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Abstract

Wastewater-based epidemiology (WBE) has emerged as an effective environmental sur-

veillance tool for predicting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) disease outbreaks in high-income countries (HICs) with centralized sewage infrastruc-

ture. However, few studies have applied WBE alongside epidemic disease modelling to esti-

mate the prevalence of SARS-CoV-2 in low-resource settings. This study aimed to explore

the feasibility of collecting untreated wastewater samples from rural and urban catchment

areas of Nagpur district, to detect and quantify SARS-CoV-2 using real-time qPCR, to com-

pare geographic differences in viral loads, and to integrate the wastewater data into a modi-

fied Susceptible-Exposed-Infectious-Confirmed Positives-Recovered (SEIPR) model. Of

the 983 wastewater samples analyzed for SARS-CoV-2 RNA, we detected significantly

higher sample positivity rates, 43.7% (95% confidence interval (CI) 40.1, 47.4) and 30.4%

(95% CI 24.66, 36.66), and higher viral loads for the urban compared with rural samples,

respectively. The Basic reproductive number, R0, positively correlated with population den-

sity and negatively correlated with humidity, a proxy for rainfall and dilution of waste in the

sewers. The SEIPR model estimated the rate of unreported coronavirus disease 2019

(COVID-19) cases at the start of the wave as 13.97 [95% CI (10.17, 17.0)] times that of con-

firmed cases, representing a material difference in cases and healthcare resource burden.
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Wastewater surveillance might prove to be a more reliable way to prepare for surges in

COVID-19 cases during future waves for authorities.

Introduction

Wastewater-based epidemiology (WBE) has emerged as a valuable and cost-effective strategy

for monitoring the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) within communities and predicting disease outbreaks [1, 2]. This approach capitalizes

on the detection of SARS-CoV-2 RNA in wastewater samples and has been widely employed

using samples obtained from wastewater treatment plants (WWTPs) in nations with central-

ized sewage networks [1, 2]. While initially applied in countries with centralized sewage net-

works, predominantly through wastewater treatment plant (WWTP) samples [3, 4], the

applicability of WBE has transcended geographical constraints, encompassing a diverse range

of sources such as river water, airport wastewater, hospital effluents, marketplaces, and munic-

ipal drains [5–8].

This research endeavours to explore the feasibility of a cross-sectional wastewater-based

sampling strategy aimed at detecting and quantifying SARS-CoV-2 viral loads in untreated

wastewater within the Nagpur district, located in Maharashtra, Central India. Notably, the

sampling done for this study coincides with the second wave of the COVID-19 pandemic in

India in 2021, marked by an unprecedented surge in transmission and heightened disease

impact. However, the comprehensive integration of WBE into disease surveillance systems,

particularly in low- and middle-income countries (LMICs), is limited due to inadequate cen-

tralized sanitation facilities [3, 4]. One of the major reasons for this underutilization of WBE in

LMICs, despite its huge potential, is that in such countries centralized sanitation facilities are

often lacking [7].

In the course of carrying out this research, though there are several related works [9–13],

one seminal study in the field of WBE that this research utilised was conducted by McMahon

et al. [9]. Their study investigates the use of wastewater samples to monitor community-level

transmission of SARS-CoV-2, the virus responsible for COVID-19. The authors employ a Sus-

ceptible-Exposed-Infectious-Recovered (SEIR) model to estimate the number of infected indi-

viduals based on SARS-CoV-2 RNA concentrations detected in wastewater. Via their rigorous

analysis, McMahon et al. [14] demonstrate the utility of the SEIR model in predicting infec-

tions by considering various parameters such as transmission rates and viral shedding dynam-

ics. In addition, their work introduces a simplified equation that aids in estimating infections

from wastewater data, enhancing the accessibility of the model’s application. The study’s use of

Monte Carlo simulations further strengthens the accuracy of predictions, revealing a notable

discrepancy between estimated infections and confirmed cases, thus highlighting the potential

value of the SEIR model in informing public health strategies [14].

To this end, the integration of wastewater-based estimates complements traditional clinical

testing and bolsters the accuracy of surveillance efforts, especially in resource-constrained set-

tings where extensive clinical testing might be challenging [15]. Thus, by integrating data from

wastewater samples with demographic information and clinical data, a model is proposed

which generates robust estimates of the number of COVID-19 infections within a given popu-

lation. Crucially, this approach provides a comprehensive perspective on viral transmission

dynamics, assisting public health officials in understanding the disease’s impact on a broader

scale. The imperative of this study is to develop wastewater-based surveillance systems in
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LMICs, particularly those with resource limitations and complex infrastructural challenges

and underscores the necessity of adapting WBE to a broader global context [16, 17]. In these

settings, the translation of wastewater surveillance data into effective public health tools

requires the integration of mathematical models and simulations.

To address these challenges, the adaptation of mathematical models is crucial. The use of a

modified version of SEIR modelling and Monte Carlo simulation (MC) in this study is moti-

vated by the ability to effectively capture and analyze the transmission dynamics of infectious

diseases, such as SARS-CoV-2. The SEIR model and MC simulation have established them-

selves as valuable tools in epidemiological research because of their ability to provide insights

into the complex systems involved in infection transmission, population dynamics, and uncer-

tainty analysis. The SEIR compartment model forms the foundation for understanding disease

transmission dynamics [18–22]. The SEIR model categorizes individuals into different com-

partments based on their disease status, encompassing susceptible, exposed, infectious, and

recovered individuals. This model enables the estimation of disease prevalence over time, aid-

ing in the interpretation of wastewater surveillance data and its linkage to community infec-

tion dynamics. MC simulations, on the other hand, are a robust computational technique used

to account for uncertainties and variations in parameters. By generating multiple simulations

with randomly sampled inputs, MC simulations enable the exploration of a range of possible

outcomes. This is particularly valuable in epidemiological studies where factors such as contact

rates, transmission probabilities, and intervention effects can vary or are uncertain. MC simu-

lations provide a way to quantify the uncertainty associated with model predictions, helping

researchers understand the potential variability in their results [14, 23–27].

