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Abstract
1.	 Species distribution modelling is a highly used tool for understanding and pre-

dicting biodiversity change, and recent work has emphasised the importance 
of understanding how species distributions change over both time and space. 
Spatio-temporal models require large amounts of data spread over time and 
space, and as such are clear candidates to benefit from model-based integration 
of different data sources. However, spatio-temporal models are highly computa-
tionally intensive and integrating different data sources can make this approach 
even more unfeasible to ecologists.

2.	 Here we demonstrate how the R-INLA methodology can be used for model-
based data integration for spatio-temporally explicit modelling of species distri-
bution change. We demonstrate that this method can be applied to both point 
and areal data with two contrasting case studies, one using the SPDE approach 
for modelling spatio-temporal change in the Gatekeeper butterfly (Pyronia titho-
nus) across Great Britain and the second using a spatio-temporal areal model to 
describe change in caddisfly (Trichoptera) populations across the River Thames 
catchment.

3.	 We show that in the caddisfly case study integrating together different data 
sources led to greater understanding of the change in abundance across the River 
Thames both seasonally and over 5 years of data. However, in the butterfly case 
study moving to a spatio-temporal context exacerbated differences between 
the data sources and resulted in no greater ecological insight into change in the 
Gatekeeper population.

4.	 Our work provides a computationally feasible framework for spatio-temporally 
explicit integration of data within SDMs and demonstrates both the potential 
benefits and the challenges in applying this methodology to real ecological data.
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1  |  INTRODUC TION

Species distribution modelling (SDM) is a popular tool in ecological 
research because it provides an empirical relationship between envi-
ronmental factors and the spatial preferences of a particular species 
(Elith & Leathwick,  2009). It therefore provides a basis for under-
standing the most influential factors governing species' distribu-
tions, quantifying the impacts of changes in environmental factors 
and for consideration of effective conservation and management 
strategies (Franklin, 2010). Most SDMs are purely spatial in nature, 
but there is increasing interest in spatio-temporal modelling of spe-
cies distributions, where the spatial distribution itself is explicitly a 
function of time (e.g. Fidino et al., 2022; Johnston et al., 2023; Ward 
et al., 2015). Spatio-temporal models help to understand change in a 
spatially explicit manner and therefore, the areas that are changing 
most, those that are more at risk, and those where certain factors 
are having disproportionate effect (Ward et al., 2015). However, a 
major barrier to the uptake of spatio-temporal SDMs is the avail-
ability of data with sufficient spatial and temporal coverage. Most 
SDMs are based on single sources of empirical data, and this can be 
limiting, with estimated relationships within the model and specific 
parameters only as good as the data underpinning them (Fourcade 
et al., 2018; Guillera-Arroita et al., 2015).

In recent years, there has been a proliferation of ecological data 
from a variety of sources, with increasing uptake and delivery of citizen 
science schemes as well as new technologies (Johnston et al., 2023). 
Concomitantly, there has been increasing interest in how to integrate 
these disparate data sources to increase our insight into species distri-
butions (Isaac et al., 2020; Miller et al., 2019). While traditional, purely 
spatial, species distribution models stand to benefit significantly from 
data integration, spatio-temporal models have an even stronger re-
quirement for data (Bakka et al., 2018). This is because the same data 
requirements exist as for the purely spatial case, but that the gradi-
ent coverage is also required over time as well, hence implying that 
good spatial coverage is needed for each individual time point. Data 
sources used for the modelling of species distributions vary in their 
observation intensity and accuracy across space and time, particu-
larly so within unstructured, opportunistically collected data but also 
within many structured, professionally collected data sources (Binley 
& Bennett, 2023; Johnston et al., 2023). The ability to integrate differ-
ent data sources should, therefore, offer significant potential for the 
modelling of species distributions across time and space. However, 
careful consideration throughout this process needs to be applied to 
thinking about the differential coverage and biases across the data 
sources, as in many cases, integration alone cannot be enough to in-
tegrate out bias in the data collection (Simmonds et al., 2020). This is 
particularly important when considering spatio-temporal models, as 
data sources can show biases across time that vary by space, which 
will impact not just the confidence of the model but also the predic-
tions and inferences gained from the model.

There is a growing need for methods that facilitate the integra-
tion of data from diverse sources within a spatio-temporal frame-
work. While recent work by Fidino et al. (2022) has demonstrated the 

