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A B S T R A C T   

Changes in the frequency of extreme weather events related to climate change potentially pose significant 
challenges to UK agricultural production. There is a need for improved climate change risk assessments to 
support adaptation strategies and to ensure security of food production in future. 

We describe an innovative and practical framework for spatially explicit modelling of climate change impacts 
on crop yields, based on the UKCP18 climate projections. Our approach allows the integration of relatively 
simple crop growth models with high spatial and temporal resolution Earth Observation datasets, describing 
changes in crop growth parameters within year and over the longer term. We focus on modelling winter wheat, a 
commercially important crop. We evaluate the results of the model against precision yield data collected from 
719 fields. We show that the assimilation of leaf area index data from Sentinel-2 satellite observations improves 
the agreement of the modelled yields with those observed. Our national-scale results indicate that wheat pro-
duction initially becomes more favourable under climate change across much of the UK with the projected in-
crease in temperature. From 2050 onwards, yields increase northwards, whilst they decline in South East 
England as the decrease in precipitation offsets the benefits of rising temperature. 

Our framework can readily accommodate growth models for other crops and LAI retrievals from other satellite 
sensors. The ability to explore impacts of crop yields at fine spatial resolutions is an important part of assessing 
the potential risks of climate change to UK agriculture and of designing more climate resilient agricultural 
systems.   

Practical implications  

Agricultural activities are sensitive to both the long-term climate, 
governing the suitability of different areas of the UK for different 
crops and varieties, and to short-term weather events such as 
floods and droughts, which can affect crop growth and the optimal 
timing of sowing, harvesting and the application of fertilisers and 
pesticides. Agricultural activities will therefore be affected by 
climate change, which will alter both the long-term averages of 
meteorological variables and the frequency of meteorological ex-
tremes. The Agricultural sector needs reliable and timely climate 

information on how changes in climate and weather events impact 
on crop variability and yields. Such knowledge can support those 
working in the agricultural sector, and inform those charged with 
climate adaptation planning and related decision-making. This 
knowledge can also help to both quantify the scale of adaption 
required and suggest viable adaptation strategies. Since the 
interaction between agriculture, climate and weather is influ-
enced by decisions made at fine spatial scales (e.g. field to farm), it 
is important that such information is available at sufficiently fine 
spatial resolution to be relevant to these scales. 

To generate the most reliable forward projections of impacts in 
response to a changing climate requires an understanding of the 
processes and mechanisms linking climate to impacts. This 
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approach is more reliable than regression-based emulators when 
extrapolated to new weather regimes outside those that have been 
experienced historically in the region of interest. Here, we develop 
the CropNET framework to model the yield of winter wheat, a 
commercially important crop in the United Kingdom. Our 
approach combines a relatively simple crop growth model for 
winter wheat with driving datasets containing key meteorological 
parameters that affect crop growth (surface air temperature, pre-
cipitation and solar radiation). The CropNET model accounts for 
the different plant growth stages and the impact on such stages of 
water stress and water logging from periods of low or high rainfall, 
respectively. The crop model also accounts for the increased ra-
diation use efficiency at higher atmospheric concentrations of 
carbon dioxide (the carbon dioxide “fertilisation effect”). This 
model produces “potential” yield, the maximum attainable yield if 
all other, non-climatic factors (crop nutrition, pests and diseases, 
etc.), were optimal. These potential yields are thus usually higher 
than those observed. The framework can then integrate satellite 
observations of crop growth (leaf area index), now available at 
high spatial and temporal resolution to adjust the modelled 
growth of wheat, based on historic and current crop growth tra-
jectories. This adjustment brings the estimate closer to the 
“actual” yield, because the observed EO data incorporates the ef-
fect of factors such as pests, diseases and variation in farm man-
agement practices that are not directly modelled. These adjusted 
yields are thus directly comparable with those that are observed, 
such as field-scale precision yield measurements. 

Using meteorological parameters taken from the latest climate 
projections for the UK, bias-corrected to present-day observations, 
we run the winter wheat crop growth model for a hundred-year 
period from 1980 to 2080. Potential yields are derived on the 1 
km x 1 km grid covering Great Britain used by the input climate 
data. The model results show that wheat production initially be-
comes more favourable across much of the UK with the projected 
increase in temperature. However, from year 2050 onwards, 
whilst conditions in Scotland and the northern part of England 
continue to become more favourable for wheat production, there 
is a decline in yields in South East England as the reduction in rain 
offsets the benefits of rising temperatures. 

These modelled yields were then used in a crop-yield simulation 
demonstrator, which was co-designed with users from the arable 
and livestock & grassland farming sectors. The demonstrator al-
lows stakeholders to visualise and explore the local impacts of 
climate change on the yields of major crops. Currently, any loca-
tion in Great Britain can be selected and the demonstrator shows 
how the modelled yields for that location are predicted to change 
over time (for the given scenario of future climate change), along 
with uncertainty arising from the different ensemble members. 
Comparisons can also be made with the surrounding regional or 
Great Britain average, providing important contextual informa-
tion. Users can also input actual yield values to provide a location- 
specific correction to the modelled potential yields. 