This research initiative represents a pioneering effort in the Indian context, harnessing the

SEIPR model and MC simulations to illuminate the transmission patterns of SARS-CoV-2

through wastewater. By addressing critical knowledge gaps within LMICs and regions con-

fronting infrastructural limitations, this study contributes not only to scientific advancement

but also furnishes actionable insights for policy formulation and disease mitigation. Amidst

the complex landscape of the COVID-19 pandemic, this endeavour augments the global repos-

itory of knowledge, empowering communities and authorities alike to respond effectively to

this ongoing public health challenge.

In this study, we explored the feasibility of conducting a cross-sectional wastewater-based

sampling study for the detection, determination, and comparison of SARS-CoV-2 viral loads

from untreated wastewater in urban and rural areas of Nagpur district, Maharashtra, Central

India. We selected our sampling period during the second wave of COVID-19 in India in

2021. We next developed a modified version of the SEIR compartment mathematical model

that has been frequently used to model COVID-19 dynamics in different populations [18, 19,

22], herein termed the “SEIPR model” to predict the number of infected individuals within

specific Nagpur district partitioned zones and the total urban population under study. After

predicting the number of infected individuals, the estimates were used to perform Monte-

Carlo simulations to model the variations in the concentration of SARS-CoV-2 RNA in

wastewater over time. These modelled changes were then compared to the actual measure-

ments recorded to evaluate the accuracy of our SEIPR model. The urban incident COVID-19

cases were also used to calculate the basic reproduction number R0 based on the SEIPR

model. This data was correlated to air temperature, relative humidity (a loose proxy for rain-

fall as we did not have the precise precipitation data), and population density to enhance epi-

demiological understanding of environmental and human factors that may impact

SARS-CoV-2 transmission dynamics in Central India. To the best of our understanding, this

is the first Indian report that has employed the SEIPR model to measure the transmission

patterns of SARS-CoV-2 through wastewater. This study could prove valuable for local
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authorities and government officials as it provides important insights to make well-informed

policy decisions.

Materials and methods

Wastewater sampling, SARS-CoV-2 detection, and quantification

Untreated (raw) wastewater samples were collected prospectively from the drainage systems in

the Nagpur district of Maharashtra, India, during the second wave of the COVID-19 pandemic

from January 31st to July 9th, 2021. Nagpur district is divided into 13 rural talukas and the

Nagpur urban region, governed under Nagpur Municipal Corporation (NMC). The Nagpur

urban region is further divided into ten municipality zones with each further divided into

municipal wards. Individual grab samples were collected from sewers within each urban

municipality zone as well as open drains/groundwater sources of rural talukas representing the

complete Nagpur district, as illustrated in Fig 1 right panel (urban taluka) and left panel (rural

talukas in relation to urban taluka). Each sample (1000 mL) was collected in sterile wide-

mouth autoclaved plastic bottles sealed in plastic bags and transported under a cold chain at

4˚C within 18–24 hours. All sampling was conducted during the morning hours between

07:30 to midday using appropriate COVID-19 precautions. Samples were transported to Dr B.

Lal Institute of Biotechnology, Jaipur, for pre-processing, RNA extraction and SARS-CoV-2

detection by RT-qPCR, as previously described [28]. No specific permits were required for this

study for field site access. We have only informed NMC regarding this study. Detailed sample

processing methodology is presented in S1 Appendix.

Data collection for COVID-19 cases and environmental characteristics

Demographics, and climatic factors including the presence of rainfall, air temperature, and rel-

ative humidity, along with GPS coordinates, were also recorded by field workers based at the

Central Indian Institute of Medical Sciences (CIIMS) and assisted by the NMC. Daily labora-

tory-confirmed COVID-19 positive cases and deaths between 1st February and 30th July 2021

Fig 1. Map of Nagpur district (study area) showing sampling locations for wastewater study. Each dot represents a

location of wastewater collection in Nagpur urban and rural talukas. The map was created using the ArcGIS 10.4

version from a GIS student. Source of map used “ESRI, Maxar, Earthstar, Geographics and the GIS user Community”.

https://doi.org/10.1371/journal.pone.0303529.g001
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within the ten different municipality zones in urban Nagpur were obtained from the health

department of the NMC.

Epidemiological modelling and estimation of infected individuals

We based our study of the transmission of SARS-CoV-2 infections on a deterministic ordinary

differential equation (ODE) disease model in which the individuals in an entire population

can present in five mutually exclusive compartments according to their disease status and

other measures. These compartments are susceptible, exposed, infectious, confirmed positive

and recovered, abbreviated as the SEIPR model, which is a modification of the SEIR model

and that described by Acheampong et al. [20], where additional compartments were given to

reflect the Ghanaian environment [20]. We denote the proportion of susceptible individuals

by S(t), the proportion of asymptomatic infected individuals by E(t), the proportion of symp-

tomatic infectious individuals by I(t), the proportion of confirmed positive infectious individu-

als by P(t) and the proportion of recovered individuals by R(t). It must be noted here that

individuals in the confirmed-positive class are carriers of the SARS-CoV-2 virus who have had

clinical confirmation of this status. However, individuals in an infectious class show clear

symptoms and have high infectivity but have not yet been clinically confirmed positive. Nota-

bly, as highlighted by Acheampong et al. [20], individuals classified within the infectious class I
(t) represent an abstract concept that is often unmeasurable. This underscores the significance

of introducing a compartment like the confirmed-positive class P(t), enabling comparison

with the actual reported cases within the population. The SEIPR model was applied to study

