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Abstract
Monitoring aquatic vegetation, including both floating and emergent types, plays a crucial role in understanding the dynamics 
of freshwater ecosystems. Our research focused on the Lower Dniester Basin in Southern Ukraine, covering approximately 
1800 square kilometers of steppe plains and wetlands. We applied traditional machine learning algorithms, specifically 
random forest and boosting trees, to analyze Sentinel-2 satellite imagery for segmenting aquatic vegetation into emergent 
and floating types. Our methodology was validated against detailed in-situ field measurements collected annually over a 
5-year study period. The machine learning classifiers achieved an F1-score of 0.88 ± 0.03 in classifying floating vegetation, 
outperforming our previously suggested histogram-based thresholding methodology for the same task. While emergent 
vegetation and open water were easily identifiable from satellite imagery, the robustness and temporal transferability of 
our methodology included accurately delineating floating vegetation as well. Additionally, we explored the significance of 
various features through the Minimum Redundancy - Maximum Relevance algorithm. This study highlights advancements 
in aquatic vegetation mapping and demonstrates a valuable tool for ecological monitoring and future research endeavors.

Keywords Wetland · Sentinel-2 · Floating vegetation · Emergent vegetation · Machine learning · Thresholding · Multi-class 
segmentation · Feature importance

Introduction

Freshwater ecosystems constitute a vital resource, deliv-
ering ecosystem services that infulence the well-being of 
local communities and regional economies. These services 
encompass critical functions such as the production of 
drinking water, support for tourism, aquaculture, and the This article is part of the topical collection “Advances on 

Geographical Information Systems Theory, Applications and 
Management” guest edited by Lemonia Ragia, Cédric Grueau and 
Armanda Rodrigues.
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generation of hydropower [1]. Nevertheless, these precious 
ecosystems face a growing vulnerability to anthropogenic 
influences.

The primary driver of ecological concerns in numerous 
transboundary river catchments, including the Dniester, 
stems from the excessive anthropogenic load of nutrients. 
This load results from a spectrum of human activities, 
including agriculture, industrial processes characterized 
by wastewater discharges and gas emission redeposition, 
domestic sewage discharges, and other anthropogenic 
actions [2–4]. These activities have led to a pronounced 
escalation in eutrophication within river deltas, their asso-
ciated lakes, and adjacent estuaries [5].

Furthermore, the changing climate is introducing altera-
tions in temperature and precipitation patterns, while the 
construction of hydro power facilities disrupts fluvial water 
flow. These combined factors frequently exacerbate and 
intensify the negative impacts on biodiversity, biological 
resources, and the provision of ecosystem services [6]. 
Concomitant with the issue of algal blooms is the challenge 
posed by the overgrowth of aquatic vegetation, which is a 
common occurrence in vulnerable deltaic regions.

Aquatic plants, whether emergent, floating, or submerged, 
are intrinsic components of most aquatic ecosystems and 
are pivotal to their functioning. However, when these plants 
become overgrown or experience excessive blooms, they can 
trigger adverse consequences for water quality, biodiver-
sity, ecosystem functioning, and the delivery of ecosystem 
services. These consequences manifest through a range of 
mechanisms, including [7–9]:

• Reduction of dissolved oxygen levels.
• Alteration of pH levels.
• Diminished light penetration, leading to decreased water 

clarity and increased water temperature.
• Elevated siltation rates, particularly in slow-moving 

streams.
• Serving as mechanical substrates for the proliferation of 

filamentous algae.
• Obstruction or hindrance of navigation channels and 

areas utilized for fishing and tourism.
• Diminished recreational and touristic appeal of water 

bodies

Given these challenges, there is a pressing need for the 
development of near-real-time (semi-) automatic monitor-
ing techniques for aquatic vegetation cover, coupled with 
the capability to identify different types and species. Such 
capabilities hold significant value for governing authorities 
and the administrations of natural and national parks [10].

