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Abstract
1. To predict how biodiversity will respond to global change, it is crucial to under-

stand the relative roles of abiotic drivers and biotic interactions in driving associa-
tions between the biodiversity of disparate taxa. It is particularly challenging to 
understand diversity–diversity links across domains and habitats, because data 
are rarely available for multiple above-  and below- ground taxa across multiple 
sites.

2. Here, we analyse data from a unique biodiversity data set gathered across a vari-
ety of oceanic temperate terrestrial habitats in Wales, comprising 300 sites with 
co- located soil microbial, plant, bird and pollinator surveys along with climate and 
soil physicochemical information. Soil groups are analysed using metabarcoding 
of the 16S, ITS1 and 18S DNA regions, allowing in- depth characterisation of mi-
crobial and soil animal biodiversity.

3. We explore biodiversity relationships along three aspects of community com-
position: First, we assess correlation between the alpha diversity of different 
groups. Second, we assess whether biotic turnover between sites is correlated 
across different groups. Finally, we investigate the co- occurrence of individual 
taxa across sites. In each analysis, we assess the contribution of linear or nonlin-
ear environmental effects.

4. We find that a positive correlation between alpha diversity of plants, soil bacteria, 
soil fungi, soil heterotrophic protists, bees and butterflies is in fact driven by com-
plex nonlinear responses to abiotic drivers. In contrast, environmental variation 
did not account for positive associations between the diversity of plants and both 
birds and AM fungi, suggesting a role for biotic interactions.

5. Both the diversity and taxon- level associations between the differing soil groups 
remained even after accounting for nonlinear environmental gradients. Above- 
ground, spatial factors played larger roles in driving biotic communities, while 
linear environmental gradients were sufficient to explain many group-  and taxon- 
level relationships.
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1  |  INTRODUC TION

Ecosystem functionality and stability are underpinned by biodi-
versity (IPBES, 2019) and interactions between different compo-
nents of the biosphere are essential to ecosystem maintenance. 
Correlation between the different biological communities of an eco-
system could be due to the direct influence of one taxonomic group 
on another or due to shared response to environmental conditions 
(Schulze et al., 2004; Wolters et al., 2006). Consequently, taxonomic 
or environmental mechanisms may lead to associated patterns of 
biodiversity but have differing implications for land use manage-
ment. Indeed, opposing trajectories of above-  and below- ground 
biodiversity as well as weakened biotic correlations have been ob-
served in response to land use intensification (Gossner et al., 2016; 
Manning et al., 2015). Therefore, disentangling the relative influence 
of abiotic and biotic impacts on the different components of the bio-
sphere is key to understanding and predicting future responses of 
biological communities to environmental change.

There is a prevailing notion in ecology that diversity begets di-
versity. For example, a more diverse plant community can support 
a more diverse pollinator community through a proliferation of eco-
logical niches (Schulze et al., 2004). There is still uncertainty over 
the strength of this synergistic effect, as relationships between the 
diversity of different taxa above- ground have been shown to be 
variable and weak (Wolters et al., 2006). Results investigating the re-
lationship between above-  and below- ground biodiversity have also 
been variable, with either positive or no correlations commonly ob-
served between plant diversity and soil microbial diversity (Hiiesalu 
et al., 2014; Leff et al., 2018; Prober et al., 2015). The different 
spatio- temporal scales of each study may explain some of these 
discrepancies, as the scale studied has been found to influence the 
relationships found between the diversity of different groups and 
their response to environmental factors (Chase et al., 2018; Wolters 
et al., 2006). Certain taxonomic groups appear to show more positive 
relationships with plant diversity. For example, fungal diversity, par-
ticularly mycorrhizal diversity, is often found to be positively related 
to plant diversity (Hiiesalu et al., 2014; Milcu et al., 2013; Nguyen 
et al., 2016; Peay et al., 2013; Ren et al., 2017; Yang et al., 2017). 
The type of plants that are considered in plant diversity inventories 
can also be important, for example, the number of flowering plant 

species and their abundance has been shown to influence bee and 
butterfly abundance and richness (Kearns & Oliveras, 2009; Potts 
et al., 2009).

While relationships between the diversity of different taxonomic 
groups may be variable, there have been many results demonstrat-
ing that the species composition of plant assemblages may be re-
lated to the composition of other taxonomic groups even when 
diversity is not. Relationships between the community turnover 
of plants and the turnover of soil bacteria, fungi and protist com-
munities have been found in both experimental and observational 
studies (Barberán et al., 2015; Cline et al., 2017; Delgado- Baquerizo 
et al., 2018; Leff et al., 2018; Prober et al., 2015). These correla-
tions in composition and turnover in observational results can per-
sist even after controlling for environmental drivers such as climate 
or soil physicochemical properties (Delgado- Baquerizo et al., 2018; 
Prober et al., 2015). Such changes in composition could be due to 
species- level associations between taxa, such as trophic interac-
tions, symbioses or parasitic links.

Shared responses to environmental gradients could explain many 
of the measured associations between the biodiversity of different 
taxonomic groups. Some of the positive correlations that have been 
found between plant diversity and soil bacterial, fungal and protistan 
diversity are explained by shared response to environmental vari-
ables, for example, soil pH and fertility (Goberna et al., 2016; Yashiro 
et al., 2018; Yuan et al., 2017). However, there are still many ecosys-
tems, especially in extreme environments such as sub- polar regions 
and intensively managed agricultural systems where environmental 
factors may in fact cause divergent patterns and disconnectance of 
biodiversity (Cameron et al., 2019; Manning et al., 2015). Identifying 
the role of environmental factors in determining cross- taxa biodi-
versity associations can be challenging, with a vast array of potential 
environmental drivers that can each have direct, indirect, linear, non-
linear, synergistic and/or antagonistic effects on the species within 
an ecosystem. The scale of the environmental gradient also impacts 
the relative role of the environment in driving biodiversity change, 
as larger environmental gradients can have greater, or even nonlin-
ear, effects (Chase et al., 2018). Experimental manipulations, such as 
those established to evaluate the impact of plant diversity upon the 
biodiversity of the other groups, can yield useful information on the 
potential role of biodiversity interactions under relatively constant 

6. Synthesis. Our results show how nonlinear responses to environmental gradients 
drive many of the relationships between plant biodiversity and the biodiversity of 
above-  and below- ground biological communities. Our work shows how different 
aspects of biodiversity might respond nonlinearly to changing environments and 
identifies cases where management- induced changes in one community could ei-
ther influence other taxa or lead to loss of apparent biological associations.

