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Abstract In 2023, Antarctic sea‐ice extent (SIE) reached record lows, with winter SIE falling to 2.5Mkm2
below the satellite era average. With this multi‐model study, we investigate the occurrence of anomalies of this
magnitude in latest‐generation global climate models. When these anomalies occur, SIE takes decades to
recover: this indicates that SIE may transition to a new, lower, state over the next few decades. Under internal
variability alone, models are extremely unlikely to simulate these anomalies, with return period>1000 years for
most models. The only models with return period <1000 years for these anomalies have likely unrealistically
large interannual variability. Based on extreme value theory, the return period is reduced from 2650 years under
internal variability to 580 years under a strong climate change forcing scenario.

Plain Language Summary In 2023, the area of winter Antarctic sea ice fell to the lowest measured
since satellite records began in late 1978. It is still under debate how far this low can be explained by natural
variations, and how much can be explained by climate change. Global climate models are tools used to study
past and predict future global change. We show that, without climate change, the latest generation of these
models are extremely unlikely to simulate a sea‐ice reduction from the mean as large as observed in winter 2023.
Including strong climate change quadruples the chance of such a reduction, but the chance is still very low.
When these rare reductions are simulated, sea ice takes around 10 years to recover to a new, lower, area: this
indicates that Antarctic sea ice may transition to a new, lower, state over the next few decades.

1. Introduction
In 2023, winter Antarctic sea‐ice extent (SIE) reached exceptional record lows. The difference from the 1981–
2010 average reached ∼2.5 Mkm2 in July 2023 (Fetterer et al., 2017) before recovering slightly over subse-
quent months (Gilbert & Holmes, 2024; Ionita, 2024). In the Arctic, SIE has been steadily decreasing in all
seasons since satellite records began in the 1970s, explained by warming ocean and air temperatures due to
anthropogenic climate change and associated positive feedbacks (Diamond, Schroeder, et al., 2024; Serreze &
Meier, 2019; Stroeve & Notz, 2018). By contrast, over the satellite era, Antarctic SIE showed a slight positive
trend to a record high in 2014. However, after low winter SIE in 2017, SIE has remained below average in most
months, and was followed by 2023's exceptional record winter low (Eayrs et al., 2021; Gilbert & Holmes, 2024;
Purich & Doddridge, 2023). The reason for the positive trend and subsequent lows are still debated; each of the
recent sea‐ice lows have been attributed to a combination of oceanic and atmospheric factors including (but not
limited to) interannual variability and changes of atmospheric modes, and Southern Ocean subsurface warming
and warm water influx, leading to the persistence of low sea ice since 2016 (Blanchard‐Wrigglesworth, Roach,
et al., 2021; Eayrs et al., 2021; Ionita, 2024; Meehl et al., 2019; Purich & Doddridge, 2023; Roach et al., 2023;
Wang et al., 2019; Zhang et al., 2022). The debate reflects the complex combination of factors that influence
Antarctic sea ice, and furthermore that some of these factors may be impacted by climate change (Maksym, 2019;
Turner et al., 2015).

Global climate models (GCMs) are tools used to investigate past sea‐ice change, as well as predict future change
on decadal or centennial scales. Despite a wide range of simulated historic and present‐day Antarctic sea‐ice states
between models, the majority predict a sea‐ice decline in response to anthropogenic climate change (Holmes
et al., 2022; Roach et al., 2020). Most assessments of CMIP5 (the previous generation) and CMIP6 (latest
generation) GCMs focus on their mean states and projected trends, for example, Bracegirdle et al. (2020); Shu
et al. (2020). Sea‐ice variability in these models has been studied comparatively little, although it has been
concluded that simulated winter interannual variability is generally higher than observed (Roach et al., 2020).
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However, comparisons were to observations before the last few years' lows, see for example, Roach et al. (2020),
Gagné et al. (2015), and Blanchard‐Wrigglesworth, Donohoe, et al. (2021).