There are different ways to estimate features in Earth 
observation using satellite images. Some researchers have 
used histograms and satellite imagery to do this [11]. Other 

researchers, like Chen et al. [12], used decision trees to fig-
ure out underwater plant life. Espel et al. [13] compared two 
algorithms, Random Forest and Support Vector Regression, 
to estimate underwater plant cover using very high resolu-
tion (VHR, 50 cm) satellite images from Pléiades and both 
demonstrated promising accuracy metrics. Some studies 
focused on identifying floating vegetation in different water 
bodies using Sentinel-2 images. They found that accuracy 
depended on how densely packed the vegetation was [14, 15] 
and the specific types of plants [16].

Deep learning (DL), particularly convolutional neural 
networks and the vision transformers [17], has revolution-
ized the field of remote sensing by enabling the extraction 
of complex patterns and features from satellite imagery that 
were previously unattainable with traditional ML methods. 
DL’s ability to automatically learn hierarchical feature rep-
resentations makes it exceptionally suited for classifying 
and segmenting high-dimensional remote sensing data [18]. 
The integration of self-supervised learning approaches and 
foundation models exemplifies DL’s capacity to achieve sig-
nificant accuracy even in few-shot learning scenarios, where 
annotated data are scarce. In specific, recent advances in 
self-supervised foundation models [19, 29] have been incor-
porated successfully in mapping underwater vegetation with 
very limited annotated data [20].

Building upon our prior work presented on the 9th Inter-
national Conference on Geographical Information Systems 
Theory, Applications and Management - GISTAM 2023 
[10], we’ve developed a method for automatically monitor-
ing aquatic plants in freshwater ecosystems. This approach 
involves hierarchically thresholding various bands and indi-
ces, with thresholds determined from histograms, enabling 
us to distinguish and map three key aquatic vegetation cate-
gories: floating plants, emergent plants, and open water areas 
devoid of plants. Several indicators, which are derived by 
algebraic combinations of the satellite bands, are exploited 
within a multicriteria hierarchical analysis approach on top 
of a verified unsupervised thresholding approach [11, 21].
The methodology has undergone rigorous testing and valida-
tion within the WQeMS H2020 project, utilizing data from 
the Dniester River in Ukraine collected over five consecutive 
years within the a series of the studies: research activities 
funded by the Ministry of Education and Science of Ukraine, 
GEF-UNEP funded project Towards INMS and ENI CBC 
BSB PONTOS (BSB 889) project.

In this ongoing study, we continue to validate our 
approach in the same Ukrainian region over a five-year 
period, utilizing Sentinel-2 satellite imagery. However, 
we have incorporated traditional machine learning tech-
niques to enhance aquatic vegetation segmentation accu-
racy when compared to our previous hierarchical histo-
gram thresholding method. Additionally, we explore the 
effectiveness of classical texture features for mapping 
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aquatic vegetation and conduct a feature importance 
analysis using the Maximum Relevance and Minimum 
Redundancy (MRMR) algorithm [22] to further improve 
the accuracy and robustness of our approach.

Materials and Methods

Study Area

Our research focus lies within the Lower Dniester Basin, 
encompassing the Dniester Delta and the adjoining Dniester 
Estuary in Southern Ukraine, covering an approximate total 

Fig. 1  The study area encom-
passes the Dniester Delta 
(outlined in red) and includes 
the region occupied by the 
Lower Dniester National Nature 
Park (shown as a dashed area), 
superimposed on a snapshot 
from Google Earth imagery. 
Image sourced from [10]
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area of 1800 square kilometers (as depicted in Fig. 1). This 
region includes the expanse of the Lower Dniester National 
Nature Park (LDNNP). Notably, the Dniester River, which 
flows into the Black Sea, holds the distinction of being the 
largest transboundary river in Western Ukraine and Mol-
dova. Situated within the Black Sea lowland, this area pri-
marily comprises steppe plains. The landscape is character-
ized by gently undulating plains, which have played a pivotal 
role in the formation of expansive wetland areas along the 
river’s floodplain. These wetlands are intricately dissected 
by branches and ancient riverbeds, often subject to flooding, 
as documented by OSCE in 2005 [23].