benefits of integrating data for spatio-temporally explicit modelling 
of species distributions to understand human–wildlife conflicts, the 
MCMC-based method they employed is computationally intensive. 
When dealing with opportunistic species data sets, where sample 
sizes can easily be in the tens of thousands, this computational inten-
sity can pose a significant constraint on analysis. There is a clear de-
mand for more practical and efficient approaches to spatio-temporal 
data integration. In this study, we propose a method for integrated 
modelling of spatio-temporal change using the R-INLA method-
ology, which uses Integrated Nested Laplace Approximations for 
Bayesian inference, allowing for efficient estimation of highly com-
plex spatio-temporal models (Bakka et al., 2018; Rue et al., 2009). This 
is the first time this methodology has been used in the application of 
spatio-temporal integrated modelling. R-INLA has been shown to be 
highly accurate for these types of spatio-temporal models while also 
being computationally far faster than MCMC-based methods (Bakka 
et al., 2018; Rue et al., 2017). The methods presented here allow for 
the modelling of spatio-temporal change including interactions be-
tween space and time such that different spatial regions can change 
in different ways (Blangiardo et al., 2013; Cameletti et al., 2013). We 
apply this integrated spatio-temporal model to two case studies, 
the first examining the spread of the Gatekeeper butterfly (Pyronia 
tithonus) across Great Britain according to two separate recording 
schemes and the second evaluating change in caddisfly (Trichoptera) 
populations across the River Thames comparing governmental moni-
toring to governmental monitoring plus citizen science schemes. The 
first case study lends itself to a pointwise spatio-temporal modelling 
approach and also provides an opportunity to consider how to inte-
grate two spatially biased but information-rich data sources, whereas 
the second case study lends itself to an areal spatio-temporal model-
ling approach and offers an opportunity to consider how to integrate 
data sources where one is far more patchy spatially than the other.

2  |  MATERIAL S AND METHODS

2.1  |  Modelling approach

There are multiple ways of integrating multiple data sources in a 
single model, and here we focus on shared modelling where joint 
likelihoods are used to model the different data sources (Pacifici 
et al., 2017). Previous studies have examined how methods such as 
point process models can be used to integrate different data sources 
together in a spatially explicit manner to infer species distributions 
(e.g. Fletcher et al., 2019). The concept behind model-based data in-
tegration is that different data sources observe some latent state, 
such as the true species distribution, using a variety of different 
observation models. Therefore, by jointly modelling the data sets 
together with their observation models, the latent species distribu-
tion can be inferred. Here we model the latent species distribution 
as a distribution over space and time, which requires explicit con-
sideration of the dependence structure of observations over these 
dimensions. Doing so enables any spatial and/or temporal effects 
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    |  3SEATON et al.

unaccounted for by model covariates, to be represented within the 
model. From a modelling perspective, this is achieved by includ-
ing spatio-temporal random effects within the model as follows. 
Suppose we observe a species count Y at location s at time t, and this 
is assumed to follow a negative binomial distribution (overdispersion 
parameter n) with mean given by the product of the expected count 
(Es,t) and the relative suitability for the species (�s,t):

Then we can model the (log) relative suitability as a function 
of K spatially and temporally indexed covariates (zs,t) and a spatio-
temporal random effect �s,t:

In practice, the spatio-temporal random effect can be a sum of 
spatial and temporal structured and unstructured effects plus an 
interaction. The random effect structure can allow for consistent 
change over time across the whole spatial field or allow different parts 
of the spatial field to change in different directions over time—that 
is, a spatio-temporal interaction. Both the spatial and the tempo-
ral effects, as well as their interaction, can be specified in different 
ways, such as the difference between specifying change over time as 
a random walk or as an autoregressive process. Therefore, the term 
spatio-temporal models represent a diverse set of different model 
configurations that incorporate differing assumptions and constraints 
on the model fit. We detail the model configurations we have chosen 
to use within this manuscript below. However, our approach to using 
INLA for integrating data in spatio-temporal models can be gener-
alised to other model configurations supported by INLA.

When integrating data from different sources, the same princi-
ples extend from the purely spatial case. Following the principles set 
out by Simmonds et al.  (2020), the concept of shared covariate ef-
fects and shared random fields in the linear predictor extend to the 
spatio-temporal case, so for two data sources, P and Q, we model as 
a function of its own intercept (�0), shared covariate effects (�K) and 
a shared spatio-temporal effect (�s,t), as in Equations (3) and (4). Data 
set-specific spatial (�s), or spatio-temporal (�s,t), effects can also be 
added where appropriate to account for spatial or spatio-temporal 
biases within the data sources, as in Equation (4). Data set-specific 
intercepts and variance parameters, where appropriate, are included 
in the models to account for differences in observation processes 
between the data sets, as is recommended in the purely spatial case.

The spatio-temporal random effect(s) can take multiple forms 
depending on the structure of the data. Spatial structures commonly 
used within the SDM literature are approaches that use Gaussian 

random fields to model species occurrence over a defined region 
based on estimating the spatial covariance between points across 
the field. Alternatively, data that are provided on an areal basis can 
be modelled using (intrinsic) conditional auto-regressive models, 
where the model includes an effect of the values of neighbouring 
regions. The INLA methodology can be used to fit models, using 
both of these methods, is often used in integrated species distribu-
tion models and is less computationally intensive than MCMC-based 
methods (Blangiardo et al., 2013; Isaac et al., 2020).