COVID-19 dynamics in ten zones within Nagpur’s urban area. Each zone operates indepen-

dently. Disease transmission is driven by a force of infection (λ), determined by the effective

contact rate per day (β1) and reductions in transmissibility for exposed (β2) and confirmed

positive (β3) individuals. Disease-induced deaths are assumed to only occur within the infec-

tious (I) and confirmed positive (P) compartments. The model describes how individuals tran-

sition between these compartments based on rates of entry and exit, such as exposure to

infection (λ), testing (ω), recovery (ρ), and disease-induced death (d). Recovery of individuals

(R) depends on recovery rates from the confirmed positive (P) and symptomatic infectious (I)
compartments (ρP(t) and ργP(t), respectively). Additionally, no natural birth and death are

considered, and their exclusion may be justified given the assumed short-term focus on

COVID-19 dynamics and the neglect of population-level demographic changes, simplifying

the model for this specific epidemiological context. These underlying assumptions guide the

model’s representation of COVID-19 transmission and progression in the Nagpur urban area.

The transmission dynamics of the SARS-CoV-2 infections are described by the five nonlinear

systems of ODEs shown in Eq (1):

d
dt
Xt ¼ f Xt; t; yð Þ; ð1Þ

with X0 = [S0, E0, I0, P0, R0]T is initial number of individuals, t denotes time, Xt = [S, E, I, P, R]T

denotes the number of individuals in these compartments at time t, T denotes matrix transpo-

sition, denotes the parameter vector and f(�) denotes the nonlinear relationship describing the

state variable (see S2 Appendix for detailed mathematical derivation of SEIPR model). The

force of infection used in this model is λ = β1(β2E(t) + β3P(t) + I(t)), with β1 denoting the effec-

tive contact rate per day, and β2 and β3 respectively accounts for the reduction in disease trans-

missibility of exposed and confirmed positive individuals. A value of epidemiological

importance in infectious disease modelling is the basic reproductive number, which in this

study is referred to as the number of secondary SARS-CoV-2 infections generated by a single

PLOS ONE Population infection estimation from wastewater surveillance for SARS-CoV-2 in Nagpur, India

PLOS ONE | https://doi.org/10.1371/journal.pone.0303529 May 29, 2024 5 / 18

https://doi.org/10.1371/journal.pone.0303529


active SARS-CoV-2 infected individual during the entire infectious period [29]. It is given by

the Eq (2):

R0 ¼ b1S
0 b2

�
þ
b3ð1 � oÞ

iT
þ
dð1 � oÞ þ iTo

iTpT

� �

; ð2Þ

where iT = δ + γρ + d and pT = ρ + d. The effective reproductive number (R0) is made up of

contributions from secondary infections from the exposed class generated by asymptomatic

individuals (first term), confirmed positive individuals’ class (second term), and the infected

(symptomatic) class (third term). S0 is the proportion of the population that is initially suscep-

tible. Other parameters in Eq (2) are defined as follows: � denotes the incubation period, σ
denotes the progression rate of susceptible individuals to the confirmed positive class via test-

ing per day, δ denotes the progression rate of infectious individuals to the confirmed positive

class via testing per day, d denotes the disease-induced death rate per day, ω denotes the frac-

tion of exposed individuals that transient to confirmed positive class, γ denotes the fraction of

infectious individual that transient to recovery class and ρ denotes the recovery rate of con-

firmed positive individuals per day. In this study, the nonlinear least squares scheme is used to

estimate the parameters involved in the calculation of R0. The model fitting was first carried

out for each zone to obtain zone-specific parameter estimates and secondly for all zones put

together as a single unit. Further details about model derivation and parameter estimation can

be found in the Supplementary (see S2 Appendix for a full description of model parameters

and variables). For this study, the number of SARS-CoV-2 infected individuals within urban

Nagpur was estimated using the modelling approach proposed by McMahon et al. [14], which

combines our disease model (SEIPR) to the viral concentration estimations [14]. As already

mentioned, there are ten zones within urban Nagpur and each zone is modelled indepen-

dently. Based on McMahon et al. [14], using our SEIPR disease model, the number of newly

detected infections on the jth day Inj is modelled as a Poisson process with rate parameter

Nβ1[β2E(j) + β3P(j) + I(j)], which is expressed as Eq (3):

In
j � PoissonfNb1½b2EðjÞ þ b3PðjÞ þ IðjÞ�g; for j ¼ 1; 2; . . . ; J; ð3Þ

where N is the total number of individuals that reside in the zone of the drainage systems. The

viral load being introduced into the drainage system at time t is

V0ðtÞ ¼
X

j:j�t

X
Inj

i¼1

VijðtÞ; ð4Þ

where Vij(t) is the number of copies of SARS-CoV-2 RNA entering the drainage systems via

faeces of the ith individual of out the I n
j who became infected on day j is modelled according

to the Eq (5)

VijðtÞ ¼ Wij 10
�ijðt� jÞ

5 Iðj < t � 5þ jÞ þ 10
c

ð�ij � cijÞðt� 5� jÞ
5

ij Iðt > 5þ jÞ

( )

; ð5Þ

for i ¼ 1; 2; . . . ; In
j (infected individuals) and j = 1, 2, . . ., J (days). In Eq (5), ϑij denotes the

log10 g of faeces per ith individual who gets infected on the jth day, modelled as a normal distri-

bution with mean of 2.41 and standard deviation of 0.25 per data from lower-middle-income

countries [15], ϕij denotes the log10 maximum RNA copies per g being of faeces shed 5 days

after being infected, modelled as a normal distribution with mean of 7.6 and standard devia-

tion of 0.8 [14] and ψij denotes the log10 RNA copies per g being of faeces shed 25 days after
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being infected, modelled as a normal distribution with mean of 3.5 and standard deviation of