K E Y W O R D S
above-  and below- ground, bird diversity, joint species distribution modelling, plant diversity, 
pollinator diversity, soil microbial communities
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1552  |    SEATON et al.

environmental conditions. Manipulative studies have found positive 
relations between plant diversity and the diversity of some other 
organisms, particularly for above- ground herbivores but less so for 
soil microbial groups (Cline et al., 2017; Dassen et al., 2017; Lind 
et al., 2015; Scherber et al., 2010; Weisser et al., 2017). However, 
by necessity, empirical studies are limited in scope, covering a lim-
ited set of environmental conditions and plant species combinations. 
Furthermore, too few studies consider complex, nonlinear environ-
mental effects when assessing relationships between diversity or 
composition of disparate taxonomic groups.

Using a large multi- trophic field data set spanning all terrestrial 
habitats in Wales, UK, here we attempt to unpick the relationships 
between a breadth of above-  and below- ground taxa. Specifically, we 
explore associations between plants, birds, pollinators and below- 
ground soil bacteria, fungi (total fungi and arbuscular mycorrhizal 
fungi), heterotrophic protists and animals, both before and after 
accounting for linear or complex nonlinear environmental effects. 
We assess the relationships between taxa across three axes of bio-
diversity, addressing aspects of alpha diversity, community turnover 
and taxon co- occurrence. We investigate (1) correlation between 
the alpha diversity of different groups using Bayesian hierarchical 
regression models; (2) whether turnover between sites is correlated 
across different groups using ecological distance analysis; and (3) the 
co- occurrence of individual taxa across sites, irrespective of higher 
groupings. In each analysis, we assess the contribution of linear or 
complex nonlinear environmental effects. We hypothesise that (a) 
many inter-  and intra- group relationships are readily explained by 
environmental variation, especially when complex, nonlinear effects 
are considered; (b) those relationships remaining after accounting 
for environmental variation are more likely to be between groups 
and taxa that are known to have biotic interactions (e.g., nectar pro-
ducing plants and pollinators, or herbaceous plants and soil fungi); 
and (c) that accounting for environmental effects would be more 
likely to cause associations between the alpha diversity of different 
groups to disappear compared with associations between commu-
nity turnover or co- occurrence of individual taxa.

2  |  METHODS

2.1  |  Field measurement programme

These data were collected as part of the Glastir Monitoring and 
Evaluation Programme field measurement programme in Wales 
(Emmett et al., 2017; Wood et al., 2021). In total, 300 individual 
1 km squares were randomly selected from within land classification 
strata in proportion to their extent across Wales in order to be rep-
resentative of the range of habitat types across Wales or targeted to 
areas with high potential for agri- environment scheme uptake (Wood 
et al., 2021). Sampling occurred over a 5- month period across each 
of the summers of 2013 to 2016; each square was only surveyed 
once over the 4 years with different squares being surveyed each 
year. Every square was subjected to a habitat survey, bird survey, 

two pollinator survey transects and multiple plant survey plots. A 
representative schematic of the survey layout within a 1 km square 
is shown in Figure 1. For each square, there were up to five 200 m2 
square plant survey plots that also had soil samples taken. Soil sam-
ples were analysed for a variety of soil physicochemical properties, 
including pH in 1:2.5 CaCl2 suspension, total carbon, nitrogen and 
phosphorus, bulk density, water content, water repellency and elec-
trical conductivity in 1:2.5 distilled water suspension. The data and 
full methods are available on the Environmental Information Data 
Centre (EIDC) (Robinson et al., 2019). Within the first 2 years of the 
survey, soil samples were taken for microbial and eukaryotic com-
munity composition analysis from three of the 200 m2 plots, ran-
domly selected per each 1 km square.

The habitats of each square were mapped, and each plot was 
assigned to a habitat according to the UK Joint Nature Conservation 
Committee criteria (Jackson, 2000). The plot- level measurements of 
microbial diversity were derived from 31% improved grassland; 23% 
neutral grassland; 12% acid grassland; 7% broadleaved woodland; 
7% coniferous woodland; 7% bog; 4% arable; 3% dwarf shrub heath; 
3% fen, marsh and swamp; and 2% bracken. Precipitation was the 
annual average rainfall, and temperature was the annual average 
daily temperature for 1981–2010 calculated on a 1 km grid; this time 
period was chosen as it was the closest 30- year average provided by 
the Met Office that did not include any years post- survey. All climate 
data came from the Met Office © Crown copyright 2019 (Met Office 
et al., 2019).

2.2  |  Biological data

2.2.1  |  Plant survey

Vegetation surveys were conducted for multiple plots per square, 
with the data being publicly available on the EIDC (Smart et al., 2020). 

F I G U R E  1  Representative schematic showing the layout of the 
vegetation plots and pollinator and bird transects within a 1 km 
square. There are five randomly located plots with both plant and 
soil surveyed in each square, while the number and location of 
plant only plots varies by square as some plot types are habitat 
specific (e.g., hedgerow plots). Size of plots and transect sections is 
not to scale.