With our study, we therefore investigate winter variability, and in particular under what conditions CMIP6 GCMs
simulate anomalies as negative as this year's record low. We focus on the SIE anomaly from a relatively short
baseline (the previous decadal mean) to capture rapid retreat. We aim to answer three questions:

1. How likely are CMIP6 GCMs to simulate an anomaly as negative as that observed in winter 2023 under
internal variability alone?

2. Do these models tend to simulate greater anomalies or more frequent extreme lows under other forcings related
to anthropogenic climate change?

3. Could the last few years' record lows signal a new regime of decreasing Antarctic sea ice as a response to
climate change, or a shift to new states of low SIE or more frequent extreme lows (as suggested by for example,
Purich and Doddridge (2023), Raphael and Handcock (2022), and Eayrs et al. (2021))?

We answer the first question by comparing the observed variability to multi‐model simulated variability in pre‐
industrial simulations, and the second by comparing to variability in simulations with idealized forcing, realistic
historical forcing and realistic future forcing pathways. We answer the final question by considering the instances
in these simulations where such an anomaly occurs.

2. Data
We used outputs for six types of simulation. The simulation types are the pre‐industrial control (“piControl”)
experiment, the “historical” experiment, the “1pctCO2” experiment, and three experiments with different future
forcing scenarios (the “ssp” experiments). “piControl” is used to investigate internal variability alone, while the
other simulations investigate variability under idealized and more realistic climate forcings.

The “piControl,” “1pctCO2”, and “historical” experiments were run by all models participating in CMIP6. The
“piControl” simulation uses invariant solar, greenhouse gases (GHGs), ozone, tropospheric aerosol, volcanic and
land‐use forcings for the year 1850. The “1pctCO2” experiment is initialized from piControl, with all forcings
identical, apart from the atmospheric CO2 concentration, which is increased from 1850 levels by 1% every year,
for a minimum of 150 years (Eyring et al., 2016). The “historical” experiment is also initialized from piControl,
but forced with historical (1850–2014) observations of all forcings described above (Eyring et al., 2016;
Meinshausen et al., 2017). We also used experiments from ScenarioMIP, future projections initialized from the
end of the historical simulation and run from 2015 to 2100, forced as described in O’Neill et al. (2016). We chose
the three of the four ScenarioMIP “Shared Socieoeconomic Pathway” Tier 1 experiments that were run by almost
all models from our model selection: these are “ssp126,” “ssp245,” and “ssp585,” respectively corresponding to
additional radiative forcing of 2.6, 4.5, and 8.5 W/m2 by 2100. The first two scenarios assume large reductions in
carbon emissions relative to the present day; the final represents an upper bound of the range of scenarios
described in the literature (O’Neill et al., 2016).

We used 18 CMIP6 models from 16model families (Table S1 in Supporting Information S1). These were selected
as follows: for a representative sample of CMIP6 models, we prioritized selecting at least one model from each
model family with data available on the ESGF archive (see Data Availability Statement); each model must have
monthly sea‐ice concentration data available for piControl, historical, and 1pctCO2 experiments, and at least two
of the three ssp experiments outlined above. We chose models with relatively realistic winter SIE: no very low‐
biased CMIP6 models (Casagrande et al., 2023; Roach et al., 2020) were used.

In subsequent sections, “earlyhist” denotes only years 1850–1950 of the historical simulations. “lateh-
ist + sspxxx” denotes years 1950–2015 of the historical runs, combined with the 2015 to 2100 sspxxx run (to
provide a set of simulations encompassing the full observational period, and sufficiently long for robust statistics).