The pilot area experiences a temperate continental cli-
mate. Over the period from 2000 to 2014, the average 
annual mean air temperature stood at 10.5◦C , with fluctua-
tions ranging from 8.4◦C to 12.5◦C [2]. During this same 
time frame, the long-term average annual precipitation 
amounted to 464 mm. However, there have been significant 
variations in recent years, with precipitation levels rang-
ing from 420 mm in 2020 to 771 mm in 2021. The rate of 
atmospheric total nitrogen (TN) deposition is of a moderate 
nature, approximately 11.4 kg N per hectare per year [3], 
with organic constituents contributing to approximately 67% 
of this total. A similar substantial organic contribution is 
also observed in the open waters of the northwestern part of 
the Black Sea [24, 25].

Satellite Imagery

Sentinel-2 (Level 2A) datasets have been retrieved from the 
Copernicus European Space Agency (ESA) repository for 
the following dates: 11/08/2017, 11/08/2018, 17/07/2019, 
05/08/2020, and 10/08/2021. These data acquisitions pertain 
to the specific geographical tile identified as T35TQM.

Validation data

Field measurements of aquatic vegetation boundaries were 
carried out in the northern part of the Dniester Estuary by 
Odesa National I.I. Mechnikov University (ONU) as part of 
annual surveys conducted in July from 2010 to 2021. These 
surveys were conducted within national projects focused on 
studying Dniester ecosystems and were financially supported 
by the Ministry of Education and Science of Ukraine [9, 26]. 
The methodology involved several key steps:

Tracking the boundaries of emergent and floating veg-
etation using a boat-mounted GPS device, specifically the 
Eagle SeaCharter 640CDF GPS, with a horizontal accuracy 
of 3–5 ms. In cases where it was challenging to distinguish 
between floating and densely semi-submerged vegetation, 
the sum of both types was recorded as floating vegetation.

Visual assessment of emergent and floating vegetation, 
including identification of vegetation types and estimation 

of their coverage. This information was documented through 
a photo report.

Post-expeditionary processing of geolocation data, which 
involved downloading and converting GPS data into a coor-
dinate system compatible with Geographical Information 
Systems (GIS) software.

In GIS software, the position of aquatic vegetation bound-
aries was reviewed and manually adjusted, as needed. This 
process was aided by available satellite images (such as 
LandSat 5, 7, 8, and Sentinel-2), particularly in areas where 
navigating the boat through aquatic vegetation polygons was 
challenging due to dense vegetation cover or other obstacles.

Spatial analysis of aquatic vegetation polygons was con-
ducted using GIS software. This analysis included correc-
tions for boat indentation from the vegetation boundaries, 
generation of digital maps depicting emergent and floating 
vegetation cover, and examination of spatiotemporal vari-
ations in emergent and floating aquatic vegetation within 
specific sectors of the Dniester Delta (as depicted in Fig. 2). 
The study area was divided into five sectors based on geohy-
dromorphological characteristics: (i) Sector A: the northern 
part of the Dniester estuary with extensive wetland areas on 
the right bank of the river (76.3 km²); (ii) Sector B: the area 
between two branches (Deep Turunchuk and Dniester) of the 
Dniester river (81.2 km²); (iii) Sector D: the area around the 
mouth of the Dniester branch and its adjacent region (20.3 
km²); (iv) Sector E: the area encompassing the left bank 
of the Dniester branch and Karaholsky bay (26.9 km²); (v) 
Sector F: the open water central part of the Dniester Estuary 
(51.6 km²).

Ground reference data collected on 01/08/2017, 
22/07/2018, 17/07/2019, 05/08/2020, and 26/07/2021 were 
employed for validation purposes as follows:

Data from 01/08/2017 were used to validate predictions 
made for 11/08/2017. Data from 22/07/2018 were used 
to validate predictions made on 11/08/2018. Data from 
17/07/2019 were used to validate predictions made for 
17/07/2019. Data from 05/08/2020 were used to validate 
predictions for 05/08/2020. Data from 26/07/2021 were used 
to validate predictions for 10/08/2021. It’s worth noting that 
due to varying cloud conditions, some ground and satellite 
data acquisition dates differed by zero (0) to twenty (20) 
days. While this effect is considered negligible in terms of 
the development of plant communities during this period, 
it is still visible in the results and is discussed accordingly.