0.4. To correlate the viral load being introduced into the drainage system to that being mea-

sured, McMahon et al. [14] proposed the Eq (6) called the downstream RNA copies measured,

V(t, τ) to account for the time-dependent degradation in the drainage system,

Vðt; tÞ ¼ V0ðtÞ
1

2

� � t=t∗

; ð6Þ

where τ is the time elapsed between waste excretion and arrival at the drainage systems mod-

elled as a uniform distribution from τ = 1h to τ = 1.5h, V0(t) is the viral load introduced into

the drainage system modelled by Eq (4), τ* is the temperature-dependent half-life modelled

according to Eq (7)

t∗ ¼ t∗
0
QðT� T0Þ=10�C

0 ; ð7Þ

where T is the current temperature of the drainage system, modelled as a uniform distribution

from T = 19˚C to T = 31˚C, t∗
0

is the half-life (h) at an ambient temperature of T0, modelled as

a normal distribution with a means of 3 h and 30 h respectively, with standard deviations of

0.7 and 1.5, Q0 is the temperature-dependent rate of change, modelled as a normal distribution

with a mean of 5.5 and standard deviation of 0.5. The choice of distributions and parameter

ranges were informed by previous research as well as actual measurements or observations of

SARS-CoV-2 in wastewater to inform their selection of parameter ranges for the Monte Carlo

simulation. All the above information was used to simulate the viral load of infected individu-

als generated by our proposed disease model via 500 Monte Carlo simulations, since beyond

this number of Monte-Carlo simulations, the value of the simulated RNA copies does not sig-

nificantly change. Importantly, the number of Monte Carlo samples depends on various fac-

tors including the complexity of the model, which is the case here.

Finally, McMahon et al. [14] proposed a model for estimating the number of infected indi-

viduals in each day given the measured RNA copies quantified from samples collected from

the drainage systems and is given by the Eq (8)

J t ¼
Q� V
A� B

; ð8Þ

where Q denotes the average flow rate at the drainage system in L per day, V denotes the virus

copies per L, A is the rate of faeces production per person in g per day with A = 2 × 128 for

developing countries [15], and B denotes the maximum rate at which the virus is shed in RNA

copies for g of faeces per day with B = 107.6 × 128 [14]. In this study, Q was calculated as a

point estimate using the product of the at-home population in the catchment of each zone,

and the observed average per capita wastewater rate, which we assumed to be either 120 or 135

L/person/day (based on the Ministry of Housing and Urban affairs suggested benchmark for

urban water supply).

Statistical analyses

Due to the lack of COVID-19 incidence data for the rural areas in Nagpur, we explored catch-

ment areas within urban Nagpur by zones to gain insight into the concentration of SARS-

CoV-2 viral load in the collected wastewater samples. Based on the model parameter estimates,

the distribution of the RNA copies per day existing in the drainage systems by zones was esti-

mated, where we used the 2011 population census data as an estimate for each population

zone. Of note, the use of the Monte Carlo simulation approach can help estimate uncertainties

and account for variability in the data, which provides some indication of potential uncertainty
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and variability in prevalence estimates despite the limitations of using this census data, making

the margin of error not a major problem. Data on continuous variables are presented as

median with interquartile ranges (IQR). Categorical variables are shown as counts and per-

centages in parentheses. The normality of data was assessed using the Shapiro-Wilk test. Stu-

dent’s t-test was used for comparing variables which were normally distributed. Mann-

Whitney test was used when the normality assumption was violated. The Fisher’s exact test

and Proportion tests were applied to compare categorical variables. All p− values and confi-

dence intervals (CIs) are two-sided and a p–value of < 0.05 is considered statistically signifi-

cant. All modelling studies were performed using MATLAB, 2022o and Rstudio 2022.07.1+554

software on macOS Monterey Version 12.5.1 MacBook Pro (13-inch, M2, 2022).

Ethical approvals

The study was approved by the Faculty of Medicine and Health Sciences Research Ethics Com-

mittee at the University of Nottingham (REC No. 131–1120), and the institutional ethics com-

mittees of the Central India Institute of Medical Sciences, Nagpuadjust width. Lal Institute of

Biotechnology, Jaipur.

Results

SARS-CoV-2 detection in wastewater samples

A total of 983 wastewater samples were analysed, of which 743 (75.6%) were from the urban

and 240 (24.4%) from the rural parts of Nagpur district. Overall, 43.7% (95% confidence inter-

val 40.1, 47.4) of wastewater samples in the urban and 30.4% (95% confidence interval 24.66,

36.66), in rural areas tested positive for SARS-CoV-2 (p< 0.001); RT-PCR results revealed sig-

nificantly higher SARS-CoV-2 viral copies per L in urban zones (p< 0.001). The median tem-

perature of urban Nagpur was 29.0˚C, (IQR: 25.75–31.00) and was significantly lower than

that of the rural areas (31˚C, (IQR: 29–33); p< 0.001). The median humidity was also signifi-

cantly higher in urban (38%, IQR: 26–53) vs rural (32%, IQR: 22–50) Nagpur (p< 0.001) at

the time of sampling (Table 1).

Table 1. Summary of climatic characteristics and RT-PCR results of wastewater samples collected within urban and rural Nagpur catchment.