Our analysis focuses on SIE. This is calculated from sea ice concentrations (SIC) from satellite retrievals, and
coupled model output SIC (variable “siconc”), regridded to a regular 1° latitude/longitude grid before SIE
calculation; see Data Availability Statement for detail. We represent winter with results for calendar month
August across simulations and observations, since at the initial time of writing this was the latest month of satellite
data available for 2023. See Figure S1 in Supporting Information S1 for August SIE timeseries for all model
simulations.
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3. Methods
For all simulations and observations, we construct a timeseries of the SIE anomaly from the previous 10‐year
mean SIE (for year X, this is the mean over years X‐10:X‐1). Goosse et al. (2009) showed that in a transient
climate simulation, summer variability increases with increasing mean. We confirm this for winter sea ice (Figure
S2 in Supporting Information S1) and identify a threshold of 10 Mkm2 beyond which this no longer holds.
Therefore, to reduce impacts of this correlation on later results (given that the forced simulations have lower mean
SIE than piControl), we only use simulation years with moving‐average SIE >10 Mkm2. See Table S1 in Sup-
porting Information S1 for the number of years retained for all simulations. Hereafter, we use “SIE variability data
set” to refer to this type of data set (a timeseries of anomalies from the previous decadal mean, with moving‐
average SIE >10 Mkm2).

We first tested whether variability in SIE is normally distributed, as often assumed implicitly in sea‐ice studies.
We tested both absolute August SIE, and the SIE variability data set for all models and simulations. From a
Shapiro‐Wilkes test of normality, the null hypothesis (of a normal distribution) was ruled out for most timeseries
at the p = 0.05 level. Therefore in Section 4, since it cannot be assumed that all data is normally distributed, and
the associated probability distribution is unknown, we use the 5%–95% range (calculated using the scipy
percentile function) instead of standard deviation as a measure of spread, and use non‐parametric tests based on
empirical distribution functions to compare distributions. To determine whether each SIE variability data set was
significantly different from observed variability, we applied the Kolmogorov‐Smirnov two‐sample test using
python's scipy.stats package (see Figure S4 and Text S1 in Supporting Information S1 for details).

For brevity we will use ΔSIEaug23 to denote the observational August 2023 anomaly from the previous 10‐year
(2013–2022) mean. Hereafter we always use “anomaly” to refer to anomalous reductions (ignoring anomalous
highs, as all distributions may be asymmetric). We apply two methods to estimate the probability that a given
model simulation, for any given year, returns an SIE anomaly of at least ΔSIEaug23. The first method uses
empirical cumulative distribution functions (ECDFs): using python (https://www.statsmodels.org/stable/gener-
ated/statsmodels.distributions.empirical_distribution.ECDF.html), we calculate the ECDF Femp(x) of the SIE
variability data set for each model simulation. The probability that this model simulation returns an SIE anomaly
of at least ΔSIEaug23 is then

P(x≤ΔSIEaug23) = Femp (x = ΔSIEaug23) (1)

The second method uses extreme value theory: the generalized extreme value (GEV) distribution is a family of
distributions used to model the extremes of sequences of independent and identically distributed random variables
(Ailliot et al., 2011; Alves & Neves, 2011). We applied python's scipy.stats package with inbuilt generalized
extreme value distribution (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html) to
fit a distribution fgev to each SIE variability data set for each simulation as follows

fgev(x) = exp(− (1 − cy(x))1/c)(1 − cy(x))1/c− 1/s

where y(x) = (x − l)/s

− ∞ < x< 1/c if c> 0

1/c< x< ∞ if c< 0

(2)

and s, l, and c are fitted parameters. Then, the probability P(x ≤ΔSIEaug23) is given by the cumulative distribution
function Fgev(x) of fgev(x):

P(x≤ΔSIEaug23) = Fgev (x = ΔSIEaug23). (3)

The return period T(x ≤ X ) is the inverse of p(x ≤ X ). For each model and simulation, we determined the 5%–95%
confidence interval of the GEV‐estimated P(x ≤ ΔSIEaug23) using the scipy.stats bootstrapping function (https://
docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html): we resampled each SIE variability data
set 1000 times, returning a GEV‐estimated probability from each sample, to obtain the 5%–95% confidence
interval.