Methodology

Histogram‑Based Thresholding Approach

A number of machine learning techniques based on band 
combinations and texture features were compared with the 
methodology from our prior work (Manakos et al. [10]), 
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which approach involves an unsupervised thresholding 
methodology to segment the study area into three key 
aquatic vegetation categories (open water, emergent veg-
etation, and floating vegetation). This approach comprises 
three stages:

Stage 1: Initial Classification: Employing Senti-
nel-2 bands B04 (red), B08(near infrared; NIR), and 
B11(shortwave infrared; SWIR), the region was catego-
rized as land, open water, or emergent vegetation. This 
was in line with the thresholding approach proposed by 
Kordelas et al., 2018 [11] (Refer to Fig. 3). Pixels with 
SWIR values less than the first deep valley (as indicated 
in Fig. 3, left red dashed line presenting the applied mean 
value across the dates) were labeled as open water. Emer-
gent vegetation was discerned by: 

1. SWIR band pixel values lying between the first and sec-
ond deep valleys (Fig. 3, between left and right dashed 
line, presenting the applied mean value across the dates),

2. NDVI =
B08+B04

B08−B04
 values beyond the first valley that 

is greater than 0.3 (Fig. 3, dashed line presenting the 
applied mean value across the dates).

3. Remaining regions were designated as ’unclassified’ due 
to their peripheral relevance to aquatic vegetation map-
ping.

Stage 2: Floating Vegetation Identification: Additional 
Sentinel-2 bands, B05 (red edge; RE) and B12 (shortwave 
infrared; SWIR2) were harnessed. The floating vegetation 
detection was based on three specific criteria developed 
from histogram analyses and insights on spectral responses 
of water and vegetation. Specifically: 

1. B05

B11
 ratio positioned between 0.6 and 1.5,

2. NDWI =
B08−B11

B08+B11
 values between 0.2 and 0.45,

3. B12 band values ranged from 100 to 900.

Stage 3: Integration of Results: Findings pertaining to float-
ing vegetation from Stage 2 were layered atop Stage 1 out-
comes. Areas confirmed as floating vegetation superseded 
any prior classifications. The concluding output was a com-
prehensive map showcasing all three vegetation types.

Machine Learning Approach

The machine learning approach for classifying floating, 
emergent, and open water classes using Sentinel-2 imagery 
is assessed using a leave-one-date-out strategy. This entails 
evaluating various ML models on a single date after they 

Fig. 2  Geographical representa-
tion of sectors employed for 
spatiotemporal analysis of emer-
gent and floating vegetation 
cover within the deltaic part 
of the Lower Dniester. Image 
sourced from [10]
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have been trained on all other dates, and this process is itera-
tively carried out for each date. Besides the 12 bands of 
the Sentinel-2 L2A products for each pixel, additional fea-
tures have been introduced based on the domain knowledge 
acquired from our previous work and from texture features.

Specifically, features such as the Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Water 
Index (NDWI), and the ratio ’B05/B11’ are calculated as 
supplementary features. Our earlier study [10] showed sig-
nificant discriminative potential in these features after histo-
gram thresholding. In addition, texture features for each band 
are derived using the Local Binary Pattern (LBP) method. 
The LBP method is renowned for its ability to highlight  
textures in an image, making it useful for distinguishing 

various land cover types [27]. This multiresolution and 
rotation invariant texture analysis adds another layer of fea-
ture richness, enabling to better interpret the classification 
results. LBP examines the points around a central point and 
determines whether these surrounding points are higher or 
lower than the central point, yielding a binary outcome. The 
radius of the circle for LBP features is set to 2 units, while 
the number of circularly symmetric neighbor set points is 
set to 16.