2.1.1  |  Point data

Here we model the spatial dependency between point data for any 
given timepoint (�s,∗ in (2)) through the stochastic partial differential 
equations (SPDE) approach for approximating a Gaussian random 
field (Lindgren et  al.,  2011). This approximates the Matérn covari-
ance function across a defined region in a more computationally 
efficient way compared to the estimation of the entire covariance 
function so that computational time does not scale as a power law 
of the number of locations. The Matérn covariance function defines 
how much spatial relationship there is between points, given by a 
function of � (the marginal standard deviation), � (the range param-
eter) and � (a smoothness parameter):

where K� is the modified Bessel function of the second kind, order � . 
Within INLA (and elsewhere), the simplification for specific values of 
� is often used, as when � = p + 1∕2, p ∈ ℕ

+, this covariance function 
can be expressed as a product of an exponential and a polynomial of 
order p. Therefore, � is usually fixed to some positive half integer and 
not estimated as part of the model fitting process.

Fuglstad et al. (2019) reparameterised this function to enable the 
introduction of a penalised complexity (PC) prior, as introduced by 
Simpson et al. (2017). These PC priors involve setting a base model 
that has the highest probability weight upon it and enforcing a con-
straint such that the probability declines the further away from the 
base model you get. Within the SPDE approach, the base model is 
represented by a model with infinite range and zero covariance—that 
is, no spatial pattern. Within a two-dimensional space, this penalised 
complexity prior corresponds to

where P
(
𝜌 < 𝜌0

)
= 𝛼1 and P

(
𝜎 > 𝜎0

)
= 𝛼2 are achieved by

The reason for this PC parameterisation is that the user must 
specify both a limit and the total probability that is given to be above 
(for �) or below (for �) this limit.

For any given point in space (denoted by ∗), the change by year is 
modelled as an order one autoregressive process as in Equation (8), 

(1)Y(s, t) ∼ NB
(
Es,t ⋅ �s,t , n

)

(2)log
(
�s,t

)
= �0 +

K∑

k=1

�kzk,s,t + �s,t

(3)log
(
�s,t,P

)
= �P,0 +

K∑

k=1

�kzk,s,t + �s,t

(4)log
(
�s,t,Q

)
= �Q,0 +

K∑

k=1

�kzk,s,t + �s,t + �s,t

(5)cv(r; �, �) = �2
21−�

Γ(�)

�√
8�

r

�

��

K�

�√
8�

r

�

�

(6)𝜋(𝜎, 𝜌) = 𝜆𝜌𝜆𝜎𝜌
−2exp

(
− 𝜆𝜌𝜌

−1 − 𝜆𝜎𝜎
)
, 𝜎 > 0, 𝜌 > 0

(7)�� = − log
(
�1

)
�0 and �� = −

log
(
�2

)

�0
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4  |    SEATON et al.

with a PC prior upon the autoregressive parameters with the base 
model being no change over time (Sørbye & Rue, 2017). As the sto-
chastic element of this model (�) is different at every point in space 
and time, this therefore does not enforce that the spatial field must 
change in the same way across the whole field and instead allows for 
the direction and magnitude of the change over time to vary across 
the spatial field and between time points.

where the lag one correlation |r| < 1. Within INLA, this is parameter-
ised with the hyperparameters �1, �2, where �1 is the log of the mar-
ginal precision (Equation 9), and �2 is the logit of the lag one correlation 
(Equation 10).

Within the data integration, there is assumed to be a shared 
spatio-temporal field between the two data sets, with each data 
set having its own intercept, survey effort parameters and family-
specific scale parameters (i.e. � within the negative binomial 
family).

2.1.2  |  Areal data

We model areal data using the Besag York Mollié (BYM) model, 
which is a combination of the Besag model and an independent 
random noise (IID) model (Besag et al., 1991). The IID model simply 
defines �s,∗ as a vector of independent and Gaussian-distributed ob-
servations with precision �1.

Within the Besag model, each �i,∗ is defined as dependent on the 
sum of the weighted values of its neighbours:

where ni is the number of neighbours of node i , i ∼ j indicates that the 
two nodes i  and j are neighbours.

The BYM model combines this model together such that

Within this manuscript, we use the parameterisation of the 
BYM model explored by Riebler et al. (2016) within the PC frame-
work, where the base model has no spatial pattern or differences 
between areas. Therefore, the parameters that we can define 
priors over this BYM model for (referred to by INLA as hyperpa-
rameters) are the marginal precision (�b) and the proportion of 

the variation explained by the spatial component of the model (�
). Priors are defined on these on the log and logit scales, respec-
tively. The default PC priorto the precision is a type-2 Gumbel 
distribution:

where � = − ln(�)∕U.
The default prior within INLA is � = 0.01 and U = 1, which 

corresponds to a standard deviation of around 0.3 (Simpson 
et al., 2017). The PC prior to � is dependent on the graph within 
the BYM model and is derived for each model with a computa-
tional cost that scales to the cube of the number of graph com-
ponents. The parameters that can be specified for this prior are u 
and �, where the probability that 𝜙 < u is equal to �. The defaults 
within INLA (at the time of writing) are u = 0.5 and � = 0.5 which 
give equal weight to the spatial component explaining less than or 
more than half of the marginal variation. We model change over 
time as an interaction with the spatial model, with the change over 
time modelled as an autoregressive model of order one and as-
suming no effect of the past state of neighbouring regions upon 
the current state of the area.