Geophysical Research Letters 10.1029/2024GL109265
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4. Results
Figure S3 in Supporting Information S1 shows histograms of the SIE vari-
ability data sets with observed August 2022 and 2023 differences highlighted
(henceforth referred to as ΔSIEaug22 and ΔSIEaug23). ΔSIEaug22 falls within
the distribution simulated by most models, although toward the low‐
probability (i.e., high return period) end of the distribution. The return
period T(x ≤ ΔSIEaug22) for a model to simulate an annual anomaly of this
magnitude or greater varies between models and simulations, but for the
majority (72/107) of simulations, T(x ≤ ΔSIEaug22) < 10 years, and for all
simulations T(x ≤ ΔSIEaug22) < 100 years (from ECDF estimates, see Figure
S4b in Supporting Information S1). By contrast, ΔSIEaug23 is toward the
extreme low‐probability end for all models, as quantified later.

In total across the 14,568 years analyzed here, anomalies of magnitude
ΔSIEaug23 are simulated 104 times. The SIE within − 20 to +20 years of these
instances are composited (Figure 1b; compare to observational SIE in
Figure 1a). The year of the anomaly is preceded by ∼5 years of sea ice
reduction from the longer‐termmean, and SIE then takes∼10 years to recover
to a new, lower, extent. The mean over years 10–20 is reduced relative to the
mean over years − 20 to − 10 by 0.7 Mkm2. This suggests (at least in models)
after a ΔSIEaug23magnitude event, sea ice may take decades to recover. These
results include MPI‐ESM1.2‐LR, a model with particularly high variability
(accounting for 57/104 instances). We therefore repeated this analysis for the
remaining 47 instances, and obtained a reduction of 0.9M km2. We also
repeated the analysis for the 27 occurrences within piControl runs and ob-
tained a reduction of 0.4 Mkm2. This indicates that some of the 0.7 Mkm2

reduction may be accounted for by forced multi‐decadal decreasing SIE
trends, but even under internal variability only, an anomaly of magnitude
ΔSIEaug23 is still followed by lowered SIE over the subsequent decades. See
these two additional cases in Figure S5 in Supporting Information S1.

We now consider two quantities across simulations and observations: vari-
ability, and return period of a ΔSIEaug23 event. First we compare simulated
and observed variability. The variability (defined as the 5%–95% SIE range)
shown in Figure 2a is more dependent on the model than the simulation.
However, most (13/18) models have variability at least 0.2 Mkm2 higher than
observed in at least 5/6 simulations; the multi‐model ensemble has range 2.0–
3.0 Mkm2 across the six simulations (compare to an observed range of 1.5
Mkm2). This is in line with previous studies that considered sea ice before
2023, for example, Gagné et al. (2015); Roach et al. (2020); Zunz
et al. (2013), which found that annual variability simulated by the majority of
GCMs is greater than observed. We next compare each simulation's SIE
variability data set to the observed variability over 1979–2023 (results were

similar when instead using observations over 1979–2022). From Figure S4d in Supporting Information S1, the
models with all simulations most consistent with observations appear to be FIO‐ESM‐2‐0 and CESM2; the only
model inconsistent with observations at the p < 0.05 level for all simulations is MPI‐ESM1.2‐LR.

We now move on to estimating the return period TΔSIEaug23 for each model to return an anomaly of magnitude at
least ΔSIEaug23, for all simulations, using two methods (see Section 3). Figure 2b shows ECDF results. For 10/18
models, the value never occurred in any simulation, so empirically determined TΔSIEaug23 > (number of years in
the SIE variability data set). The majority (14/18) of models simulate TΔSIEaug23> 90 years (i.e., occurring at most
once or twice) for all simulations. Given that anomalies as large as ΔSIEaug23 are rarely simulated over the time
period considered, it is challenging to estimate TΔSIEaug23 for all simulations from the ECDF. Therefore, we apply
extreme value theory to the SIE variability data sets for a more reliable return period for these events. Figure 2c
shows TΔSIEaug23 calculated with this method (see Figures S4c and S6 in Supporting Information S1 for equivalent