In order to conduct a comprehensive analysis that remains 
unbiased by the distinctive strengths of any one classifier, we 
selected classifiers from two primary categories. Addition-
ally, we employed diverse sets of hyperparameters for each 
classifier. This approach mitigates the potential influence of 

Fig. 3  Sentinel-2 bands and indices thresholds in histograms as suggested by Manakos et al. [10], for identifying floating vegetation, emergent 
vegetation and open water classed in different dates. The y axis represents actual number of pixels
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hyperparameter selection, allowing us to concentrate exclu-
sively on the efficacy of each feature set.

Random Forest (RF): This ensemble method con-
structs multiple decision trees and combines their outputs 
to enhance multiclass classification accuracy. RF utilizes a 
bagging technique, building several decision trees in paral-
lel, with the final decision derived from a majority vote. The 
minimum number of samples required to split an internal 
node is set to 2, [50–150] is the number of estimators and the 
Gini impurity metric is used for the decision of a tree split.

XGBoost [28]: XGBoost employs a boosting approach 
where decision trees are built sequentially. Each subsequent 
tree aims to correct the errors made by the one before it. The 
final output is an aggregate result from all the trees. This 
classifier is powered by the XGBoost library, which is built 
upon the gradient boosting framework. This framework uses 
decision trees as its foundational learners and incorporates 
regularization and various optimizations to enhance speed 
and performance. The ranges of hyperparameters used are: 
[0.3−0.5] for learning rate, [8–12] for maximum depth of a 
tree, 1 for L2 regularization term on weights and [50–150] 
number of estimators.

The assessment of accuracy was conducted using three 
metrics: F1-score, producer’s accuracy (PA), often termed 
recall, and user’s accuracy (UA), frequently referred to as 
precision. The F1-score is a measure that harmoniously 
integrates UA and PA, yielding a single score that accounts 
for both false positives and false negatives. PA, or recall, is 
calculated by taking the ratio of correctly classified pixels 
for a particular class to the total number of reference pixels 
for that class, highlighting instances of false negatives. In 
contrast, UA, or precision, focuses on false positives. It’s 
derived by dividing the number of correctly predicted pixels 
for a class by the total pixels classified as that class. This 
metric illustrates how well a classified pixel aligns with its 
true class on the ground.

Feature Importance Analysis

Feature importance in machine learning is useful in under-
standing which features predominantly influence the predic-
tion outcomes of the model. For this study, the Max-Rele-
vance Min-Redundancy (MRMR) algorithm was employed 
to quantify and rank the significance of features.

The MRMR algorithm operates on two primary criteria: 
maximizing the relevance of features with the target class 
while simultaneously minimizing the redundancy among the 
features themselves [27]. The idea is to identify a subset of 
features that not only has high discriminative power but also 
retains low inter-feature correlation, ensuring the diversity 
of the selected features.

To evaluate the classification performance based on 
the MRMR-determined feature ordering, we carried out 

experiments using subsets of features. These subsets were 
formed incrementally, starting with the top-ranked feature 
and gradually adding the next important feature according 
to the MRMR ranking. For instance, the first experiment 
used only the most important feature, the second experi-
ment used the top two features, and so on. This allowed us 
to observe how classification performance evolved as more 
features were included.

Results

The classification maps for the three classes-floating vegeta-
tion, emergent vegetation, and open water-are depicted in 
Fig. 7. Within this figure, each row corresponds to a specific 
date over the 5-year study period, and each column repre-
sents a distinct classification algorithm. The first column 
showcases the ground-truth reference data, as elaborated in 
Section “Validation data”. The second column reproduces 
results from our previous study by Manakos et  al. [10] 
using the histogram thresholding method described in Sec-
tion “Methodology”. In the last two columns, the outcomes 
from various ML algorithms and hyperparameters are pre-
sented. Specifically, the third column relies solely on the 
12 bands of Sentinel-2 for its input features. In contrast, the 
fourth column incorporates, along with the 12 bands, the 
indices [’NDVI’, ’NDWI’, ’B05/B11’] as advised by [10].