In addition to the spatio-temporal model, we can also add other 
model elements, such as a seasonal term and/or some covariates 
(e.g. survey effort, environmental conditions). The seasonal model 
with periodicity m for some random vector 

(
x1, … , xn

)
, n > m can 

be obtained by assuming the sums xi + xi+1 + … xi+m−1 are indepen-
dent Gaussian with precision �s. The density for x is derived from the 
n − m + 1 increments as in Equation (14).

where Q = �sR and R is the structure matrix representing the neigh-
bourhood structure of the seasonal model (e.g. that March follows 
February, which in turn follows January), and the default prior on �s is a 
PC prior on precision as in the BYM model.

Within the data integration, there is assumed to be shared 
spatio-temporal and seasonal models between the two data sets, 
with each data set having its own intercept, survey effort covariates 
if appropriate, and family-specific scale parameters (i.e. � within the 
negative binomial family). One data set can also be assumed to have 
a separate spatial model (that does not update with year) to repre-
sent the differing spatial bias within the data set (i.e. there is also a 
�s,t term within the model).

2.2  |  Case studies

2.2.1  |  Gatekeeper butterfly

To demonstrate the method upon point data, we modelled the 
spread of the Gatekeeper butterfly across Great Britain from 2005 
to 2014, using the UK Butterfly Monitoring Scheme (UKBMS) and 

(8)�∗,t=1 ∼ 
(
0,
(
�y
(
1− r2

))−1)

�∗,t=i = r�∗,t=i−1 + �∗,i , � ∼ 
(
0, �−1

y

)
i = 2, … , n

(9)�1 = log
(
�y
(
1 − r2

))

(10)�2 = log

(
1 + r

1 − r

)

(11)�i,∗ ∣ �j,∗, i ≠ j, �2 ∼ 

(
1

ni

∑

i∼ j

�j,∗,
1

ni�2

)

(12)�s,∗ =

(
besag + iid

besag

)

(13)𝜋
(
𝜏b
)
=

𝜆

2
𝜏
−3∕2

b
exp

(
− 𝜆𝜏

−1∕2

b

)
, 𝜏b > 0, 𝜆 > 0

(14)�
(
x| �s

)
= �

n−m+1

2

s exp

{
−

1

2
xTQx

}
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non-avian data collected by the British Trust for Ornithology plus 
partner organisations (BTO) as part of their bird monitoring. The 
UKBMS data consisted of abundance at transects that are regularly 
surveyed by volunteers for all butterflies, while the BTO data con-
sisted of observations of butterflies submitted by citizen scientists 
as part of their Garden BirdWatch and BirdTrack schemes that are 
reported as presence-only records of butterflies. The UKBMS gate-
keeper abundance data and the BTO presence data consisted of 
~6000 measurements each once data processing as detailed below 
was carried out, with both data sources having more observations to 
the south of GB and showing some evidence of increasing numbers 
of observations over time (Figures S1 and S2).

We aggregated the BTO data to the 10 km grid square level, with 
the total number of gatekeeper observations within that square 
within the year being modelled as a function of the total list length 
(i.e. unique number of butterfly species) observed in that square 
within that year. Aggregating to the 10 km grid square level allowed 
us to identify and remove the regions with a very low effort during 
the peak flight period of the Gatekeeper butterfly, with square/year 
combinations that had 10 or fewer observations across all butterfly 
species within July and August being removed from the analysis. The 
10 km scale also resulted in a similar data set size for the BTO and 
the UKBMS measurements, meaning there did not need to be any 
consideration of weighting of likelihoods to account for the different 
data set sizes. This resulted in a count response with a range from 0 
to 19 and a median of 2, which then allowed the modelling of both 
the BTO and UKBMS data as count variables.

UKBMS data were represented as the generalised abundance 
index, which gives an annual abundance value that accounts for 
whether the timings of site visits across the year corresponded with 
the seasonal pattern of butterfly emergence (Botham, Brereton, 
Harrower, et  al.,  2020; Dennis et  al.,  2016). Sites that had no 
Gatekeeper butterflies observed at any point were not reported 
with a Gatekeeper abundance value, so we had to estimate whether 
these sites had enough visits within the Gatekeeper flight period to 
allow us to assume zero abundance. We did this by assuming that if 
the site had enough data to estimate abundance for all recorded spe-
cies, it would have also had enough data to estimate abundance for 
Gatekeeper. Therefore, if the site was not recorded as missing data 
for any other butterfly, then it was added to the data set as a zero. In 
this process, we ignored missing data from nine common butterflies 
with differing flight periods to the Gatekeeper, as they would contain 
no information on a number of visits within the Gatekeeper flight pe-
riod. The nine common butterflies with differing flight period to the 
Gatekeeper were the Orange-tip (Anthocharis cardamines), Peacock 
(Aglais io), Green-veined White (Pieris napi), Speckled Wood (Pararge 
aegeria), Brimstone (Gonepteryx rhamni), Small White (Pieris rapae), 
Large White (Pieris brassicae), Small Tortoiseshell (Agalis urticae) and 
the Common Blue (Polyommatus icarus). This abundance index is re-
ported as a count variable, with a range within our data of between 0 
and ~3000 and a median of 53. The differing spatial scales and sam-
pling methodologies of the UKBMS and aggregated BTO data were 

accounted for in the model by incorporating different intercepts and 
overdispersion parameters for the two data sets.