Characteristics Urban Rural Significance

N = 743 N = 240

Temperature (˚C) 29.00 (25–75–31.00) 31.00 (29.00–33.00) �0.001

Humidity (%) 38.00 (26.00–53.50) 32.00 (22.00–50.00) �0.001

Seegene (RT-PCR)

IC 26.00 (26.00–28.00) 25.00 (24.00–28.00) �0.05

E(Ct) 32.00 (31.00–33.00) 32.00 (32.00–36.00) n.s
RdRp(Ct) 35.00 (34.00–36.00) 35.00 (34.00–36.00) � 0.001

N(Ct) 33.00 (32.00–34.00) 32.00 (32.00–33.00) � 0.001

Genome load (105 copies per L) 1.40 (0.72–3.00) 1.17 (0.48–1.60) � 0.001

RT-PCR Resulta

Positive 325 (43.74%) 73 (30.41%) � 0.001

Negative 418 (56.26%) 167 (69.58%)

Data are presented n (%) or median (IQR). NA = not applicable.
a: RT-PCR results for wastewater samples; ct: cycle threshold; n.s.: not significant

https://doi.org/10.1371/journal.pone.0303529.t001
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Of the 10 sampled urban catchment zones, two zones (7 and 9) yielded no SARS-CoV-2

RNA detection but did record the highest humidity levels (Table 2). Only 3 zones experienced

rainfall; zones 1 and 8, where rainfall was recorded 1 day prior to sample collection, and zone

7, where sample collection took place during heavy rainfall. It is likely that these rainfall events

would also contribute to diluting the sewage prior to sampling. Moreover, rainfall events

would also contribute to more rapid and effective flushing out within the sewers. In zone 9,

wastewater sampling followed the conclusion of the main COVID-19 infection wave, and

therefore, the cases of COVID-19 at the time of sampling were expected to be very low, as illus-

trated in S1A–S1E Fig (S3 Appendix). The distributions of the continuous data and their nor-

mality plots by individual zones are shown in S3A–S3D Fig (S3 Appendix). The respective

significance p– values shown on the plots are all less than 0.05, indicating the data is not nor-

mally distributed. S1 Table (S3 Appendix) summarises the demographic characteristics of the

catchment zones where wastewater samples were collected. The demographic and environ-

mental characteristics by zones are presented in S2 and S3 Tables (S3 Appendix).

Estimation of infected individuals

We fitted our proposed SEIPR model to the reported confirmed COVID-19 positive cases and

deaths in urban Nagpur via the nonlinear least squares method. Fig 2(a) and 2(b) shows the

representative model fit for the SEIPR model to data for all 10 Nagpur catchment zones com-

bined as a single unit for the period of March to July 2021.

Both plots show an increase in confirmed positive cases and deaths up to the first 50 days

and then a decrease over the last 100 days. Thus, the SEIPR model predicts a decrease in the

susceptible population as individuals become exposed, infected, confirmed positive, and then

either recover or are confirmed dead. The remaining model fittings for the urban zones are

presented in S5 Fig (S3 Appendix). The corresponding model parameter estimates for the

respective catchment zones and R0 as calculated using clinical incident data only, are presented

in Table 3. Each urban catchment zone exhibited different effective contact rates, β1, signifying

different contact patterns. In addition, the basic reproduction number, R0 is different for each

Table 2. SARS-CoV-2 RT-PCR results detected per unit of time and detected viral load results of the wastewater samples with climatic and population census infor-

mation for each Nagpur catchment zone.

Catchment Populationa Temperature (˚C) Humidity (%) RT-PCR Resultb (Positive) Genome Copy (105 Copies per L)

Zone 1 239171 24 (22–26) 52 (40–65) 24 (24.5) 1.135 (0.875–1.359)

Zone 2 159458 24 (22–26) 33 (25–39) 47 (39.5) 17.003 (3.463–298.375

Zone 3 232247 32 (30–34) 23 (18–34) 57 (87.7) 2.390 (0.776–3.753)

Zone 4 208426 30 (27.5–33.5) 21 (16.5–41) 39 (83.0) 0.883 (0.560–2.552)

Zone 5 243953 31 (30–32) 39 (27–45) 46 (73.0) 2.168 (1.533–2.864)

Zone 6 204438 31 (29–32) 36 (33–44.2) 36 (60.0) 2.509 (1.309–3.439)

Zone 7 187044 27 (26–29) 92 (88–94) 0 (0.0) NA

Zone 8 346287 33 (30–34) 40 (28.5–52.5) 5 (6.7) 0.066 (0.036–0.124)

Zone 9 317321 29 (27–32) 83 (74–94) 0 (0.0) NA

Zone 10 267320 27 (25–29) 27 (24–31) 71 (71.7) 0.705 (0.376–1.185)

Data are presented n (%) or median (IQR);
a: 2011 census data;
b: RT-PCR results for wastewater samples per unit of time for each zone,

NA: not available.

https://doi.org/10.1371/journal.pone.0303529.t002
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catchment zone with the highest R0 observed in zone 9 and lowest in zone 2. All the zones

have an R0 greater than 1 except for zone 2. All the zones, when combined as a single unit,

gave an R0 of 1.11. Linear regression analysis to investigate the variation in R0 and β1 between

the zones revealed a statistically significant positive correlation between R0 and population

density [R2 = 0.40, p–value = 0.05] whilst for effective contact rate (β1) and R0, there was a neg-

ative correlation with humidity [R2 = 0.49, p–value = 0.02]. No significant relationship was

seen between temperature and R0 or β1 (S8 Fig in (S3 Appendix)).

Taking all zones combined, Fig 2(c) depicts the distribution of the RNA copies per day, sim-

ilar to the dynamics observed by McMahon et al. [14].