Key

Plant and soil plot

Plant-only plot 
(mul�ple types)

Pollinator transect

Bird transect
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    |  1553SEATON et al.

Overall, there were 10 types of sampling plots in total. Some plots 
were targeted to specific landscape features (e.g., hedges), meaning 
the total number and proportion of plot types varies across squares. 
The total number of vascular plant species recorded across the en-
tire 1 km square was used as plant species richness for the square- 
level analyses. Due to the differences in sampling effort across the 
squares, rarefaction curves were constructed to confirm that the 
number of plant species found had reached saturation. To assess 
whether different subsets of plants had greater associations with 
the diversity of other groups, within each plot, the plant community 
was split by growth form, and for the above- ground communities, 
the richness of plant species that were important to the diet of low-
land birds, butterfly larvae and nectar provision was also calculated 
(Baude et al., 2016; Smart et al., 2000). Previous research has shown 
herbaceous plants to be more related to soil microbial groups than 
woody plants (Hu et al., 2018; Wang et al., 2016); however, we did 
not expect all herbaceous groups (forbs, grasses, ferns, sedges and 
other monocots) to show the same relationships with soil microbial 
groups, so we limit our herbaceous analysis to the forbs and grasses 
as they are the most diverse herbaceous groups within our data set.

2.2.2  |  Bird and pollinator surveys

Birds were surveyed based on four morning visits to each square, 
equally spaced through mid- March to mid- July. Surveyors walked 
a route that passed within 50 m of all parts of each survey square, 
varying the start point for each survey in order to visit all parts of the 
square at least once before 08:00 h. All bird species seen and heard 
were recorded within each visit, and the total number of bird species 
recorded across all visits per square was used to calculate total bird 
species richness. Pollinator surveys were split into two independ-
ent parts: two 1 km transect routes separated by at least 500 m and 
where possible 250 m from the edge of the 1 km square; and a 20- 
min timed search in a 150 m2 flower rich area within the 1 km square. 
The total number of butterfly species and bee groups recorded per 
square were used to calculate richness. Pollinator surveys were man-
aged by Butterfly Conservation and bird surveys managed by the 
British Trust for Ornithology, and both data sets are publicly avail-
able on the EIDC (Botham et al., 2020; Siriwardena et al., 2020). 
Further details on survey methods are available within the data 
documentation upon the EIDC, and also within Wood et al. (2021).

2.2.3  |  Soil microbial diversity and community 
composition

Soil samples for microbial biodiversity analyses were taken using a 
gouge auger at 5 points around the physicochemical soil core loca-
tion down to 15 cm, and then bulking together the samples. DNA 
was extracted from the combined, homogenised samples using 
mechanical lysis following homogenisation in triplicate from 0.25 g 
of soil per sample. The 16S (V4), ITS1 and 18S regions of the rRNA 

marker gene were targeted for amplicon sequencing to analyse 
the bacterial, fungal and general eukaryotic diversity, respectively. 
Diversity of arbuscular mycorrhizal fungi (AM fungi) was assessed 
separately using 18S data due to poor resolution with the ITS region 
(Berruti et al., 2017). For a full description of the methods used, see 
George et al. (2019). Sequences with associated sample metadata 
have been uploaded to The European Nucleotide Archive with the 
following primary accession codes: PRJEB27883 (16S), PRJEB28028 
(ITS1) and PRJEB28067 (18S).

Amplicon sequence variants (ASVs) were identified from 
the Illumina output using the DADA2 algorithm in R (Callahan 
et al., 2016). First, Illumina adapters were trimmed from sequences 
using Cutadapt (Martin, 2011). Then, the DADA2 package was used 
to filter all 16S, 18S and ITS1 reads to be truncated after the first 
instance of a quality score of 2, to remove all Ns and to have no more 
than two errors. Based on the examination of the change in quality, 
scores with read length for a random subset of samples 16S reads 
were truncated to 200 bases, 18S reads truncated to 250 bases and 
ITS reads fewer than 100 bases in length removed. The DADA2 al-
gorithm was then used to de- noise and merge the paired reads at 
standard settings. Sequence tables were constructed from the re-
sultant ASVs, and chimeric sequences were removed using default 
settings. Taxonomy was assigned using the DECIPHER R package 
(Wright, 2016), with both 16S and 18S reads being matched to SILVA 
r138 (Glöckner et al., 2017) and ITS being matched to UNITE v2019 
(Nilsson et al., 2019). Non- bacterial ASVs were removed from the 
16S data, and non- fungal ASVs from the ITS data. All ASVs appearing 
in the negative controls were removed from the analysis.

To account for the differences in read depth between samples, 
rarefaction was used as it has been shown to preserve the microbial 
relationships with biological origin (Weiss et al., 2017). The fungal 
data were rarefied to 10,000 reads, bacteria to 20,000 reads and 
18S eukaryotes to 20,000 reads. Samples below this threshold were 
discarded, resulting in 437 fungal (ITS) measurements, 437 bacterial 
measurements and 438 eukaryote (18S) measurements. Eukaryote 
data were separated in to three sections based on higher order iden-
tification in the 18S data set: AM fungi (phylum Glomeromycota), 
heterotrophic protists (Cercozoa, Ciliophora and Amoebozoa) and 
soil animals. Richness was calculated after rarefaction, which was 
repeated 100 times and the average result used in further analysis. 
For analysis of community composition, the average of 20 rarefac-
tion repeats was used.