Both the BTO and the UKBMS data sets show a clear bias in the 
location of measurements, in particular with more measurements 
towards the south of Great Britain (Figures S1 and S2). This spatial 
pattern of citizen science engagement is likely related to a variety 
of factors including, but not limited to, population density, level of 
education, income, accessibility and the density of scenic or high 
biodiversity areas. If we wish to robustly estimate the changes in the 
range of the Gatekeeper butterfly over time, we would need to ac-
count for all of the factors that influence both observation intensity 
and Gatekeeper butterfly abundance within the model. That work 
is outside the scope of this case study example, so instead, we use 
a commonly used approach of including survey effort parameters 
within the model and demonstrate the potential pitfalls of this ap-
proach. For the BTO data, we include list length (i.e. the total number 
of species recorded within the 10 km grid square that year) as a pre-
dictor of abundance, while within the UKBMS data site, abundances 
were modelled as a function of transect length.

The mesh within the SPDE model was set up to cover the en-
tirety of Great Britain with a maximum edge length 50 km and to 
have a surrounding buffer area with maximum edge length 300 km 
(Figure S3). This mesh parameterisation was chosen as it balanced 
creating a mesh of regular density across GB with computational 
feasibility. The spatial field is updated every year with an autore-
gressive process of order one, no finer temporal resolution was 
considered due to the UKBMS abundance indices being given as an-
nual values. PC priors for the spatial covariance were specified such 
that only 1% of probability mass for the scale parameter was below 
100 km, and 1% probability mass that the standard deviation was 
greater than 5. The � parameter was fixed to the INLA default of 1. 
For the autoregressive process priors, 80% of the probability was set 
for the correlation between 0.8 and 1.0, and only 1% probability that 
the precision was greater than 0.25.

2.2.2  |  Caddisfly

We modelled caddisfly abundance across the River Thames catch-
ment from 2015 to 2019 in a spatio-temporal areal model, combining 
together structured surveys of the freshwater macroinvertebrate 
communities run by governmental agencies with a citizen science 
scheme. Riverfly (including caddisflies, stoneflies and mayflies) 
abundance is an important indicator of river quality, and, as such, is 
monitored by the Environment Agency (EA) in the UK. There is also 
an active citizen science community that regularly monitors sites for 
riverfly abundance under the Anglers' Riverfly Monitoring Initiative 
(ARMI) run by the Riverfly Partnership. Both schemes use stand-
ardised kick sampling to collect riverflies and other taxa from the 
water. To account for differences in taxonomic resolution between 
schemes, all caddisfly records were combined to calculate an overall 
caddisfly count per sample.
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6  |    SEATON et al.

Representing the structure of a river is a challenging prospect 
within analyses of river quality, as movement can be constrained to 
the river and may show different patterns for moving upstream ver-
sus downstream. Our study organism, the caddisfly, we assume finds 
it as easy to move upstream as it does downstream for the ease of 
analysis. Here we aggregated stretches of river into a smaller number 
of connected components and supplied the edgelist of connections 
between this subset of river components into the BYM model. For 
ease of computation, we limited this to 137 areas across the entire 
Thames catchment, each of which can contain multiple sites. These 
components were created by running a fast greedy modularity op-
timisation algorithm upon the whole Thames river network using 
the igraph package (Clauset et  al.,  2004; Csardi & Nepusz,  2006). 
A neighbourhood matrix could then be constructed based on these 
components and which other components they were connected to 
(Figure S11). We found that the EA data sampled from all of the com-
ponents, whereas the ARMI data were limited to a small number of 
components but involved far more visits on average per site—with 
~7 visits a year on average in the ARMI data compared to ~2 in the 
EA data. Both surveys sampled relatively evenly throughout the year 
(with a slight dip in the summer months in the EA survey), but there 
was, on average, a larger gap between revisits of EA sites compared 
to ARMI sites. In addition to the spatio-temporal BYM model, which 
updates every year, we included a seasonal component to the model, 
which depended upon the month of the year, as we expected higher 
counts of caddisflies in the spring and summer, and we had the pre-
cise dates of survey for both data sources. Within the integrated 
model, the spatio-temporal and seasonal components were assumed 
to be shared between the EA and ARMI data. The intercepts and 
overdispersion parameters for the negative binomial distribution for 
the two sources of data were modelled separately.

