zooplankton grazing dynamics. In the Local‐k scenario, on average 46% of NPP is lost to
microzooplankton grazing on small phytoplankton and 2% of NPP is lost to mesozooplankton grazing on
microphytoplankton. This supports findings by Bisson et al. (2020), where the average fraction of NPP consumed
by mesozooplankton (<10%) was much lower than microzooplankton (>45%) across several model scenarios.

In this study, mesozooplankton were not assigned prey preferences, implicitly meaning both prey options were
equally desirable. However, the microzooplankton biomass pool was larger than microphytoplankton. Conse-
quently, the majority of the mesozooplankton grazing rate consisted of microzooplankton prey rather than
phytoplankton. This is consistent with several field studies which have found a mesozooplankton preference for
microzooplankton due to greater nutritional benefits (e.g., Campbell et al., 2009; Stoecker & Capuzzo, 1990;
Vargas &González, 2004). However, this is not true for all species as filter feeders, for example, have been shown
to have a preference for small‐size phytoplankton, or no preference at all between phytoplankton and micro-
zooplankton (Chen et al., 2017). These divergent strategies have potentially led to the large range of feeding
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preferences presented in biogeochemical models (Rohr et al., 2022). Implementing different prey preferences
may improve modeled grazing estimates and warrants further consideration.

4.2. Implications of Improved Model Skill for Future Studies

With potential to improve model skill, the local optimization of grazing dynamics could be advisable in future
BGCmodeling studies. This study shows that the competition generated by two zooplankton functional types isn't
sufficient to emulate the global variability in grazing suggested by the local‐tuning of k values. Other models
currently emulate this dynamical variability using different methods, such as increased numbers of plankton
functional groups (PFTs) (e.g., Dutkiewicz et al., 2021), prey switching (e.g., T. R. Anderson et al., 2010), or prey
preferences (e.g., Aumont et al., 2015). In this study, four PFTs were used, in line with several modeling studies
(e.g., Siegel et al., 2014), however, this groups together species with different functional traits, with different
geographic distributions (Barton et al., 2013). Gelatinous salps, for example, graze preferentially on small
phytoplankton, which leads to their prevalence in subtropical oligotrophic gyres (Barton et al., 2013). By
explicitly representing more PFTs and their prey preferences, some of the impact of locally tuning k values may be
reduced. A study by Le Quéré et al. (2016) showed that the explicit representation of krill in the Southern Ocean
improved model skill in reproducing zooplankton dynamics. However, increasing the number of PFTs is
computationally costly and unlikely to encompass the full extent of physiological and behavioral diversity found
within the plankton community.

To enable the application of the grazing parameter k into larger BGC models, the relationship between k and
environmental conditions needs to be further explored. Different species, ages, and sizes of zooplankton, even
amongst the same functional group, graze with largely different k values (Rohr et al., 2022). Thus, the strong
spatially variability in optimum k values implies strong variability in the composition of zooplankton commu-
nities within each functional group. Given the observational evidence of seasonal species succession (e.g.,
Colebrook, 1985), it is likely that a seasonally variant zooplankton community could require a seasonally variant k
value, as well. This transition could potentially be incorporated into models without explicit competition, if k
values could be shown to vary with environmental drivers. For instance, at the annual scale, inferred k values have
been shown to vary with mean annual phytoplankton biomass (Rohr et al., 2024), but more work is required to
determine the nature of this relationship with respect to other drivers (e.g., sea surface temperature) and across
shorter, seasonal time scales (Text S1 in Supporting Information S1).