There is a positive correlation between the concentration of SARS-CoV-2 RNA in the

wastewater and the number of confirmed positive individuals as well as recovering individuals

and shedding rates. There was a different association between the measured viral RNA con-

centration and the confirmed positive cases during the earlier stages (January and February

2021) of the wastewater sampling, with high wastewater viral concentrations but low numbers

of confirmed positive individuals. Therefore, zone 1 and zone 2 were not considered for the

viral RNA load SEIPR modelling (see S2 Fig in the S3 Appendix). Fig 2(d) depicts a zoomed-in

plot of the predicted number of active COVID-19 cases versus SARS-CoV-2 RNA mass rate

with individual Monte-Carlo simulations represented by grey points. The measured RNA

mass rates and estimated number of infectious individuals based on Eq (8) are denoted by the

coloured datapoints and fall within the 95% CI denoted by the red solid lines. In this particular

Fig 2. Considering a half-life of 30 h. Model fit to the proportion of the population. (a) (left) confirmed positive

COVID-19 infections and (b) (right) confirmed deaths from COVID-19 infections for all zones as a single unit. (c)

SEIPR model (1) prediction for the mass rate of SARS-CoV-2 RNA in wastewater over time via Monte-Carlo

simulation represented by black points. (d) Zoomed-in plot of predicted number of active COVID-19 cases versus

SARS-CoV-2 RNA mass rate with individual Monte-Carlo simulations represented by grey points, where 75% CI and

95% CI are denoted by the green and red solid lines, respectively. Coloured datapoints denote the measured RNA mass

rates and estimated infectious individuals based on Eq (8) as presented in Table 4, respectively for an assumed average

per capita wastewater rates of 120 L per person per day (red solid points) and 135 L per person per day (blue solid

points) for all zones as a single unit.

https://doi.org/10.1371/journal.pone.0303529.g002
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study, the sensitivity of the model regarding the viral half-life at an ambient temperature of the

drainage is explored. It is observed that for a viral half-life of 3 h, the association between the

mass rate of gene copies detected in wastewater and the confirmed positive cases is affected

(see S7A Fig in the S3 Appendix). Data for all other catchment zones are given in the S6-S8

Figs (S3 Appendix)) except for zone 7 and zone 9, where wastewater samples from these zones

tested negative (Table 2). Furthermore, all plots depicting the entire Monte-Carlo simulations

of the predicted number of active COVID-19 cases versus SARS-CoV-2 RNA mass rate are

presented in S9 and S10 Figs (S3 Appendix).

Table 4 presents the SARS-CoV-2 RNA wastewater concentrations in samples taken from

all the catchment zones considered as a single unit between 1st March and 27th of May, 2021.

Results of the other catchment zones are presented in the Supplementary. Each row corre-

sponds to a specific date on which the wastewater samples were taken. The “RNA (copy per

L)” column provides the concentration of SARS-CoV-2 genetic material in wastewater, pro-

viding insights into the prevalence of the virus in the population. The following columns, titled

“Option 1” and “Option 2”, present two separate scenarios based on different wastewater rates

per capita (120 L/person/day for Alternative 1). and 135 L/person/day for ‘Option 2). These

scenarios are important for estimating the number of infected individuals using RNA concen-

trations as an indicator of viral activity. Calculated RNA levels are provided for each scenario,

showing the rate of change in viral RNA levels per day. In addition, the “Estimated number of

infected individuals” column quantifies the number of potential COVID-19 cases inferred

from RNA levels, providing a way to assess community spread of the virus.

Direct comparison with clinically observed cases is presented in the column “Clinically

observed COVID-19 positive cases”, showing actual confirmed positive cases reported by clini-

cal diagnoses. This actual data is used as a benchmark to evaluate the validity of the estimates

obtained through wastewater analysis. Side-by-side estimating infected individuals with

Table 3. Model parameter estimates and basic reproduction number (R0) for each catchment zone of Nagpur district.

Catchment Parameter

β1 (per day) β2 (10−4) β3 (10−4) � * (per day) σ (10−4 per day) ω (10−4 per day) δ (10−4 per day) γ ρ (10−4 per day) d (10−4 per day) R0

Zone 1 0.91 0.42 143.79 0.2 2.48 19.16 21.81 1.00 1773.70 1.51 1.02

Zone 2 0.80 8.20 170.81 0.2 2.70 5.74 21.192 1.00 1627.00 1.58 0.98

Zone 3 0.92 0.01 8.22 0.2 2.64 10.13 25.811 1.00 1714.30 1.81 1.06

Zone 4 0.93 306.13 139.39 0.2 1.49 8.95 10.09 1.00 1344.40 1.03 1.52

Zone 5 0.99 7.12 1969.00 0.2 2.04 2.66 23.67 1.00 1557.30 1.88 1.26

Zone 6 0.76 1194.60 0.37 0.2 1.08 22.97 0.67 0.99 1333.90 0.56 1.59

Zone 7 0.75 0.02 11.05 0.2 0.522 2.70 3.51 1.00 1376.80 0.06 1.09

Zone 8 0.82 20.31 9990.80 0.2 0.69 1.66 8.46 0.98 1639.90 0.62 1.02

Zone 9 0.49 0.03 4998.80 0.2 0.88 27.16 0.01 0.59 1001.50 0.42 1.66

Zone 10 0.92 1.27 2.07 0.2 2.07 5.51 11.77 1.00 1583.00 0.87 1.15

All Zones 0.80 209.22 242.52 0.2 1.53 0.32 12.65 0.98 1570.60 0.98 1.11

*: fixed parameter estimate adapted from Zhang et al.,
**: Computation of R0 and all model parameters are based on clinical incidence data and not wastewater samples.

Note: β1 denotes the effective contact rate per day, β2 and β3 respectively account for the reduction in disease transmissibility of exposed and confirmed positive

individuals. � denotes the incubation period, σ denotes the progression rate of susceptible individuals to confirmed positive class via testing per day, δ denotes the

progression rate of infectious individuals to confirmed positive class via testing per day, d denotes the disease-induced death rate per day, ω denotes the fraction of

exposed individuals that transient to confirmed positive class, γ denotes the fraction of infectious individual that transient to recovery class and ρ denotes the recovery

rate of confirmed positive individuals per day.

https://doi.org/10.1371/journal.pone.0303529.t003
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observed clinical cases helps assess the reliability of using wastewater RNA concentrations as a

predictor to monitor trends in COVID-19. Overall, this table highlights the importance of

leveraging wastewater-based epidemiology to better understand viral prevalence. The ratio of

unreported to reported cases under options 1 and 2 are respectively computed to be 12.42

(95% CI 9.04, 15.15) and 13.97 (95% CI (10.17, 17.0).