Unlike in the butterfly case study above, in this case study, we 
have a data set that shows minimal spatio-temporal bias (i.e. the EA 
data). If we assume that the factors driving sampling intensity are un-
related to the factors driving caddisfly abundance, we can therefore 
model the EA data without accounting for any confounding factors. 
The ARMI data do show some bias across the Thames catchment, 
with certain areas showing far more sites than others (Figure S12). 
However, we do not need the ARMI data to contribute to the under-
standing of the spatial process as we have a reliable source within 
the EA data, and therefore, we can include a separate ARMI-specific 
spatially varying component that will prevent the biased ARMI data 
from overly influencing the overall spatial model estimate. We as-
sume that the spatial bias is constant over time and therefore do not 
add an ARMI-specific temporal effect. The additional spatial field 
is modelled as an IID model instead of a spatially explicit model be-
cause few contiguous river sections are included in the ARMI data. 
Survey-specific intercepts and variance parameters are included to 
account for any systematic differences in survey methodologies (e.g. 
on average surveying at different times of day).

For the three precision parameters, we used the PC prior with 
� = 0.01 and u set to 0.75 for the seasonal component, 0.5 for the 
marginal variation of the BYM model and 0.25 for the temporal 

component. This represents a decreasing level of variation expected 
to be explained by the three components. The mixing parameter (� ) 
within the BYM model was set to u, � = 0.5, that is, giving equal prob-
ability to � being higher or lower than 0.5. The lag one correlation 
parameter within the AR1 model (�) was given the PC prior with base 
model assuming no change, and with u, � = 0.9, that is, giving 90% of 
the probability that the temporal autocorrelation is >0.9 as we as-
sume minimal change per year across the time modelled at the broad 
spatial scales of interest. The PC prior to the precision of the ARMI-
specific IID model had u = 0.5.

3  |  RESULTS

3.1  |  SPDE—Gatekeeper butterfly integration

The BTO-specific, UKBMS-specific and integrated joint models all 
showed similar broad-scale spatial patterns of predicted Gatekeeper 
abundance, with potentially some evidence of sharper transitions 
from area to area within the UKBMS model, which is based on more 
clustered data (Figure  1, Figures  S3–S5). As the overall scales of 
the two data sets are different, due to UKBMS being an abundance 
index, while BTO being a count of presence-only observations, the 
greater range within the UKBMS predictions was expected, with 
UKBMS having both a wider range of mean predictions across space 
and time and also a higher interquartile range. The interquartile 
range is calculated based on the fitted spatial field for the given time 
point and presented as a metric of model certainty due to its ro-
bustness to the distribution of the variable measured. Despite the 
data sets reflecting slightly different aspects of the butterfly popu-
lation, the joint model did prove able to fit a spatio-temporal field 
that was roughly intermediate between the two data sources and 
with a smaller interquartile range than the other two data sets. The 
interquartile range and standard deviation of the spatio-temporal 
field were higher within the UKBMS model than the BTO and joint 
model, with limited variation across the years (Figure 1, Figure S6). 
The two data set-specific models show differing spatial covariance 
parameters, with the UKBMS model having a range of 239 km (±34), 
and the BTO model having a much higher range of 460 km (±120). 
The joint model shows a range closer to the UKBMS model range 
of 281 km (±35). The marginal standard deviation for the Matérn 
covariance function was larger for UKBMS, at 6.025 (±0.868) com-
pared to the BTO-only model having 2.923 (±0.706) and the joint 
model having 3.342 (±0.368). The level of temporal autocorrelation 
was consistently high in all models, with the UKBMS model being 
0.999 (±0.007), the BTO-only model having 0.999 (±0.004) and the 
joint model having 0.998 (±0.003). This corresponds to very limited 
change per year overall across the broad spatial field used within the 
model, as the total spatial field incorporates large areas of no change 
(e.g. the buffer zone over the waters around Great Britain) and even 
those areas within England, which show some change mostly show 
less than one unit of change (log-scale) across the 10-year period 
(Figure 2).
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    |  7SEATON et al.

The survey effort parameters were associated with increased 
Gatekeeper numbers. However, the effect of transect length upon 
abundance within UKBMS was weaker, and the 95% quantile crossed 
zero in both the UKBMS-only model (0.745 ± 0.999) and the joint 
model (0.83 ± 0.999). The estimate for the effect of list length upon 
BTO gatekeeper abundance was consistently positive (BTO-only 
model: 2.188 ± 0.054, joint model: 2.306 ± 0.055). The UKBMS in-
tercept was predicted to be higher than the BTO intercept within the 
joint model (2.899 ± 0.643 compared to −4.03 ± 0.644). The UKBMS 
data had a lower 1/overdispersion than the BTO data, 0.943 ± 0.024 
compared to 13.605 ± 1.889.

Despite the similarly high levels of temporal autocorrelation 
predicted by the model, it can be seen that the two different data 
sets show very different patterns of change across GB. The UKBMS 
model shows a large increase in Northern England, whereas BTO 
shows a much smaller increase across all regions other than the 
South West and Southern Wales, with the joint model showing 
an intermediate pattern (Figure 2). The pattern of change for each 
model varies year on year, reflecting the flexibility of the model to 
fit the changes present in the data (Figures S7–S9). The increase in 
Northern England in UKBMS is largely driven by a cluster of sites in 
southern Cumbria that show increased abundance over the whole 
10-year period (Figure  S1). It should be noted that these changes 
are all plotted on the log scale, and the increase in North-Western 
England and Southern Scotland in UKBMS is both highly uncertain 

and represents an ecologically unnoticeable increase in predicted 
abundance due to both the start and endpoints corresponding 
to less than 0.01 on the response scale (Figure  1). Plotting these 
changes on the log scale allows us to see the way in which the joint 
model tries to fit the two highly disparate data sources by taking an 
intermediate route between the two.