2.3  |  Statistics

2.3.1  |  Alpha diversity

All statistical analyses were performed within R version 4.3.0 
(R Core Team, 2023). For analysis (1), assessing correlations be-
tween alpha diversity of different groups, we tested for effects 
of environmental variables using Bayesian multivariate hierarchi-
cal modelling within the brms package in R (Bürkner, 2017). This 
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1554  |    SEATON et al.

approach allowed us to include residual correlations between the 
alpha diversity of different groups, which would not have been 
possible if fitting multiple univariate models, without imposing 
specific directionalities of relationships within groups, as would 
be required using structural equation modelling. It also allowed us 
to include complex environmental effects, including nonlinear ef-
fects, and a hierarchical effect of the 1 km square for the plot- level 
models or of the vice county for the 1 km square- level models. 
Group richness (for the plot- level model with soil groups and plant 
community) or group Shannon diversity (for the 1 km square- level 
plant, bird and pollinator model) was modelled in a multivariate 
framework as either a function of (a) solely the hierarchical spatial 
grouping, (b) a linear function of abiotic variables or (c) as a nonlin-
ear function of abiotic variables.

For the plot- level model with linear abiotic drivers, we included 
soil pH, total soil carbon (log- transformed), water content, total 
phosphorus and soil water repellency (log- transformed) as predic-
tors, with a unit normal prior on all effects. These environmental 
predictors were chosen due to previous analysis of this data set 
showing that the effect of climate upon the soil microbial commu-
nities was mediated by changes in soil physico- chemical proper-
ties (Seaton et al., 2019, 2020). Bulk density and soil nitrogen were 
not included in the model due to being highly correlated with soil 
carbon (correlation coefficients of −0.92 and 0.92, respectively); 
without these variables, the highest absolute correlation was 0.6, 
which we judged not to be an issue for model fitting. Habitat type 
is not used as a predictor in any of these models, as our habitat 
data were determined by examining the plant communities, which 
leads to a circularity problem where we would be predicting the 
plant community using data derived from the plant community. 
When including nonlinear environmental effects, we limited the 
model to only a sigmoidal relationship between microbial rich-
ness and pH due to the pre- existing literature on the nonlinear 
effects of soil pH on soil biochemical properties (Aciego Pietri & 
Brookes, 2008; Bickel et al., 2019; Lauber et al., 2009). A sigmoidal 
model was chosen rather than a bell curve as there were too few 
soils in the pH >7 range, where bacterial richness has been shown 
to decline, to estimate any such decline. No other environmental 
variables were included as predictors, as we wanted to test the 
hypothesis that a single, highly influential, variable that is appro-
priately fully accounted for through modelling a nonlinear effect 
could be as important as including multiple environmental vari-
ables but only modelling them as linear effects. This sigmoidal 
model took the form shown in Equation (1), where parameters α 
(upper asymptote), β (growth rate), γ (x value at maximum growth) 
and δ (intercept) were fit using weakly informative priors.

For the square- level model with linear abiotic drivers, we in-
cluded annual temperature and precipitation as predictors, again 
with a unit normal prior on all effects. We again did not use habitat 
type as a predictor to avoid the circularity issue described above. 

To investigate a role for complex environmental effects, the plant, 
bird and pollinator model with linear environmental effects was 
compared with a model where the exponentiated Shannon diversity 
values were modelled as a function of interacting temperature and 
precipitation. The square identity was included as a group- level ef-
fect on the intercept (δ) in order to account for the spatial element 
of the data.

To evaluate whether associations between the alpha diversity 
of the different groups remained after accounting for environment, 
the residual correlations between groups were extracted from the 
models. All response variables were modelled as normal, to allow 
for both the rarefaction process for microbial groups detailed above 
resulting in non- integer responses and the inclusion of residual cor-
relations within the model structure. Satisfactory recovery of the 
data was confirmed using graphical posterior predictive checks. No 
correlations between the group- level effects were included within 
the model.

2.3.2  |  Community turnover

For analysis (2), assessing the correlations in turnover between 
sites across different groups, we carried out an ordination anal-
ysis using non- metric dimensional scaling (NMDS). This allowed 
us to move beyond simple summary metrics such as alpha diver-
sity and instead consider associations in broad- scale composi-
tional changes across the different groups. Distance calculation 
and NMDS were performed using the vegan package (Oksanen 
et al., 2020). Binary Jaccard distance was used for plant, bird and 
butterfly species composition and Bray–Curtis distance used for 
bee and hoverfly groups due to their lower richness. All soil mi-
crobial groups were compared based upon Bray–Curtis distance. 
Direct correlation coefficients between the turnover of the dif-
ferent groups were calculated using Procrustes analysis upon the 
PCoA scores for each group. Forbs, grasses and AM fungi did not 
appear in every plot, so those correlations are based upon a subset 
of the data, woody species appeared in too few plots (36%) to be 
included. To unpick the relative contribution of shared environ-
mental drivers, interaction with the plant community and spatial 
autocorrelation that could be driving changes in the main axes of 
variation in the communities the variance in the ordination scores 
of each group was partitioned using the varpart function within 
the vegan package. The response variables were the NMDS scores 
of each group based on Jaccard distance for above- ground groups 
and Bray–Curtis distance for below- ground groups. The NMDS for 
the plot- level analysis were mostly performed using three dimen-
sions and had stress values of 0.067 for bacteria, 0.117 for fungi, 
0.095 for heterotrophic protists, 0.192 for soil animals and 0.076 
for plants (over four dimensions). No stable NMDS solution was 
found for AM fungi even after varying the number of dimensions, 
ecological distance used and convergence criteria so they were 
omitted from this analysis. The NMDS for the square- level analy-
sis were mostly performed using four dimensions and had stress 

(1)y =
�

1 + exp ( − �(x − �))
+ �.
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    |  1555SEATON et al.

values of 0.098 for plants, 0.089 for birds, 0.139 for bees and hov-
erflies (three dimensions) and 0.139 for butterflies. The predic-
tors within the variance partitioning were climate (represented by 
temperature and precipitation), spatial distance (represented by 
principal coordinates of neighbour matrices) and plant community 
composition (represented by the NMDS scores). For the plot- level 
data, only the first four dimensions of a PCA upon soil physico-
chemical properties (pH, carbon, nitrogen, total phosphorus, bulk 
density, electrical conductivity, water content and water repel-
lency) were also used as predictors. These dimensions explained a 
total of 88% of the variance in the measured soil physicochemical 
properties.