Discussion

WBE has been used as a tool for surveillance of COVID-19 infections at the community-

level and complements clinical-based surveillance and screening, which is limited by cost,

Table 4. SARS-CoV-2 RNA concentrations, estimated RNA rate and number of infected individuals from all the catchment zones as a single unit.

Date RNA (105

copies per L)*
Option 1 Option 2 Clinically observed number of

Covid-19 positive cases

RNA rate (1014

copies per day)a
Estimated number of

infected individuals (1014)

RNA rate (1014

copies per day)a
Estimated number of

infected individuals (1014)

01/03/2021 6.10 1.76 17.28 1.98 19.40 777

02/03/2021 4.01 1.16 11.37 1.30 12.79 897

03/03/2021 3.50 1.01 9.91 1.14 11.15 845

04/03/2021 3.74 1.08 10.59 1.21 11.92 1172

08/03/2021 41.3 1 1.92 116.98 13.41 131.61 1049

09/03/2021 34.1 9.84 96.59 11.07 108.66 1433

10/03/2021 6.26 1.81 17.73 2.03 19.95 1604

05/04/2021 15.1 4.36 42.77 4.90 48.12 2652

06/04/2021 14.10 4.07 3.94 4.58 44.93 3283

07/04/2021 97.40 28.12 275.89 31.63 310.38 2881

08/04/2021 65.10 18.80 184.46 21.15 207.52 4016

13/04/2021 2.73 0.79 7.73 0.89 8.70 3613

15/04/2021 9.34 2.70 26.46 3.03 29.77 3779

19/04/2021 11.30 3.27 32.06 3.68 36.06 4878

20/04/2021 708.00 204.39 2005.44 229.93 2256.12 4787

21/04/2021 24.70 7.13 69.96 8.02 78.71 4619

23/04/2021 20.10 5.80 56.95 6.53 64.06 4936

24/04/2021 23.10 6.67 65.43 7.50 73.61 4720

27/04/2021 19.90 5.74 56.37 6.46 63.41 4803

28/04/2021 6.81 1.97 19.29 2.21 21.70 4422

29/04/2021 19.00 5.48 53.82 6.17 60.55 3649

30/04/2021 9.79 02.83 27.73 3.18 31.20 4085

03/05/2021 14.90 04.30 42.20 4.84 47.48 2498

04/05/2021 12.70 03.67 35.97 4.12 40.47 2534

06/05/2021 10.90 03.15 30.87 3.54 34.73 2255

07/05/2021 2.63 0.76 7.44 0.85 8.37 2016

25/05/2021 0.07 0.02 0.20 0.02 0.23 339

27/05/2021 0.18 0.05 0.52 0.06 0.58 216

Option 1 assumes an average per capita wastewater rate of 120 L/person/day; Option 2 assumes an average per capita wastewater rate of 135 L/person/day;
a: based on the numerator of Eq (8);
b: based on Eq (8);

* aggregate SARS-CoV-2 RNA concentration if samples are taken from different locations measured on the day.

https://doi.org/10.1371/journal.pone.0303529.t004
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turnaround time, and the bias associated with uncharacterized asymptomatic infections and

their contribution to infection spread. WBE captures the totality of symptomatic, pre-symp-

tomatic and asymptomatic carriers within a specific community [16, 17] This study is the

first to successfully pilot and assess WBE as a methodology for the detection and quantifica-

tion of SARS-CoV-2 viral RNA in community sewers in Nagpur district of Central India

during the second wave of the pandemic in 2021. Whilst several epidemiological models

have been described and compared for transmission of SARS-CoV-2 [2, 21, 30], this study

employed a new SEIPR model, which adds the extra compartment of “confirmed positive” to

estimate the number of infected individuals and was further used to estimate the mass rate of

RNA in the wastewater. We observed a low number of clinical cases early in the COVID-19

wave that was out of proportion to the observed high SARS-CoV-2 concentration in the

wastewater. If we use our modelling results from later in the study and apply them to this ear-

lier period, it reveals that the clinical surveillance data underestimated the level of COVID-

19 transmission in the Nagpur district. The model predicts the unreported number of cases

under the per capita wastewater rates of 120L/person/day and 135L/person/day to be 12.42

(95% CI 9.04, 15.15) and 13.97 (95% CI (10.17, 17.0) times higher than the reported number

of cases, respectively. Hence, SARS-CoV-2 RNA detected in community wastewaters may

have come from pre-symptomatic, symptomatic, or asymptomatic cases who did not self-

report to their local health monitoring unit due to fear of social stigma, isolation, or quaran-

tine, or simply because they did not know they were infected [31, 32]. Under-reporting bias

in the clinical incident data is also likely to have arisen due to the limitation of testing

resources (analytical kits, personnel), coverage, and accessibility of testing sites [33]. We

observed that SARS-CoV-2 seemed to be suppressed in samples collected from catchment

zones recording higher relative humidity, a loose proxy for rainfall. This was further substan-

tiated by observing a statistically significant negative correlation between R0 (effective repro-

ductive number) and humidity, and β1 (effective contact rate per day) and humidity, but not

temperature. These results partly agree with those reported elsewhere in which temperature

and humidity were inversely correlated with daily new cases and deaths of COVID-19 with

several studies reporting that SARS-CoV-2 is sensitive to high temperatures and humidity