3.2  |  Areal data—Caddisfly abundance

The spatial spread of the ARMI caddisfly data was too limited to 
fit a citizen science-only model (Figure S12), so here we compare 
only the EA-only model and the joint model. The spatial pattern 
of caddisfly abundance was predicted to be similar between the 
two models (Figure  S13). The difference between the models 
is seen in how much change from year to year occurs, with the 
joint model showing higher levels of change, although the direc-
tion, strength and duration of the changes vary by river section 
(Figure  3). This is reflected by the lower temporal autocorrela-
tion parameter within the joint model compared to the EA-only 
model, with it being estimated as 0.862 ± 0.023 within the joint 
model compared to 0.925 ± 0.021 in the EA-only model. The 
proportion of the variance explained by the spatial effect within 
the BYM model is low in both models, indicating little linkage be-
tween river sections at this scale, and this was somewhat lower in 

F I G U R E  1  Predicted mean spatial field 
(top) and interquartile range (IQR, bottom) 
for relative Gatekeeper abundance for 
all models in 2005. Mean and IQR are 
calculated on the log scale, and with mean 
values lower than −6 shown as −6 and IQR 
values greater than 7.5 shown as 7.5.
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8  |    SEATON et al.

the joint model (0.068 ± 0.045) compared to the EA-only model 
(0.147 ± 0.072). The standard deviation of the spatially structured 
effect was also higher within the joint model than the EA-only 
model, while the deviation of the area-specific effect was simi-
lar across models (Figure S14). This similarity between models is 
likely due to the ARMI-specific spatial field containing any dif-
ferences in areas within the ARMI data compared to the EA data 
(Figure S15). The EA survey generally had higher caddisfly counts 

than the ARMI survey (EA intercept in joint model: 4.108 ± 0.108, 
ARMI intercept in joint model: 2.628 ± 0.166). Note that these re-
sults are given on the log scale and correspond to mean counts of 
~61 and ~14, respectively. However, both surveys showed simi-
lar levels of overdispersion (1/overdispersion, EA: 0.64 ± 0.015, 
ARMI: 0.614 ± 0.012). The precision for the seasonal effect was 
lower in the joint model (3.38 ± 2.41) than in the EA-only model 
(10.7 ± 6.48), and examining the predicted effect of each season 

F I G U R E  2  Total change from 2005 
to 2014 on the log scale according 
to the model for BTO (left), UKBMS 
(centre) and the integrated model (right), 
with both the mean estimated change 
(top) and the interquartile range of the 
estimated change (bottom). For ease of 
interpretation, absolute values of the 
mean change greater than 2 are shown 
as 2, and IQR values greater than 6 are 
shown as 6.

F I G U R E  3  Change from year to year in the EA-only model (a) and the joint model (b). EA, Environment Agency.
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    |  9SEATON et al.

in the two models shows that the joint model gives a much more 
biologically realistic result (Figure 4).

4  |  DISCUSSION

Our results show the potential benefits and difficulties when jointly 
modelling two (or more) data sets in a spatio-temporal context. We 
demonstrate that INLA provides a framework to enable spatio-
temporal integration of both point and areal data, which is far faster 
and covers more spatio-temporal data types than the MCMC-based 
method for spatio-temporal data integration already present in 
the literature (Fidino et al., 2022). This approach should therefore 
be useful for applied researchers understanding change in species 
distributions. The caddisfly case study shows how when the citizen 
science data supplements an aspect of a structured monitoring sur-
vey, then the joint model can better evaluate the aspect of the data 
provided in more detail by the citizen science data, in that case, the 
change over time and seasonal trends in caddisfly abundance. This 
shows the potential gains to be had from integrating together mul-
tiple data sets to evaluate change in species occupancy and abun-
dance over time, particularly as modelling change in space over time 
is more data intensive than modelling a spatial pattern. However, 
the Gatekeeper butterfly example shows that moving to a spatio-
temporal context can reveal or exacerbate differences between 
data sources. The Gatekeeper butterfly spatial pattern was rela-
tively consistent across the two surveys, however, the trends over 
time were very different, with strong evidence of range expansion 
within the Northwest of England only within the UKBMS data. The 
joint model still proved able to use information from both data sets 
to create a map of population change that showed an intermediate 
pattern between the two data sets, however, relating this to the true 
population change would require further investigation of how the 
data collection methodologies interact with the ecological dynam-
ics of the Gatekeeper butterfly. Integration of different data sources 
within this spatio-temporal context requires careful consideration of 
the bias and representativeness of the data and the model for the 
question of interest.