2.3.3  |  Taxon- level relationships

For analysis (3), assessing co- occurrence of taxa irrespective of higher 
groupings, relationships were evaluated using joint species distribu-
tion models to identify whether co- occurrences could be explained 
by shared responses to environmental drivers and spatial autocorre-
lation. This approach allowed us to move further from the broad- level 
compositional associations in analysis (2) by modelling each individual 
species separately, allowing us to evaluate both intra-  and inter- group 
species- level associations within the same framework. Joint spe-
cies distribution models were fitted using the sjSDM package in R 
(Pichler & Hartig, 2021). Only common taxa were included within the 
analysis to reduce the number of false- positive associations (Weiss 
et al., 2016), which we define as being present in 25% of sites for bac-
teria, heterotrophic protists, fungi and soil animals and 10% for plants, 
birds and pollinators. In total, there were 2309 bacterial taxa, 236 
heterotrophic protists, 190 fungal taxa, 22 animals and 28 plants in-
cluded in the plot- level below- ground analysis while the square- level 
above- ground analysis included 348 plant species, 101 bird species, 
22 butterfly species, 4 bee groups and 4 hoverfly groups. All mod-
els had the spatial relationships between sites modelled as a linear 
function of the spatial eigenvectors, all taxa converted to presence/
absence and fit with a binomial model with probit link, and all other 
parameters set to their defaults. The responses to environmental 
gradients were either excluded (intercept- only model) or modelled as 

either linear responses or deep neural networks. Within the plot- level 
model (i.e., including microbial groups and plant measurements from 
individual plots), the environmental predictors were soil pH, organic 
matter, carbon, nitrogen, available phosphorus (Olsen- P), conductiv-
ity, water repellency, moisture content and bulk density. Within the 
above- ground model (i.e., including plants at the square level, birds 
and pollinating insects), the environmental predictors were average 
annual precipitation (1981–2010), daily temperature (1981–2010) and 
elevation.

3  |  RESULTS

3.1  |  Alpha diversity

We found that bacterial, fungal, heterotrophic protistan, bird, bee 
and butterfly richness were all positively correlated with plant di-
versity. Within the soil groups, AM fungi showed the strongest 
correlation with plants, whereas bacteria, general fungi and het-
erotrophic protists all had lower correlations, and no correlation 
with animal richness (Table 1, upper triangle). All soil groups were 
positively correlated with each other; however, animal richness 
was only weakly associated with the other groups. Soil microbial 
richness was more strongly positively correlated with the richness 
of forb plant species as opposed to overall plant or grass species 
richness. Microbial richness was also negatively correlated with 
woody plant richness, particularly in AM fungi (ρ = −0.65) and het-
erotrophic protists (ρ = −0.51). Plant diversity in the 1 km squares 
positively correlated most strongly with bird species richness 
(ρ = 0.50), followed by butterfly species richness (ρ = 0.43), then 
bee group and hoverfly group (ρ ~0.35) richness. Limiting the plant 
community to those species known to be important to the differ-
ent above- ground animal groups through food provision resulted 
in an increase in correlation coefficients of 0.08 for birds but not 
for the other groups. The different pollinator groups were posi-
tively associated with each other, with butterflies and bees as-
sociated more strongly with each other than hoverflies with the 
other two groups (ρ = 0.56 compared to ρ 0.42–0.44). Bird species 
richness was positively correlated with butterfly and bee richness 

TA B L E  1  Correlations between the different microbial groups and the plant community (raw data, not model results), the upper triangle 
shows the Spearman rank correlation coefficient for alpha diversity (richness) and the lower triangle shows the Procrustes correlation 
coefficient for compositional turnover (Bray- Curtis distance).

Plant 0.22 0.21 0.19 −0.02 0.40 0.81 0.69

0.54 Fungi 0.51 0.78 0.20 0.53 0.42 0.25

0.50 0.71 Bacteria 0.56 0.07 0.32 0.39 0.16

0.56 0.72 0.78 Hetero. protists 0.13 0.54 0.45 0.26

0.41 0.45 0.50 0.52 Soil animals −0.05 −0.16 −0.05

0.43 0.54 0.52 0.58 0.35 AM Fungi 0.57 0.54

0.55 0.47 0.46 0.51 0.32 0.40 Forbs 0.56

0.92 0.47 0.49 0.52 0.36 0.42 0.46 Grasses

Abbreviation: AM, arbuscular mycorrhizal.
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1556  |    SEATON et al.

(ρ ~0.5). Average soil microbial diversity per 1 km square was also 
positively correlated with bird, butterfly and hoverfly richness, 
with correlations ranging from ~0.35 to ~0.55.

3.1.1  |  The effects of environmental factors upon 
alpha diversity relationships

Accounting for environmental gradients reduced the magnitude 
of the correlations between the diversity of the different taxo-
nomic groups both above-  and below- ground (Figure 2). Above- 
ground, only the correlation between plant diversity and bird 
diversity and the correlation between bee diversity and butterfly 
diversity remained after accounting for the temperature and rain-
fall gradients (Figure 2a–c). It might be expected that the diversity 
of plant groups that are important to the diets of the different 
above- ground animal groups would shows stronger relationships 
with these groups, and this was tested by comparing direct models 
of plant richness as a predictor of bird, butterfly and bee richness 
versus models with the richness of plants important in the diet 
of lowland birds, butterfly larval food plants and nectar produc-
ing plants, respectively. However, we found no improvement in 
model predictive performance compared to models with overall 
plant richness.