The barplots in Figs. 4, 5, and 6 illustrate a quantitative 
analysis of the classification performance for each of the 
three classes. This is gauged in terms of F1-score, user’s 
accuracy (UA or precision), and producer’s accuracy (PA 
or recall). These figures compare the performance of differ-
ent feature sets fed into ML algorithms against the baseline 
results from our prior study by Manakos et al. [10]. The 
exhaustive testing of ML algorithms and hyperparameter 
selections are represented as 95th-percentile confidence 
intervals.

In the figures, blue represents metrics for the results 
reproduced using the histogram thresholding method from 
[10]. As this thresholding approach, detailed in Sect. 2.4, 
deterministically computes a series of if-then scenarios for 
each date, no confidence intervals are depicted. Orange color 
assesses the group of ML methods (XGBoost classifier and 
random forest, with various hyperparameters) using only the 
12 Sentinel-2 bands. Green introduces the indices [’NDVI’, 
’NDWI’, ’B05/B11’] to the feature vector, complementing 
the Sentinel-2 bands. Purple evaluates classifiers using only 
the five indices [’NDVI’, ’NDWI’, ’B05/B11’, ’B11’, ’B12’] 
as used solely in [10]. Lastly, red incorporates 12 texture fea-
tures computed by the local binary pattern (LBP) for each of 
the 12 bands, resulting in a total of 27 features for each pixel.

Table 1 summarizes the classification performance met-
rics, specifically tailored for the floating vegetation class. 



 SN Computer Science           (2024) 5:597   597  Page 8 of 13

SN Computer Science

Fig. 4  Comparison of F1-scores using different input features and algorithms. Assessing different ML algorithms and hyperparameters selection 
is represented as 95th-percentile confidence intervals

Fig. 5  Comparison of user’s accuracy (precision) using different input features and algorithms. Assessing different ML algorithms and hyperpa-
rameters selection is represented as 95th-percentile confidence intervals
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The last row revisits findings from Manakos et al. [10] using 
the histogram thresholding method. Subsequent entries 
detail results from ML algorithms with diverse feature sets. 
This table facilitates a direct comparison, highlighting the 
efficacy of each method in classifying challenging vegeta-
tion segments.

The last segment of our analysis focuses on feature 
importance and selection. Table 2 showcases the rankings 
of the top 20 features as determined by the MRMR algo-
rithm. This ranking was obtained from multi-class classi-
fication, consolidating data across all dates. Building upon 
this, Fig. 8 illustrates the classification performance of the 
most challenging floating vegetation class for each individ-
ual date, relying on varying subsets of features as dictated 
by the MRMR order. Notably, the F1-scores presented for 
the floating vegetation class are derived from different ML 
algorithms and hyperparameters.

Discussion

From the classification maps in Fig. 7, we generally observe 
a good classification in agreement with the reference maps 
in the first column. A notable discrepancy is evident in the 
2017 map that uses only Sentinel-2 bands (third column, last 
row), where false positives appear for the floating vegetation 
class within the open water region. This issue is rectified 

when incorporating the indices recommended by [10] as 
input features, increasing the robustness of the ML algo-
rithms. This observation is further supported quantitatively 
in Figs. 4, 5 and 6 for the floating vegetation class.

In the examination of the performance metrics related to 
various input feature sets, several observations can be noted 
from the summarized Table 1. Specifically, the feature set 
that combines bands and indices yields the top F1 score of 
0.88, comparable to the combination of indices with texture. 
In contrast, solely using the bands yields a slightly reduced 
F1 score of 0.864±0.055 but maintains commendable classi-
fication performance. Limiting the feature set to just indices 
drops the performance further to 0.852±0.031. These results 
indicate that adding the three indices (NDVI, NDWI, and 
the ratio B05/B11) increase the methodology’s robustness, 
as evident from a single date evaluation. However, no dis-
cernible enhancement is observed from integrating texture 
features of local binary patterns for each band. Finally, the 
employed ML models for classifying the challenging float-
ing vegetation class, outperforming the reproduced results 
of the histogram-based thresholding method from Manakos 
et al. [10] with F1 score of 0.697±0.041.