4.3. Reducing Uncertainty in Modeling Zooplankton

Large uncertainty exists in quantifying zooplankton biomass (Petrik et al., 2022), however the use of locally tuned
k values improves the models ability to reproduce observational estimates. The observed mean (±S.D.) biomass
of mesozooplankton is estimated as 5.9 ± 10.6 mgC m− 3 by Moriarty and O’Brien (2013), which compares to
5.07 ± 2.7 mgC m− 3 in the Local‐kmodel scenario. In contrast, optimized globally homogenous k values worsen
the model's ability to reproduce observational mesozooplankton biomass in comparison to the Baseline scenario
(Table 3). This highlights a potential limitation of global optimization of grazing dynamics when only two
zooplankton functional groups are used. This also suggests a possible reason why several BGC models under-
estimate mean global mesozooplankton biomass by a similar magnitude (Figure S10 in Supporting Informa-
tion S1) (Aumont et al., 2015; Lovato et al., 2022). In addition, mean global microzooplankton estimates from the
Global‐k scenario are much greater than observations by Buitenhuis et al. (2013), where biomass is estimated to
have a mean of 9.3 ± 17.1 mgC m− 3 and a median of 3.1 mgC m− 3. These limitations occur despite improved
model skill at reproducing the magnitude and distribution of satellite‐derived phytoplankton. Local‐kmean global
biomass for microphytoplankton is within the range of estimates by Buitenhuis et al. (2013) (Table 3).

4.4. Implications for Predicting Carbon Export Under a Changing Climate

This study shows large variability in carbon export estimates driven by inferred grazing dynamics. There is a high
degree of uncertainty in global export flux estimates, which vary between 5 and 12 PgC yr− 1 (Siegel et al., 2022).
Locally tuning grazing dynamics modifies carbon export estimates by>17% to coincide with this range (7.19 PgC
yr− 1). The Global‐k scenario estimates high carbon export, despite underestimating mesozooplankton biomass
and therefore fecal export. This is due to a large proportion of algal aggregates. The substantial influence of this
one model component on carbon export highlights one possible cause for uncertainty in carbon sequestration
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estimates (Laufkötter et al., 2016). It is vital to reduce this uncertainty when modeling under different climate
scenarios.

Algal and fecal estimates were closer to contributing equally to carbon export (as found within previous studies
(Steinberg & Landry, 2016; Stock et al., 2014)) when grazing dynamics were locally optimized. The relationship
between algal aggregates and fecal export highlights the balance between natural and grazing mortalities within
BGC models, as the amount of biomass available for aggregates from mortality rates is impacted by grazing. The
proportion of fecal versus algal export is determined by the zooplankton species present and their grazing dy-
namics (Steinberg & Landry, 2016). Local‐tuning of grazing dynamics therefore has important consequences for
climate models as the impact of climate change on plankton communities differs between species, trophic levels
and geographic location (Cael et al., 2021), further influencing these two routes of carbon export.

The modeled distribution of carbon export corresponds to estimates by Stock et al. (2020), with coastal upwelling
areas experiencing the greatest change from the local‐tuning of k. These areas produce the highest export rates due
to more efficient diatom‐copepod food chains (Schmoker et al., 2013). However, the fast growth rates of diatoms
makes them more susceptible to abrupt changes over the 21st Century in response to climate change (Cael
et al., 2021). It is therefore vital to decrease uncertainty in grazing and export estimates in these areas. The
subtropical oligotrophic gyres and the Southern Ocean are areas of lower carbon export due to the presence of
smaller phytoplankton species which are lighter, sinking less carbon into the ocean interior (Calbet &
Landry, 2004; Murphy et al., 2021; Schmoker et al., 2013). The highest flux estimates in the Southern Ocean
occur closer to the Antarctic shelf edge, predominantly during summer months (Stock et al., 2020). However the
polar extremes are out of the scope of this study due to the limitations of satellite observations in these areas
(Siegel et al., 2014), which is a common issue with many plankton models (Cael et al., 2021; Dutkiewicz
et al., 2021).

4.5. Limitations

There are several limitations of this modeling study. First, non‐k parameters are held constant across the model
domain, when in reality they are likely to vary in space and time. If these other parameters were tuned, the non‐
optimized (Baseline scenario) estimate of NPP may be reduced to coincide with the observed range (45–60 GtC
yr− 1) (Le Quéré et al., 2016; Westberry et al., 2008) alongside the two optimized model scenarios.GZl,PL andGZl,

ZS also use the same k value, which obscures whether changes in k1 are biased to improve microphytoplankton
estimates or small phytoplankton estimates (via microzooplankton) during the cost analysis. This may contribute
to the overestimation of microphytoplankton in all model runs.