Figure 1. (a) Timeseries of August Antarctic SIE, from 1979 to 2023. Thin
black line: mean over 2003–2013. Red line: August 2023 value. (b) In gray,
all instances in all simulations of an anomaly of magnitude at least
ΔSIEaug23, with year− 20 to year+20 around the anomaly. Centered on year
“0,” the year of the anomaly, and relative to the mean over years − 20 to − 10.
Thick black line: mean over all runs. Thick dashed lines: indicating lower
and upper quartiles, and median over all runs. Thin black line: mean over
years − 20 to − 10, and green line: over years 10–20. Red line: anomaly of
August 2023 mean from 2003 to 2013 mean, for comparison with (a).
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probabilities and errors). As might be expected given the variation between models shown in Figure S3 in
Supporting Information S1 and Figure 2b, GEV estimates are highly dependent on the model and forcing, but
TΔSIEaug23 > 102 years for almost all (94/107) simulations, and >103 for most (73/107) simulations. To better
understand these results, we consider both the multi‐model ensemble (MME), and the dependence of TΔSIEaug23
on the variability for each simulation. Figure 3a shows the MME SIE variability data set histogram. The MME
5%–95% range for all simulations is significantly broader than the observational 5%–95% range, and the MME
data sets are inconsistent at the p < 0.01 level with the observational data set (see also Figure 2a and Figure S4 in
Supporting Information S1). ΔSIEaug23 is at the low‐probability extreme lower end of the range of the MME.
Figure 3b shows TΔSIEaug23 from GEV fits to each MME simulation data set. For piControl, TΔSIEaug23 is
2650 years (5%–95% confidence interval: 1530–6260 years). Climate forcing reduces TΔSIEaug23 for the earlyhist
and latehist + ssp245 simulations to respectively 1290 (530–3150) years and 1330 (590–3180) years, and for
latehist+ ssp585 to 580 (300–1120) years. We emphasize the large reduction from piControl to latehist+ ssp585,
and the lack of overlap of their respective uncertainty ranges: this is a significant difference by some measure. We
note that the MME estimates include models with variability highly inconsistent with observations: from Figure
S4 in Supporting Information S1, CAMS‐CSM1.0 and MPI‐ESM1.2‐LR, and from Figure S1 in Supporting
Information S1, GFDL‐ESM4, for which unrealistic deep convection in the piControl and historical runs results in
rapid sea ice loss (Dunne et al., 2020; Heuzé, 2021). Repeating the analysis without these three models yields
higher return periods of 103–106 years across simulations (Figure S7 in Supporting Information S1). However,
climate forcing still robustly decreases TΔSIEaug23 relative to piControl with the largest reductions for
latehist + ssp585.

We now consider all model simulations individually: Figure 3c shows TΔSIEaug23 against the variability. We
identify a strong negative correlation: models with greater variability have lower TΔSIEaug23. The simulations with
variability within 0.5 Mkm2 of observations are very unlikely to simulate an August 2023 event (Figure 3c, inset),

Figure 2. (a) 5%–95% SIE range for each model, for each simulation, and bottom row: observations. (b) and (c) The return
period T(x ≤ ΔSIEaug23), for each model and simulation, of returning an August SIE anomaly as large as ΔSIEaug23,
calculated by two methods: (b) T(x ≤ΔSIEaug23) from ECDF. Black: an anomalous low equal to or larger than ΔSIEaug23 did
not occur any simulated year. (c) As for (b), but T(x ≤ ΔSIEaug23) found by fitting GEV distribution to tails. Black: T
(x ≤ ΔSIEaug23) > 104 years.
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all yielding TΔSIEaug23 > 103 years. Most simulations within 0.2 Mkm2 of observations yield TΔSIEaug23 >
105 years. We perform a least‐squares fit to this range (we do not expect this fit to hold exactly, but use it to
provide a rough estimate of expected return periods for this range). Using this fit, for observational variability 1.2
Mkm2, the corresponding TΔSIEaug23 = 5 × 10

7 (from errors: 1 × 105 to 2 × 1010). This means that for a model
simulation with variability similar to observations, the associated return period for ΔSIEaug23 would be on the
order of 100 thousand to 10 billion years.