In line with findings from our earlier study [10], the 
’Open Water’ class consistently registered the highest 
F1-scores, precision (UA), and recall (PA) across the five 
validation dates. Conversely, the ’Floating Vegetation’ 
class consistently underperformed, particularly in terms 
of PA (recall). This highlights the inherent difficulties in 

Fig. 6  Comparison of producer’s accuracy (recall) using different input features and algorithms. Assessing different ML algorithms and hyper-
parameters selection is represented as 95th-percentile confidence intervals
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discerning this class from its surrounding environment. 
Such trends are evident in Figs. 4, 5, and 6, where the 
’Open Water’ class is almost impeccably classified across 
all methods. Regions of emergent vegetation, on the other 
hand, exhibited diminished recall when classified using 
the histogram-based thresholding approach from [10]. In 
this context, low recall signifies a higher count of False 

Negatives. These discrepancies are effectively rectified 
when deploying simple ML methodologies. The preference 
for these simple ML solutions over newer or more experi-
mental approaches, such as deep learning, is grounded in 
their robustness, interpretability, and proven success in 
similar applications.

Fig. 7  Classification maps for floating vegetation, emergent vegetation, and open water. The dark blue class represents land or unclassified pixels 
in the case of [10]
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Several factors contribute to the challenges in correctly 
identifying water lilies and chestnuts, which represent the 
floating vegetation in our study area. Notably, the clas-
sification accuracy seems to be influenced by the species 
of the floating vegetation and its density. According to 
[14], testing across various wetlands in the lake revealed 
that high-density floating vegetation resulted in elevated 
producer’s accuracy (PA), whereas user’s accuracy (UA) 
was higher in areas with low-density floating vegetation. 
This observation is consistent with the findings from a 
study on Lake Luupuvesi in Finland by [15], which also 

reported a higher PA for dense floating vegetation and a 
superior UA for sparser vegetation. Additionally, potential 
discrepancies between reference and classification dates, 
(1 to 20 days, as described in Section “Validation data”), 
can introduce label errors. Such variances could stem from 
genuine shifts in floating vegetation distribution, wind-
induced changes in vegetation polygon density or geom-
etry, or even wave- or water-level-induced effects causing 
plant leaves to become moistened or partially submerged 
in the estuary during these periods.

Utilizing the leave-one-date-out validation technique 
offers a robust evaluation for the ML algorithms. Given that 
the five dates under examination span a 5-year period, we 
can confidently assert that a classifier trained on this lim-
ited dataset is temporally transferable, i.e., training a model 
with only a few dates can be used in other dates of simi-
lar seasonality. One possible limitation of the study is the 
inclusion of imagery solely during summer time for training 
and validation. However, the model’s transferability in time 
enables aquatic vegetation mapping of this region back to 
2016, coinciding with the beginning of the Sentinel-2 mis-
sion’s imagery provision. Beyond the evident cost benefits of 
foregoing yearly mapping missions for emergent and float-
ing vegetation, such an approach holds practical utility and 
could greatly enhance related ecological studies.

Moreover, the feature importance analysis, informed by 
the MRMR algorithm, elucidates two significant dimensions 
of our study:

Firstly, upon analyzing the first 10 features from our com-
prehensive feature vector, a saturation point becomes evi-
dent, as illustrated in Fig. 8. This point denotes a threshold 
beyond which the inclusion of additional features doesn’t 

Table 1  Performance metrics for various input feature sets using ML 
algorithms (XGBoost classifier and RF) with diverse hyperparam-
eters, compared to the reproduced results of the histogram threshold-

ing method from [10]. The metrics were specifically computed for the 
floating vegetation class, which presents the most significant classifi-
cation challenges

Algorithm F1 Precision (UA) Recall (PA)

