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Abstract 12 

We reexamined the relationship between the shoreline development index and metrics of habitat 13 

coupling using a bias-corrected variant of the shoreline development index. Our findings suggest 14 

that previously reported correlations may be artifacts of scale-dependent bias in shoreline 15 

development index measurements. The results highlight the need for careful measurement when 16 

seeking to understand links between lake morphology and ecological processes. 17 

 18 

Text 19 

Lakes vary in shape from nearly perfect circles to the almost incomprehensively 20 

convoluted (Scheffers and Kelletat 2016; Seekell et al. 2022a). The shoreline development index 21 

– the ratio of shore length to the circumference of a circle with the lake’s surface area – is widely 22 

used to quantify this variability so that it can be related to ecosystem function (e.g., Rawson et al. 23 

1960; Gasith and Hasler 1976; Wetzel 2001; Dolson et al. 2009; McMeans et al. 2016; Stiling et 24 

al. 2023). For example, the shoreline development index has been identified as a key correlate of 25 

habitat coupling - when the dynamics of certain habitats are strongly influenced by adjacent, but 26 

ecologically distinct habitats, suggesting a link between lake morphology and ecosystem 27 

processes (e.g., Gasith and Hasler 1976; Schindler and Scheuerell 2002; Dolson et al. 2009; 28 



McMeans et al. 2016). However, shore length is scale dependent such that measurements based 29 

on higher resolution maps are longer than those based on lower resolution maps (Hutchinson 30 

1957; Kent and Wong 1982; Seekell et al. 2022a). A consequence of this is that the shoreline 31 

development index is biased so that it increases with surface area (Seekell et al. 2022a). 32 

Therefore, it cannot be used in comparative analyses of lakes with different surface areas, even 33 

when the shore lengths and surface areas are mapped at a common scale (Seekell et al. 2022a). 34 

Previously reported correlations between habitat coupling and the shoreline development index 35 

were based on comparative analyses of lakes with different surface areas, hence there is the 36 

possibility that these results do not represent ecologically meaningful connections to lake 37 

morphology but rather are the consequence of bias in the shoreline development index. 38 

In this note, we correlate metrics of habitat coupling with a bias-corrected variant of the 39 

shoreline development index to test if the relationship between the shoreline development index 40 

and habitat coupling is ecologically meaningful. Correlation between metrics of habitat coupling 41 

and the bias-corrected variant is indicative of an ecologically meaningful relationship. In 42 

contrast, a correlation between metrics of habitat coupling and the traditional index, but not the 43 

bias-corrected variant, suggests a spurious relationship driven by scale-dependence induced bias 44 

in the shoreline development index. 45 

We used metrics of habitat coupling previously reported by Dolson et al. (2009) for seven 46 

Ontario lakes (Table 1). Specifically, we examined trophic position and percentage of pelagic 47 

fish in the diet of lake trout (Salvelinus namaycush). The metrics were estimated by an isotopic 48 

mixing model applied carbon and nitrogen stable isotope analyses of several food web 49 

components. We selected this dataset for our analysis because lake trout are highly mobile 50 

predators that feed in both pelagic and littoral habitats, but are a cold-water species that can be 51 



thermally limited from foraging in large littoral zones, and because these data have been used in 52 

several previous analyses (Dolson et al. 2009; McMeans et al. 2016; Stiling et al. 2023). Dolson 53 

et al. (2009) hypothesized more reticulate lakes have larger and more complex littoral areas than 54 

more circular lakes, and that habitat coupling is weaker in in these lakes (Dolson et al. 2009; 55 

McMeans et al. 2016; Blanchfield et al. 2023). A positive correlation between the shoreline 56 

development index proportion of pelagic fish in the diet of lake trout should emerge due to 57 

difficulty in accessing littoral prey (Dolson et al. 2009). This should also be reflected in a 58 

positive correlation with trophic position because pelagic energy pathways are longer than 59 

littoral pathways (Dolson et al. 2009). 60 

We measured the surface area (A, m2) and shore length (L, m) of the study lakes using 61 

online maps from the Ontario Ministry of Natural Resources online mapping tools 62 

(http://www.ontario.ca/page/topographic-maps). Our measurements were made at the 1:72,223 63 

map scale, which is one of the defaults in the application and which allows for digital 64 

measurement of the full range of lake sizes studied, consistent with best practices of measuring at 65 

a common scale (Seekell et al. 2022a). We used these measurements to calculate the shoreline 66 

development index: 67 

𝐷𝐿 =
𝐿

2√𝜋𝐴
 68 

Next, we calculated the bias-corrected shoreline development index proposed by Seekell et al. 69 