5. Discussion
We separate SIE anomalies into “variability” (1979–2022, 5%–95% probability range) and “extreme events”
(such as the winter 2023 anomaly). Under this definition, most CMIP6 models considered here simulate “vari-
ability” similar to (but slightly higher than) observed variability, consistent with past findings (Gagné et al., 2015;
Roach et al., 2020). From the relationship we identify between TΔSIEaug23 and variability, if a simulation has
TΔSIEaug23 in the 10–1000‐year range, this is enabled by variability that is much greater than observations.
Simulations with variability within 0.5 Mkm2 of observations have associated TΔSIEaug23 of at least 1000 years; a
rough estimate shows that for a simulation with variability equal to observations, the associated return period for
ΔSIEaug23 is of the order 10

7 (50 million) years.

Figure 3. (a) Histogram of the SIE variability data set for the multi‐model ensemble, with observations in black, and
ΔSIEaug22 and ΔSIEaug23 highlighted in gray and red respectively. (b) GEV‐estimated return periods of ΔSIEaug23 using the
multi‐model ensemble; errors show 5%–95% confidence interval returned by bootstrapping. (c) For each model simulation,
GEV‐estimated return period against the simulation's respective SIE 5%–95% range. Black vertical line: observational 5%–
95% range for comparison. Inset: results for SIE range: 1.1–1.9 M km2. Blue line: fit to datapoints in this region, of form log
(GEV‐estimated period)=m log (SIE range)+ c, withm= − 42± 8, and c = 15± 1. Thin blue lines: upper and lower bounds
on this fit. Dashed line: TΔSIEaug23 returned from fit, for SIE range equal to observations (with thin dashed lines: upper and
lower bounds.).
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This return period is very large (so seems unrealistic). However, given the short satellite record, and that 2023's
anomaly was such an unprecedented event, it is very challenging to attempt to estimate the true value of TΔSIEaug23
from the satellite record. Three possible methods are using a Gaussian approximation, or using GEV or ECDF
estimates as applied in this paper. These respectively return TΔSIEaug23 ∼ 10

5, ∼103, and ∼0.03. These estimates
differ by several orders of magnitude, and are likely flawed, due to a small and probably non‐representative
sample (e.g., Gilbert and Holmes (2024)). Both the ECDF and GEV cannot reliably be applied to observations
given the very small sample size (Cai & Hames, 2010; Philip et al., 2021); indeed, we find that 5%–95% con-
fidence intervals on these two estimates (using bootstrapping) span 10 orders of magnitude. However, we
emphasize that all three estimates are several orders of magnitude smaller than 107 years.

To estimate the true value of TΔSIEaug23 and better quantify variability, more research on observed long‐term
variability is critical. It is possible that true interannual variability could be greater than the range measured
over the satellite era, and may change naturally over centennial or millennial scales, so quantifying variability on
these timescales would more accurately indicate TΔSIEaug23, enabling a more robust comparison with models.
There is some evidence of changing variability even in the short satellite record (Purich & Doddridge, 2023).
Longer records such as marine sediment cores or ice cores could help quantify the variability (Chadwick
et al., 2023; Crosta et al., 2022). These “proxy” records have low temporal resolution and high uncertainty, so
their interpretation has focused on mean sea‐ice state or decadal‐scale trends rather than interannual variability
(Abram et al., 2013; Thomas et al., 2019). Reconstructions of sea ice since 1905 based on relationships with
atmospheric variables do support 2023 as an exceptionally low year for sea ice (Fogt et al., 2022; Yang
et al., 2021).

A mechanistic understanding of 2023's record low is critical to understanding the likely future evolution of
Antarctic sea ice, as well as whether models capture the processes that caused it. The first papers on the atmo-
spheric and oceanic precursors have been recently published (Ionita, 2024; Purich & Doddridge, 2023), sug-
gesting 2023's record low sea ice was related to a build‐up of subsurface ocean heat, possibly enhanced by large‐
scale circulation changes.