Second, grazing formulas are based on the Holling Type III functional response, however there is a lack of
consensus within the modeling community about the most suitable functional response. T. R. Anderson
et al. (2010) found that the use of different grazing formulations caused large variations in biomass, with diatoms
most greatly affected. This resulted in carbon export predictions varying by as much as 25%. Modelers may also
need to consider different response types for different zooplankton, under different prey conditions, especially
filter feeders which have been observed to graze with a Type I response (Jeschke et al., 2004).

Third, in the model there are non‐grazing losses that contribute to phytoplankton mortality, which could account
for some of the variability seen between model scenarios. In the Local‐k scenario, mean grazing losses for small
phytoplankton (3.73 mgC m− 3d− 1, Table 3) are greater than average non‐grazing mortalities (0.92 mgC m− 3d− 1

natural mortality and 1.14 mgC m− 3d− 1 aggregate mortality). Mean microphytoplankton grazing losses (0.23
mgC m− 3d− 1) are on average lower than natural and aggregation mortalities (0.28 and 0.68 mgC m− 3d− 1

respectively). The detailed analysis of non‐grazing losses was beyond the scope of this study. However, empirical
studies have shown that grazing rates vary over three orders of magnitude (Hansen et al., 1997) whilst non‐grazing
loses are thought to show less natural variability (e.g., 0.13–0.96 d− 1 for viral‐induced mortality (S. R. Ander-
son & Harvey, 2019)) and remain largely unconstrained (Roy et al., 2012). Thus, while non‐grazing losses are
explicitly simulated, they are much less likely to vary to the degree that zooplankton grazing parameters are,
which are the focus of this study. Given the large non‐grazing terms for microphytoplankton, further work into
variable non‐grazing loss parameters is warranted.

Fourthly, within the center of the oligotrophic gyres, microzooplankton were characterized by less efficient prey
capture rates compared to mesozooplankton (Figure S5 in Supporting Information S1), however prey capture
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efficiency should decline with size (Hansen et al., 1997; Rohr et al., 2022). This highlights a possible limitation of
the model, potentially the functional groups used or model parameters. In this study, the same maximum grazing
rate was used for both size classes, so prey capture efficiency is dominated by the half‐saturation constant, or
capture rate. In oligotrophic regions, smaller plankton dominate, so prey capture efficiencies for micro-
zooplankton are more likely to be driven by consumption rather than capture rates, suggesting higher maximum
grazing rates are needed to represent realistic capture efficiencies in these environments.

In addition, CbPMv2 was selected as the NPP forcing variable for consistency with Archibald et al. (2019),
however other NPP models such as the Carbon, Absorption, and Fluorescence Euphotic‐resolving (CAFE)
(Silsbe et al., 2016) have been found to be more realistic, with consequences for carbon export (Bisson
et al., 2018). Finally, the carbon export model does have several limitations which are discussed in detail in
Archibald et al. (2019). In particular, the model is very sensitive to three parameters—ffec, fmet and pdvm,
however these parameters remain unchanged to enable comparisons. The model also doesn't include small fecal
pellets produced by microzooplankton in carbon export estimates as they are assumed to be retained in the
euphotic zone. However, some studies suggest fecal export by this size class could contribute a significant portion
of export flux, particularly in the subtropical oligotrophic gyres Bisson et al. (2020).

4.6. Future Considerations

The simplification of the coupled ecosystem‐carbon export model means the results of this study should be
considered as an example of an ecosystem model with and without spatially varying k values. Here, we have
shown that highly spatially heterogeneous grazing dynamics are required to reproduce observed biomass when
forced with observed bottom‐up controls. This heterogeneity exceeds what is achievable from the explicit
competition between two zooplankton functional types and has profound implications for the routing and
magnitude of carbon export. Future models, particularly those concerned with ecosystem dynamics, high trophic
levels and carbon export must reconcile with the possibility that even two zooplankton groups are insufficient to
capture the true variability in top‐down controls across the globe. More realistic representation of the global
variability in zooplankton grazing dynamics may help shed light on the uncertainty in carbon export estimates
under future climate scenarios.
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