(2022a): 70 

𝐷𝐵𝐶 =
𝐿

2√𝜋𝐴(𝑑/2)
 71 

d in this equation is the fractal dimension, which varies in the range 1 ≤ d < 2. The fractal 72 

dimension is a metric that characterizes the scale dependence of shorelines. We estimated lake 73 

http://www.ontario.ca/page/topographic-maps


specific fractal dimensions by measuring the shorelines at multiple map scales. We fit 74 

regressions of the logarithm of shore length by the logarithm of scale, and calculated the fractal 75 

dimensions as one minus the regression coefficient (Seuront 2010). 76 

The rationale behind alternate formulation of the shoreline development index becomes 77 

clear when considering that shore length can be recast in terms of area based on the identity: 𝐿 =78 

𝑐𝐴(𝑑 2⁄ ), where c is a shape constant (Seekell et al. 2021a; Seekell et al. 2022b). Substituting this 79 

identity into the traditional shoreline development index formula and simplifying: 80 

𝐷𝐿 =
𝑐

2√𝜋
× 𝐴(𝑑−1) 2⁄  81 

When d = 1, DL is the ratio of the shape constants c and 2√𝜋. However, when d > 1, the 82 

shoreline development index is also a function of area. In the bias-corrected variant, the exponent 83 

d/2 cancels area out of the numerator and denominator regardless of fractal dimension so that the 84 

index always only reflects the ratio of the shape constants: 85 

𝐷𝐵𝐶 =
𝑐𝐴(𝑑 2⁄ )

2√𝜋𝐴(𝑑/2)
=

𝑐

2√𝜋
 86 

We use Bayes factors to evaluate the relative evidence for null (no positive relationship) 87 

and alternative hypotheses (positive relationship) (Wetzels and Wagenmakers 2012). We use this 88 

approach instead of null hypothesis testing (i.e. p-values) because Bayes factors evaluate relative 89 

evidence for the null and alternative hypotheses, something that is important for our 90 

interpretation of the correlation analysis, whereas null hypothesis testing only evaluates evidence 91 

for the alternative hypothesis. We report BF10, which is the Bayes factor that indicates the weight 92 

of evidence for the alternative hypothesis relative to the null hypothesis. BF10 = 1 indicates that 93 

the hypotheses are equally likely, whereas BF10 > 1 indicates the alternative is more likely, and 94 

BF10 < 1 indicates the null hypothesis is more likely. 95 



The range of fractal dimensions was 1.02-1.17 (median = 1.08), which indicate scale-96 

dependence for all shorelines, and are consistent with the range and median of (range = 1.02-97 

1.37, median = 1.10) of previously reported measurements for individual lake shorelines (Seekell 98 

et al. 2022a) (Figure 1). These fractal dimensions cause dramatic reductions in shoreline 99 

development index values when the bias-corrected metric is calculated. Specifically, the range of 100 

uncorrected values was 1.02-3.73 (mean = 2.58), whereas the range of bias-corrected values was 101 

1.00-1.93 (mean = 1.29) (Table 1).  102 

There is moderate evidence for the hypothesis that shoreline development index is 103 

inversely related to the metrics of habitat coupling, which is consistent with previous results 104 

based on these data (Dolson et al. 2009; McMeans et al. 2016). This means that there is less 105 

habitat coupling by lake trout in highly reticulate lakes compared to more circular lakes. 106 

Specifically, there was a positive correlation between shoreline development index and both lake 107 

trout trophic position (r = 0.79, BF10 = 5.84) and proportion of pelagic fish in diet (r = 0.82, BF10 108 

= 7.72) (Figure 2). However, there is weak to moderate evidence of no positive relationship 109 

between bias-corrected shoreline development index and trophic position (r = 0.15, BF10 = 0.59) 110 

or proportion of pelagic fish in diet (r = -0.37, BF10 = 0.29). This contrasts with the previous 111 

results of Dolson et al. (2009) and McMeans et al. (2016) and suggests that the correlation 112 

between the shoreline development index and metrics of habitat coupling in those reports reflect 113 

bias in the shoreline development index rather than ecologically meaningful relationships. 114 

Our statistical results were robust to a variety of priors. Additionally, we generated the 115 

same qualitative results when conducting our analysis with Kendall’s tau rank-based correlation 116 

coefficient, albeit with weaker correlations which is typical when comparing Pearson’s 117 

correlation coefficient to Kendall’s (Rupinski and Dunlap 1996). Specifically, there was a 118 



positive correlation between shoreline development index and both lake trout trophic position (τ 119 