Different data sources contain within them different biases and 
can represent different aspects of a species behaviour due to dif-
fering sampling methodologies. Previous work has shown how bias 
can influence the results of joint models, and approaches for con-
sistent evaluation of bias across studies have been proposed (Boyd 
et al., 2022; Simmonds et al., 2020). Different data sources could, for 
example, sample differing regions in space and/or time, which would 
influence their ability to evaluate change over time. As a function of 
this, data sources could be sampling different environmental spaces, 
with implications for the inferences drawn on the niche space occu-
pied by the species within species modelling based on environmental 
covariates. Particularly problematic biases could relate to clustering 
of observations or when the bias and the pattern of ecological inter-
est confound each other. In some cases, biases can be accounted for 
within the model, particularly when we have one source of relatively 
unbiased data such as within the caddisfly case study. However, the 
approach taken there assumed that the bias in the citizen science 
data would be constant over time and in many cases, further infor-
mation on the drivers of bias over space and time would also need 
to be included in the model. Careful accounting for biases based on 
knowledge of both the ecological population of interest and the data 
collection methodologies is required for effective model-based data 
integration for SDM (Johnston et al., 2023; Simmonds et al., 2020).

Model-based data integration can be used to combine data 
sources that have few records in key regions to address ecological 
questions of interest. This was apparent within the Gatekeeper but-
terfly case study, where the northern range edge, which we might 
expect to have changed over time, was also where there was less 
data available and therefore the model estimates were more un-
certain. This made evaluating range expansion challenging, and 
bias correction alone would not be able to resolve the differences 
between the UKBMS and BTO results without the introduction of 
more data on the Gatekeeper butterfly in the data-sparse north-
ern range edge. The differing results could be due to the different 
methodologies of the surveys resulting in different aspects of the 
butterfly population being captured, that is, the UKBMS data were 
a measure of abundance across a transect, whereas the BTO data 
were constructed through aggregating occurrence data. However, 

F I G U R E  4  Seasonal effect upon 
caddisfly abundance in the EA-only 
model (a) and the joint model (b). EA, 
Environment Agency.
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10  |    SEATON et al.

both transect abundance and the number of opportunistic records 
should be related to the true Gatekeeper abundance. Alternatively, 
the differences could be due to differing goals of data collectors, 
with opportunistic observations being taken by BTO volunteers of 
unusual butterflies, so capturing the change in range earlier than we 
might expect it to be seen in the UKBMS data (Johnston et al., 2023). 
The broad scale of the spatial pattern allowed within the model, cho-
sen for computational reasons, also made it difficult to separate out 
the fine-scale clusters of Gatekeeper butterfly populations within 
the UKBMS data from more broad-scale inference about the change 
in range edge.

Ecological processes such as those represented by a species 
distribution in geographic or environmental space are scale de-
pendent (Levin,  1992; Spake et  al.,  2021). In general, the scale 
chosen within a spatial, or spatio-temporal, model is determined 
based on the scale of the data available or to ensure computational 
feasibility. The computational cost of spatio-temporal models is 
much higher than spatial models, which can result in a coarsening 
of the scale of the model by necessity. Also, depending on the 
model structure and implementation, certain parts of the model 
could scale with a power law with the number of areas (e.g. the 
PC prior to the BYM model or fitting a Gaussian Process not using 
the SPDE approach), indicating a limit to how many areas could be 
incorporated into the model and it remain computationally fea-
sible. The spatial representation of the region could also repre-
sent a simplification of the ecologically relevant distance, which 
occurs in the application of Euclidean space models to river data, 
which is why we have modelled caddisfly abundance using an areal 
approach rather than the SPDE approach. There are alternative 
approaches to modelling rivers, largely focused on modelling the 
distance along the river rather than Euclidean distance, but these 
are also currently computationally unfeasible for large numbers 
of sites and dependent on precise locations being used, which 
does not generalise well to the joint modelling process (Santos-
Fernandez et  al.,  2022). While computational achievements are 
always occurring, leading to the ability to fit models to more data 
than ever before, these constraints on the model fitting process 
can lead by necessity to mismatch between the scale of the model 
and the scale of the data and the question that is of interest.

Within this work, we have demonstrated a methodology for 
model-based data integration for spatio-temporally explicit SDMs. 
The principles of our approach can be generalised to a variety 
of spatio-temporal model configurations within INLA, enabling a 
much wider selection of statistical analyses than just the two ex-
amples demonstrated within our two case studies. Our work has 
identified some potential benefits and challenges when applying 
this method to real ecological data and identified key consider-
ations when applying this to other contexts. These considerations 
include the comparability of data set collection methodology, the 
comparability of the patterns shown by data sets (and drivers of any 
differences), and the relative sizes of the differing data sets. Some 
of the considerations can be addressed through building-specific 
model structures that account for them, such as including data 

set-specific spatial effects to account for spatial bias or weight-
ing likelihoods to account for different data source sizes (Fletcher 
et  al.,  2019). However, other issues cannot be addressed purely 
by adjusting the model and as such need to be addressed through 
other methods, such as collecting data from under-sampled re-
gions. Overall, data integration for spatio-temporal modelling of 
SDMs offers a promising avenue for future research if careful con-
sideration of the biases and limitations of the data sources is given 
throughout the modelling process.
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