Below- ground, the richness of the soil groups did maintain cor-
relations with each other even after accounting for changes in soil 
properties, and in the case of soil animal richness the residual cor-
relation with the other groups actually increased once a variety of 
soil properties including soil carbon were accounted for (Figure 2d,e; 
Tables S1 and S2). For all other soil groups, the model with a sigmoidal 
pH gradient accounted for more residual correlation (Figure 2f) than 
the linear models of multiple soil properties (Figure 2e). All soil mi-
crobial groups, in addition to plant richness, showed a good fit of the 
sigmoidal pH model to the data while soil animal richness showed 
a linear decrease with increasing pH (Figure 3). Accounting for soil 
properties removed the residual correlation between plant richness 
and soil richness for all soil groups other than AM fungi, which re-
tained a positive relationship with plant richness.

3.2  |  Community turnover

Plant community turnover was positively associated with fungal, bac-
terial, heterotrophic protistan, bird and butterfly community turnover. 
Bacteria, heterotrophic protists and general fungi showed a slightly 
stronger correlation with plant community turnover than AM fungi 
did (Table 1, lower triangle); all were significant at p = 0.001. Turnover 
in heterotrophic protistan communities strongly tracked turnover in 

F I G U R E  2  The residual correlations between the diversity of the different groups if no abiotic drivers are taken into account (a, d), if 
abiotic drivers are included as linear effects only (b, e), and if nonlinear effects are included (c, f) are included. Blue lines indicate positive 
residual correlations, red lines negative. The width of each line is proportional to the estimated residual correlation, lines are solid if the 95% 
interval did not include zero or dashed if the 95% interval included zero but the 60% interval did not. Residual correlations where the 60% 
interval included zero are not shown in the figure but are included within the model. For the full model summary see Tables S1–S6.
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bacterial communities, with a Procrustes correlation statistic of 0.78. 
Fungal community turnover also correlated with bacterial turnover, 
with a Procrustes correlation statistic of 0.71. Bird and butterfly com-
munity turnover were more strongly related to plant community turn-
over than the link between bee, hoverfly and plant turnover. This was 
reflected by both the Spearman's rank correlations and the Procrustes 
correlation statistic (0.73, 0.59, 0.23 and 0.32 for bird, butterflies, 
bees and hoverflies, respectively). However, all the Procrustes analy-
ses were found to be significant at p = 0.001.

3.2.1  |  The effects of environmental factors upon 
community turnover relationships

Plant community turnover explained unique variance in the bacterial, 
fungal and heterotrophic protist communities even after accounting 
for spatial and environmental factors (Figure 4a). Plant community 
turnover at the plot scale was partially explained by soil, climate and 
spatial factors but had considerable unexplained variance (71%). 

F I G U R E  3  Predicted effect of soil pH on soil and plant diversity in the multivariate model with a sigmoidal pH effect. Plots show the 
actual values as black dots and the conditional pH effect as a blue line with the 95% interval of the effect as a shaded grey ribbon.

F I G U R E  4  Properties that explain the variation in community turnover at the plot level (a) and the square level (b). The height of each 
coloured bar section represents the proportion of variation explained by the category, with the ‘Shared’ category representing the variation 
explained by all factors together in addition to the variation explained by each single or two- part combination of factors.
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1558  |    SEATON et al.

Climate was initially included but did not explain any unique vari-
ance in turnover of the soil microbial communities and so was omit-
ted from this analysis. The pattern of variance explained was similar 
across the soil groups, with the soil physicochemical properties and 
plant community jointly explaining more variation than the distance 
between samples. However, there was a large proportion of varia-
tion in fungi, bacteria, animals and heterotrophic protists that was 
explained by soil, plant and spatial factors together.

Plant community turnover explained some of the variance in 
bird, butterfly and bee and hoverfly community turnover (Figure 4b). 
Plant community turnover at the 1 km square level was largely ex-
plained by variation in precipitation and temperature (38%), with 
some effect of the distance between squares interacting with cli-
mate (19%). Turnover in the bird community was explained compar-
atively well by the plant community and the climate (28% without 
any spatial element), while also incorporating a spatial interaction 
between the two. The pollinator communities were explained rela-
tively poorly; plant community turnover, climate and spatial factors 
did appear to be important together, but overall ~60% of variation 
was unexplained. Precipitation and temperature were less important 
to bees and hoverflies than they are to the other groups, with pre-
cipitation and temperature in general being the least important fac-
tor for the above- ground animal groups but much more important 

for plants. Spatial factors appeared to be relatively more important 
for the animal groups than they were for the plants.

3.3  |  Taxon- level relationships

Residual co- occurrence relationships between common below-
  and above- ground taxa were identified by joint species distri-
bution modelling both with and without accounting for shared 
responses to environmental variables. In all cases, the average 
magnitude of taxon correlations was decreased once environmen-
tal gradients were accounted for, with nonlinear environmental 
gradients removing more apparent species correlations than lin-
ear environmental gradients (Figure 5). The effect of incorporat-
ing environmental conditions was greater upon apparent negative 
associations between taxa, with proportionally more negative 
associations lost after changes in environmental conditions were 
accounted for. Within the soil groups, more positive associations 
were retained after accounting for environmental conditions, with 
the mode of the correlation distribution remaining above zero 
compared with it being centred on zero in all plant- related and 
above- ground correlation distributions. Soil groups showed on av-
erage differing levels of association with differing plant growth 