= 0.52, BF10 = 2.67) and proportion of pelagic fish in lake trout diet (τ = 0.62, BF10 = 4.27), and 120 

weak evidence of no positive relationship between bias-corrected shoreline development index 121 

and trophic position (τ = -0.05, BF10 = 0.41) and proportion of pelagic fish in diet (τ = -0.14, 122 

BF10 = 0.34). Our statistical evidence for the null hypothesis is not overwhelming, but this is not 123 

surprising given the limited sample size. However, there are additional reasons to believe that the 124 

shoreline development index is not correlated with habitat coupling. Specifically, expected 125 

correlation is premised on the existence of a relationship between shoreline development index 126 

and the relative size of littoral habitats, but the empirical evidence for this is weak despite being 127 

widely stated in limnology textbooks (e.g., Wetzel 2001). Most lakes are small (< 1 km2) and 128 

shallow (mean depth < 5 m, maximum depth < 10 m), with the entire lake comprising littoral 129 

habitat regardless of variation in shoreline development index (Seekell and Pace 2011; 130 

Verpoorter et al. 2014; Cael and Seekell 2016; Cael et al. 2017; Seekell et al. 2021b; Cael and 131 

Seekell 2022). Hence, shoreline development index and littoral area are often disconnected and 132 

correlations weak when examining large numbers of lakes (Seekell et al. 2021b).  133 

The fractal dimension of a group of shorelines can be estimated by regressing the 134 

logarithm of the perimeters by the logarithm of surface areas. This is much faster than measuring 135 

fractal dimensions for individual lakes and facilitates estimation of fractal dimensions during 136 

syntheses of historical datasets when morphometrics but not original maps are available (Seekell 137 

et al. 2021a). However, these values are typically biased upwards compared to the average of 138 

shoreline fractal dimensions measured at the individual level and it is best practice to use 139 

individually measured fractal dimensions when bias correcting the shoreline development index, 140 

as we have done in our analysis (Matsushita et al. 1991; Seekell et al. 2022a). While conducting 141 



our analysis, we observed another reason to avoid using average shoreline development index 142 

values - the underlying selection of lakes may not be representative. For example, the fractal 143 

dimension calculated from the perimeter-area regression of the sample lakes in our study would 144 

be implausibly high, probably because the lakes were sampled uniformly across a wide range of 145 

shoreline development index values even though the underlying distribution of shoreline 146 

development index values is highly skewed, with most lakes having low index values compared 147 

to the overall range in values (Schiefer and Klinkenberg 2004; Verpoorter et al. 2014). This 148 

sampling strategy is common in comparative limnology and perimeter-area analysis cannot be 149 

used to adjust the shoreline development index in such studies.  150 

Lake morphometry is so fundamental to aquatic sciences that it often seems trivial. Our 151 

analysis demonstrates that this is not the case and morphometry requires careful attention to 152 

detail to ensure that ecologically relevant relationships are correctly identified.  153 
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Figure 1. Shore lengths measured at different map scales. The fractal dimension is one minus the 250 

regression coefficient when a linear regression is fit on log-log axes. 251 
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Figure 2. Correlations between habitat coupling metrics and shoreline development indices. The 274 

shoreline development index must be greater than or equal to one. 275 

276 



Table 1. Morphometric and food web data used in this analysis. Trophic position and pelagic fish in diet were reported by Dolson et 277 

al. (2009) and were estimated based on stable isotope analyses. Morphometric data are original to the present study. 278 

Lake  Latitude  Longitude  Area (m
2
)  Perimeter (m)  Fractal Dimension (d)  DL  DBC  Trophic Position Pelagic Fish in Diet (%) 

Gilmour   46.07°  -78.29°  1,626,185  5,297 1.02  1.17  1.00  3.56 51 

Canoe   45.53°  -78.72° 3,691,778  20,905  1.15  3.07  1.02  4.73  73 

Three Mile   45.98°  -78.9° 4,225,976  17,801  1.03  2.44  1.93  4.30  50 

Catfish   45.92°  -78.55° 4,595,905  28,375  1.17 3.73  1.05  4.56  86 

White 

Partridge  

 45.83°  -78.1° 5,748,242  14,270  1.05  1.68  1.17  4.44  49 

Burntroot   45.85°  -78.67° 9,503,755  29,427  1.08  2.69  1.46  4.64  68 

Hogan   45.87°  -78.5° 12,595,497  40,857  1.10 3.25  1.41  4.72  61 
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