[34, 35]. It is likely that rainfall events prior to or during the sampling phase may have con-

tributed to the lack of detection of SARS-CoV-2 RNA due to the dilutional effect. The sub-

stantial variation in parameter values across the ten geographic zones, as detailed in Table 3,

is a consequence of the inherent complexity and diversity of real-world conditions being

modelled. These variations are influenced by factors such as population density, healthcare

infrastructure, interventions, and social behaviours specific to each zone. While these differ-

ences may appear significant, they are expected in epidemiological modelling and reflect the

diverse nature of disease spread in different settings. Rather than indicating issues with the

model, these variations underscore the need for tailored, context-specific modelling to cap-

ture the nuanced dynamics within each zone accurately. This diversity in parameters

enhances the model’s ability to represent the unique characteristics of each zone. Moreover,

the calculation of R0 considers the complex interplay of these parameters, and the model

offers valuable insights into the dynamics of COVID-19 within a geographically diverse

urban area like Nagpur. The variation in R0 estimates (0.98–1.66) between the different

zones in Nagpur urban district may be due to additional factors such as variation in socio-

behavioural habits (personal hygiene, wearing masks, handwashing, social distancing, vac-

cine uptake, social gatherings), sociodemographic, educational levels and dietary factors.

Factors such as high levels of youth, income inequality, high population density and social

media usage are associated with high R0 and may be important influences shaping zonal-

wise variation in R0 in Nagpur as reported across countries [36]. Overall, these R0 estimates
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for the second wave of COVID-19 in India are consistent with a baseline R0 of 1.450 recorded

for Maharashtra and 1.379 for India by Marimuthu et al. [37] but fall below earlier estimates

calculated by Shil et al who reported R0 in the range of 2–3 during the initial wave of infec-

tion for the majority of Indian districts (March-June 2020) [38]. This depicts that the use of

2011 population census data as a proxy for the modelling process in this study was not out of

place as the estimated R0 in this study is consistent with what other studies have found. This

feasibility study identified a unique set of challenges in the implementation of WBE in Cen-

tral India which mirrors those observed in other LMIC settings such as Bangladesh [4].

These include establishing a sampling plan and schedule that is representative of the different

urban and rural catchment populations, underdeveloped sewage systems in rural areas

necessitating onsite sanitation epidemiology/sampling; development and validation of stan-

dardized protocols for lab analysis; complex collaborative efforts from government agencies,

public health units and academia and resource limitations (e.g., autosamplers not suitable

for large rapid monitoring where passive sampling techniques are more easily implemented)

[39]. Supply chain issues for essential goods such as PPE and PCR diagnostic reagents, and

logistical constraints such as inaccessibility and poor transport systems made it difficult to

reach rural communities in remote areas. In recognition of these challenges, we acknowledge

several study limitations. Although we did assess and compare the abundance of SARS-CoV-

2 viral concentration in untreated wastewater samples between urban and rural areas, in line

with other wastewater research studies in India [40, 41] most of our sampling sites were

from urban zones of Nagpur, introducing sampling bias. Due to the lack of COVID-19 clini-

cal incident data for the rural areas sampled, we were not able to apply our SEIPR model to

model infectious burden in rural Nagpur. We also had to base our model assumptions on

historical rather than current census data which is not available from Nagpur district. Due to

the limitation of resources and skilled personnel, we were not able to undertake 24-hour

composite and longitudinal sampling which we recognize would have made our data more

representative, to assess the impact of seasonality or to obtain detailed information on spa-

tiotemporal trends. Moreover, we were unable to record physiochemical, hydrologic, and

anthropogenic parameters of the wastewater samples which would have affected RNA con-

centrations, and consequently, SARS-CoV-2 RNA detection [31]. Although we did not col-

lect daily rainfall measurements and instead used relative humidity as a proxy for rainfall,

the majority of the sampling period was conducted during periods of no rain. We acknowl-

edge the use of air temperature as a surrogate for wastewater temperature in the absence of

direct wastewater temperature data, particularly in open drainage systems. While this substi-

tution is a common practice in environmental modelling due to data limitations, it’s essential

to recognize its potential limitations and the possible impact on the results. Wastewater tem-

perature can be influenced by various factors beyond just air temperature in open drainage

systems, such as ground temperature, flow rates, and interactions with other environmental

factors. This assumption may introduce some level of uncertainty into the model, and future

studies should aim to collect specific wastewater temperature data to improve the accuracy

of the modelling. However, given the data constraints, the use of air temperature can provide

a reasonable estimation of wastewater temperature and is a common approach in the field.

We recognize that with any modelling efforts, it will be important to explore the sensitivity

of the model to different assumptions in future research. Future studies should also adopt

the use of rapid in-field testing of SARS-CoV-2 or any pathogenic target as opposed to bring-

ing samples back to a central lab with appropriately trained personnel. This technology is

already in proof-of-concept stages and could be easily operationalized ahead of future out-

breaks or pandemics.
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Conclusion

We have established a quantitative framework to estimate COVID-19 prevalence and predict

SARS-CoV-2 transmission through integrating wastewater-based surveillance data into a

SEIPR model. The constructed model may be used to provide accurate and robust estimates of

future waves of the COVID-19 pandemic and could usefully be applied to study other infec-

tious diseases or expanded to consider reinfected populations. Our findings showcase the

translational value of utilizing WBE to study the health of a population for epidemiological

inference and in informing public health actions, particularly where comprehensive individual

testing is severely constrained by a shortage of resources and logistical challenges. However, to

realize the true value of this tool in India and other LMICs, it will be important for governmen-

tal and other funding agencies to invest heavily in building laboratory capacity and sample col-

lection teams. Such efforts should also help re-emphasize the criticality of clean water,

sanitation, and waste management as potential control points in the fight against COVID-19

and future pandemics.
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