F I G U R E  5  Density distributions of taxon correlations from the below- ground/plot- level (a) and above- ground/square level (b) joint 
species distribution models that took no account of environment (No env), linear functions of environment only (Linear), or that used deep 
neural nets to allow for nonlinear effects of environment (DNN). Butterflies, bees and hoverflies are combined into a pollinator category for 
graphical simplicity, as are general fungi and arbuscular mycorrhizal fungi.
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forms, with forbs showing more positive associations with soil 
microbial groups than grasses. However, accounting for nonlinear 
environmental conditions removed the strength of the forb rela-
tionship in average correlation magnitude between plant growth 
forms (Figure S1a). Only one woody species (Vaccinium myrtillus) 
appeared in enough plots to be included in this analysis, and so 
those results are unlikely to be representative of all woody spe-
cies. There was very little difference between the correlation 
strength of plants that are, or are not, food sources for birds and 
pollinators across the different models, with only a slight tendency 
to have a higher average magnitude of correlation for food source 
plants in the no environment and nonlinear models but not in the 
nonlinear model (Figure S1b).

Despite the overall trend towards lower average magnitude of 
species correlations after accounting for environmental conditions, 
there was a small proportion of species correlations that actually in-
creased in magnitude after accounting for environmental gradients. 
Around 7% of correlations increased above-  and below- ground by 
over 0.05 units in the nonlinear environmental model compared with 
the model with only spatial and biotic components. The interac-
tions between soil animal and other soil taxa showed proportionally 
more correlations that increased, with 17% of correlations increas-
ing by >0.05, while the interactions between the plant and soil taxa 
showed proportionally more decreases in magnitude. The relative 
importance of biotic factors, environmental factors and spatial fac-
tors varied considerably by taxa, although on average biotic factors 
appeared more important below- ground than above- ground while 
spatial factors were more important above- ground than below- 
ground (Figures S2 and S3).

4  |  DISCUSSION

Consistent with our hypothesis, we find that many alpha diversity 
relationships dissolve after accounting for abiotic effects, with 
nonlinear environmental gradients clearly affecting below- ground 
alpha diversity relationships. Our results indicate that the posi-
tive correlation of plant and soil microbial diversity is driven by 
changes in the soil environment and are in agreement with previ-
ous work showing the importance of soil pH and fertility in jointly 
influencing plant and microbial diversity (Goberna et al., 2016; 
Tedersoo et al., 2016; Yashiro et al., 2018; Yuan et al., 2017). 
Importantly, accounting for the influence of soil pH upon micro-
bial diversity in a nonlinear way led to the loss of a plant ~ mi-
crobe diversity relationship, with the exception of AM fungi. AM 
fungi are more dependent upon plant inputs and are capable of 
growing through large volumes of soil, meaning that they would 
be expected to show stronger relations with the plant community 
(Hiiesalu et al., 2014; Nguyen et al., 2016). It is possible, however, 
that our models are attributing associations between groups to 
environmental factors when biotic interactions are occurring, par-
ticularly when biotic associations are in part driven by the environ-
ment. Therefore, our results provide a starting point for further 

investigation and identify those associations that seem most likely 
to be unrelated to shared environmental responses rather than 
providing a definitive answer as to the presence or absence of 
biotic associations. Our results also indicate a strong linkage be-
tween bacterial, fungal and heterotrophic protistan communities 
that could potentially represent a greater role of trophic dynamics 
relative to edaphic properties and plant inputs in structuring those 
communities.

The diversity of the pollinator groups showed no residual cor-
relation with plant communities after accounting for environmental 
gradients, and in contrast to our hypothesis, we found no evidence 
of stronger links between foodplants and the above- ground animals 
that feed on them compared with overall plant diversity. The lack of 
relationship between pollinator and plant diversity was unexpected 
due to the role of plants in providing food resources and niche space, 
and we found no evidence of stronger associations in what should 
be trophically interacting species at either the alpha diversity or the 
taxon- level. It could be that our environmental variables are tak-
ing up some of the variation explained by true biotic associations; 
however, in these models, we only included climatic data as envi-
ronmental predictors, which seems unlikely to be able to account 
for all plant–pollinator associations. However, previous research has 
shown variable relationships between plant and pollinator diversity, 
potentially related to vegetation structure and the greater impor-
tance of floral abundance and seasonality compared with plant or 
food- plant diversity (Alison et al., 2022; Berg et al., 2019; Lowe 
et al., 2022; Potts et al., 2009). We also only considered overall plant 
diversity and the diversity of food plants; the structural heteroge-
neity of the plant community could instead be the important driver 
of any plant–pollinator diversity relationships. In contrast, increasing 
bird diversity in conjunction with plant diversity was only partially 
confounded by the climate gradient, indicating that plant diversity 
could potentially have a direct impact upon bird diversity. This could 
be due to the provision of a greater variety of food sources, through 
increased landscape heterogeneity or potentially through the influ-
ence of an unidentified confounding variable such as anthropogenic 
activity (Le Provost et al., 2021; Stein & Kreft, 2014).

We found that the composition of above-  and below- ground 
communities was influenced by plant community composition 
even after accounting for environmental gradients, in contrast to 
the alpha diversity results. The proportion of variance in commu-
nity turnover explained by plants was much higher in the bacterial, 
fungal and heterotrophic protist communities than in the bird, but-
terfly, bee and hoverfly communities. The finding that plant commu-
nity turnover explains bacterial, fungal and heterotrophic protistan 
community turnover is consistent with previous findings at the field 
(Leff et al., 2018), regional (Barberán et al., 2015; Chen et al., 2017; 
Yang et al., 2017) and global scales (Delgado- Baquerizo et al., 2018; 
Prober et al., 2015). The higher proportion of explained variance in 
bird communities compared with butterfly, bee and hoverfly com-
munities was unexpected as pollinators have in general been found 
to be closely related to plant composition (Hofmann et al., 2017; 
Kearns & Oliveras, 2009; Weisser et al., 2017). Overall, the majority 
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1560  |    SEATON et al.

of the variation in butterfly, bee and hoverfly community turnover 
was unexplained by climate, plant communities or spatial factors. 
This may be due to anthropogenic influences or other factors not 
incorporated into our model such as agri- environment scheme up-
take, pollution or habitat heterogeneity being important in driving 
pollinator community assembly.