We suggest the likely unrealistic model‐returned TΔSIEaug23 of 10
7 years may be due to inconsistencies between

the shape of the SIE distribution in models versus observations: models tend to have a wider‐than‐observed
envelope of 5%–95% variability, but may simulate very extreme events too infrequently, with too narrow tails
as compared to observations. Our results suggest that the process responsible for the low sea ice in 2023 is not
properly accounted for in models, necessitating better understanding and model improvements. Low persistence
is one possible explanation of the very rare occurrence in most models of anomalies as large as observed in winter
2023. Almost all models have persistence in the piControl simulations of at most 2 years (not shown), whereas the
recent sequence of sea‐ice lows may have been enabled by higher persistence than this (Massonnet et al., 2023;
Purich & Doddridge, 2023). This could explain why models tend not to simulate as large departures from the
mean as have been recently observed.

However, we do note from Figure 1b that in the rare instances that an anomaly of magnitude ΔSIEaug23 is
simulated in models, it is preceded by ∼5 years of decrease from the mean, and SIE after this anomaly takes
around a decade to recover to a new, lower, state, suggesting that there is some persistence in the system after such
an event. Given that the mean in Figure 1b is taken over models with very different initial sea ice conditions, we
do not expect the 0.7 Mkm2 reduction 10–20 years after such an event to be a prediction of the future state of sea
ice over the 2030s–2040s. However, it does indicate that, at least in models, a reduction of ΔSIEaug23 is followed
by a transition to a lower sea‐ice state, so we may expect to see this over the coming decades.

In models, unrealistically deep and frequent Southern Ocean convection can contribute to high sea ice variability;
most models considered here have this artifact to varying degrees (13 do, two do not, three unknown, from
Heuzé (2021) and Mohrmann et al. (2021)). The slight majority (8/13) of models with deep convection also
simulate ΔSIEaug23 at least once, and no models simulate ΔSIEaug23 without some deep convection. Therefore,
models with more deep convection may also be more likely to simulate ΔSIEaug23. This would support our
suggestion that models that simulate ΔSIEaug23 more frequently than 1/1000 years tend to do so due to unreal-
istically high SIE variability, which, from these results, could be linked to unrealistically high deep convection.
However, given that almost all models (with data available) include some degree of deep convection, and five
models have some deep convection but never simulate ΔSIEaug23, it is difficult to draw robust conclusions. A
more thorough investigation could provide the basis for a follow‐up study. Finally, we note that, over the last
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decades, sea‐ice trends have been highly regional, with statistically significant increases in the Ross Sea but
decreases elsewhere (Eayrs et al., 2021; Yuan et al., 2017). Here we investigate pan‐Antarctic SIE alone, but
further useful research could investigate regional changes.

6. Conclusions
We have shown that CMIP6 models tend to simulate greater interannual variability in SIE than that observed over
1979–2022. However, they are still extremely unlikely to simulate an SIE anomalous low of the magnitude of that
observed in August 2023 (ΔSIEaug23). An approximate fit to model simulations with near‐observational vari-
ability shows that for a model simulation with variability equal to observations, the associated return period for
ΔSIEaug23 would be 50 million years. Previous studies have shown differences between sea‐ice change in models
and observations, with models simulating stronger linear trends (Gagné et al., 2015; Roach et al., 2020) implying
they may not be capturing all processes and projections of future reductions may be over‐stated (although this
trend discrepancy may not remain in light of recent change). We add an interesting counter‐argument in that the
models may, in fact, under‐simulate very rapid ice decline.

However, despite these limitations, we note that climate forcing in the models does robustly reduce the return
period for such anomalies, relative to under internal variability alone, by up to an order of magnitude in the multi‐
model ensemble. The reduced return period in forced scenarios suggest that winter 2023's extreme low was made
more likely by climate change, in agreement with recent literature, for example, Purich and Doddridge (2023) and
Ionita (2024) (although our study does not constitute a formal attribution analysis). Furthermore, when these rare
anomalies do occur in models, sea ice takes approximately 10 years to recover to a new state, in which SIE is
lowered by 0.5–1 Mkm2 relative to the mean preceding the anomaly. Therefore, as suggested by Purich and
Doddridge (2023) and Ionita (2024), 2023's low may indeed act as a bellwether of future change, indicating a
transition to a new regime of lowered winter sea ice, at least for the next few decades.
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