ML bands + indices �.��� ± �.��� 0.904 ± 0.049 �.��� ± �.���

ML bands + indices + texture �.��� ± �.��� �.��� ± �.��� 0.853 ± 0.041

ML bands only 0.864 ± 0.055 0.867 ± 0.082 0.862 ± 0.037

ML indices only 0.852 ± 0.031 0.888 ± 0.051 0.822 ± 0.045

Manakos et al 0.697 ± 0.041 0.720 ± 0.099 0.690 ± 0.080

Table 2  Ranking of primary 20 
features based on the MRMR 
algorithm on the multi-class 
classification task, based on the 
total dataset of the 5-year study

Rank Feature Rank Feature Rank Feature Rank Feature

1 B11 6 B07 11 B8A 16 LBP
B08

2 B12 7 B06 12 B02 17 LBP
B07

3 B09 8 B01 13 NDWI 18 LBP
B04

4 NDVI 9 B05 14 B03 19 LBP
B06

5 B08 10 B05/B11 15 B04 20 LBP
B02

Fig. 8  Classification performance of the floating vegetation class 
based on subsets of features derived from the MRMR order-
ing: 1.B11, 2.B12, 3.B09, 4.NDVI, 5.B08, 6.B07, 7.B06, 8.B01, 
9.B05, 10.B05/B11, 11.B8A, 12.B02, 13.NDWI, 14.B03, 15.B04, 
16.LBP

B08
 , 17.LBP

B07
 , 18.LBP

B04
 , 19.LBP

B06
 , 20.LBP

B02
 . The 

F1-scores for the floating vegetation class are computed using a com-
bination of ML algorithms and hyperparameters
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substantively improve the classification outcomes. Moreo-
ver, the incorporation of further features doesn’t diminish the 
classification’s efficiency either. Identifying such a saturation 
point aids in evading overfitting and simultaneously upholds 
model simplicity without sacrificing precision.

Secondly, our resultant feature ranking harmonizes with 
the conclusions drawn in our preceding study [10]. It empha-
sizes the distinctively influential roles of bands B11, B12, 
B09, and the NDVI index in the delineation of aquatic veg-
etation. Moreover, the addition of index B05/B11, together 
with NDVI and NDWI as input features has shown to increas 
the robustness of the classifier. It’s worth noting, however, 
that certain features, despite receiving a lower rank from the 
MRMR algorithm due to inherent redundancy, may still hold 
intrinsic value. Their contribution, in specific contexts, could 
be substantial to the overall classification task.

Conclusion

This study presented a comprehensive exploration into the 
classification of aquatic (emergent and floating) vegeta-
tion using various feature sets from Sentinel-2 images and 
deploying traditional machine learning algorithms, build-
ing upon our prior study [10] that suggested a histogram-
based thresholding methodology. Our research has benefited 
from and underscored the value of field measurements and 
meticulous validation methodologies. The employed ML 
algorithms, namely random forest and boosting trees, con-
sistently showcased commendable performance, distinctly 
surpassing the histogram-based thresholding technique.

While the 12 bands from Sentinel-2 L2A imagery already 
provided a robust feature set, the inclusion of select indices 
(NDVI, NDWI, and the ratio B05/B11) further refined the 
methodology, especially evident during a singularly chal-
lenging date. Moreover, the feature importance analysis con-
ducted using the MRMR algorithm revealed a saturation 
point for robustly classifying aquatic vegetation with just 
10 distinct features. Beyond the Sentinel-2 bands (mainly 
B11, B12, B09), this includes the NDVI and B05/B11 indi-
ces. These results verify the ones from our previous work 
[10]. In addition, worth to mention is that the introduction 
of texture features yielded no additional enhancement to the 
already superior accuracy; yet, resulted to no diminishing 
effect either.

Our results suggest an accurate alignment between the 
ML based classification maps from spaceborne images 
and the reference in situ data over a 5-year study period. 
Using the leave-one-date-out validation scheme, the tem-
poral transferability of our classifier is thus demonstrated. 
This method allows for aquatic vegetation mapping back 
to 2016, aligned with the start of the Sentinel-2 mission. 

This approach not only saves costs but also offers valuable 
insights for ecological studies.
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