The closer linkages of the soil groups to each other compared 
with the plant linkages above-  and below- ground were apparent in 
both the overall diversity and species- level results. Some of these 
results, particularly the alpha diversity results, may be due to the 
soil groups all being surveyed using a metabarcoding approach as 
opposed to the above- ground groups having their own dedicated 
survey methods. Processes such as DNA extraction efficiency could 
vary systematically across the plots, which we might expect to be re-
lated to changes in soil physico- chemical properties (e.g., acidity) and 
so accounting for environmental variables could help remove some 
residual metabarcoding- related associations. In particular, the soil 
animal community showed stronger linkages with other soil groups 
after accounting for environmental gradients. Soil animal groups are 
strongly influenced by soil carbon and other environmental factors 
(Caruso et al., 2019; George et al., 2017; Lavelle et al., 2022), and 
it appears that once these are accounted for the secondary role of 
biotic associations in driving community, assembly becomes clearer. 
Some of these identified linkages between the taxa within and be-
tween groups may represent shared response to environmental 
or geographic drivers not included within our analysis, while some 
may instead represent true interactions across domains (Blanchet 
et al., 2020; Carr et al., 2019; Seaton et al., 2020).

The different taxonomic groups within our analysis operate upon 
different spatial and temporal scales, and this appears to have af-
fected the relative influence of spatial factors upon biological com-
munities that we have found (Chase et al., 2018). In our results, we 
found that spatial distance appeared to have a greater influence 
upon the species composition of the above- ground communities 
measured at the 1 km square level. Previous work has shown that 
the scale at which biodiversity is measured impacts the strength of 
the correlation found, with 10 km2 areas showing the strongest rela-
tionship for above- ground diversity (Wolters et al., 2006). However, 
the life history traits of the community in question should be ex-
pected to impact the scale of interest, and within our data set, we 
have organisms that are whose mobility is limited to very short dis-
tances such as soil bacteria (Yang & van Elsas, 2018) ranging up to 
bird species that can travel vast distances. Therefore, the spatial 
factors we measured may not have been at the appropriate scale 
to influence the soil microbial communities at the plot level and the 
stronger relationships between the soil microbial groups may be re-
lated to the plot scale being more equivalent to the larger (>10 km2) 
scales that show greater associations above- ground. It is also worth 
considering the role of the spatio- temporal scale of survey in de-
termining the range of the environmental drivers of biodiversity 
(Chase et al., 2018). Larger areas contain a wider range of environ-
mental conditions where different parts of the range could have 
contrasting effects on the biosphere. Our survey covers a range of 

environmental conditions that is representative of the Welsh land-
scape; however, it only contains a limited sampling of feasible poten-
tial environmental conditions such as intense agricultural landscapes 
more common in other areas of Europe where we might expect dif-
ferent influences upon soil and above- ground communities (Billeter 
et al., 2008; Gossner et al., 2016).

We found that accounting for nonlinear environmental effects 
had a greater influence on inferred biotic correlations at both the 
overall diversity and species level compared to only incorporating 
linear environmental effects. This emphasises the importance of 
considering nonlinear effects to prevent underestimation of the 
impacts of environmental gradients as well as increase the applica-
bility of the results outside the environmental range of each study, 
particularly within soil communities (Austin, 2007). In contrast, in-
cluding only linear effects of the environment proved sufficient to 
remove most of the above- ground diversity and positive species as-
sociations. However, it is possible that other environmental drivers 
or landscapes may show a greater role of nonlinear environmental 
effects in driving plant, pollinator and bird community dynamics. It is 
also possible that changes in land use intensity or other factors could 
change the very nature of the relationships between the diversity 
and composition of differing components of the ecosystem (Felipe- 
Lucia et al., 2020; Le Provost et al., 2021).

Within this work, we take a step towards disentangling the relative 
cross- domain biotic and environmental associations governing com-
munity assembly across the terrestrial- soil habitat boundary. We have 
identified associations between groups that are less likely to be driven 
by environmental changes and thus more likely to be jointly disrupted 
by management changes, such as the relationships between plants and 
AM fungi where the sowing of more diverse plant communities could 
result in direct changes in AM fungi, or the relationships between soil 
animals and soil microbial groups where the loss of soil animals through 
pesticide application could disrupt the whole soil food web. We have 
also identified associations that do appear to be driven by environ-
mental changes, and where direct changes to one group may result in 
disconnectance from the other groups, such as potentially between 
plants and pollinators, which suggest that the pollinator community 
may not always be able to adapt to management- induced changes in 
the plant community due to the influence of climate. Importantly, our 
results provide insight into the importance of nonlinear environmental 
effects upon ecological communities across a wide variety of entwined 
habitats and environmental conditions and provide potential future av-
enues of research in evaluating whole- ecosystem state and change, in 
relation to complex environmental drivers.
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species distribution models that took no account of environment (No 
env), linear functions of environment only (Linear), or that used deep 
neural nets to allow for non- linear effects of environment (DNN).
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distribution model components for every bacterial, plant, fungal, 
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Figure S3. The relative importance of the different joint species 
distribution model components for every bee/hoverfly, bird, 
butterfly and plant species.
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Table S4. Multivariate alpha diversity model parameter estimates for 
the square- level model with no environmental variables.
Table S5. Multivariate alpha diversity model parameter estimates for 
the square- level model with linear environmental effects.
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