The CropNET modelling framework allows integration of other 
crop growth models and input meteorological and satellite data. 
The modelling framework can be extended to other crops if rele-
vant non-wheat crop growth parameters are available. At the time 
of writing in 2023, there is a strong global interest in food security 
matters, especially against a backdrop of geopolitical instability in 
the Ukraine and the impact of heavy rain and floods on rice pro-
duction in India. Hence, we offer a simulation framework that is 
potentially amenable to application at locations beyond the UK. 
Simulation capability becomes of particular use in assessing risks 
to locations where reduced grain imports may require higher do-
mestic crop production, against a backdrop of a simultaneously 
changing climate.   

1. Introduction 

Climate change poses one of the greatest risks to future food 

production both globally (FAO, 2018) and in the UK (Brown et al., 
2016). Around 72 % (17.5 million hectares) of the UK land area is 
farmed and 35 % of this is productive arable land (Defra, 2020a). In 
2019, the UK agriculture sector employed 420,000 people directly and 
generated Gross Value Added to the economy of £10.4 billion (Defra, 
2020a). Whilst a warming UK climate may benefit some crops, it is likely 
that more frequent extremely hot summers and changing patterns of 
rainfall will result in an overall negative impact on crop production 
(Morison and Matthews, 2016). Similarly, increasingly wet autumns are 
likely to constrain agricultural production by adversely affecting the 
timing of farming operations. These may also indirectly result in 
increased risk of environmental damage, such as soil compaction and 
erosion. The wet winter of 2019/20, followed by a drought in the Spring 
of 2020, led to a 38 % reduction in UK wheat production from 16.2 
million tonnes in 2019 to 10.1 million tonnes in 2020 (Defra, 2020b). 
Further, the UK average yield of 7.2 tonnes per hectare was lower than 
the five year average of 8.4 tonnes per hectare (Defra, 2020b). 

Crop growth models have been used since the early 1960s to simulate 
the relationship between plants and the environment, to predict the 
expected yield for applications such as crop management and agronomic 
decision making, as well as to study the potential impacts of climate 
change on food security (Kasampalis et al., 2018). Crop growth models 
vary in type and complexity (Basso et al., 2013; Di Paola et al., 2016). 
Basso et al. (2013) identify three main types of crop growth models: (1) 
statistical models, where crop yield is related to key parameter(s) using 
linear/non-linear regression or Bayesian approaches; (2) mechanistic 
models, which explicitly represent many of the plant and soil processes 
(e.g., photosynthetic processes and uptake of carbon dioxide); and (3) 
functional models, which use simplified approaches to simulate complex 
processes, often drawing on insight gained from mechanistic models. 
Nearly all crop models require meteorological inputs (Hoogenboom, 
2000). Additionally, parameters describing the different processes, crop 
varieties, soil conditions, management practices, etc., may also be 
required (Huang et al., 2019). All the models give quantitative pre-
dictions of crop growth (e.g., leaf area, above ground biomass, root 
biomass, soil moisture, grain yield, etc.) (Huang et al., 2019). Although 
the functional models are considered to be generally simpler, such 
models usually produce reasonable results when compared to field 
measurements (Basso et al., 2013). 

The potential of Earth observation (EO) for crop monitoring was 
recognised from the launch of the first Landsat satellite mission in 1972 
(Hammond, 1975; Hall et al., 1981). EO multispectral crop reflectance 
and crop surface temperature are linked to crop growth and yield 
through two basic plant physiological processes (photosynthesis and 
evapotranspiration), which in turn are determined by the crop canopy 
leaf area index (LAI), development stage and stress (e.g. Idso et al. 
(1977); Bauer (1985)). The concept of using optical EO data to derive 
crop LAI in combination with meteorological and soils data to model 
crop growth, condition, and yield became well established by the mid 
1980s (Jackson, 1984; Bauer, 1985). However, widespread application 
at the field scale has, until very recently, been hampered by the lack of 
suitable EO observations, the main limitations being slow turnaround 
time, coarse spatial resolution and the lack of high frequency cloud-free 
observations (Moran et al., 1997). Subsequent studies have demon-
strated how the latter could be resolved through the combined use of 
optical and radar observations (e.g. Clevers and van Leeuwen (1996); 
Dente et al. (2008)). However, it is only since the availability of near- 
real-time 500 m MODIS LAI data from the NASA Terra and Aqua sat-
ellites (every 8 days, starting from 2002), and since 2017, 10 m LAI from 
the Multispectral Instrument (MSI) on the Copernicus Sentinel-2 satel-
lites (every 5 days) that satellite EO has become a viable contributor to 
farm scale crop growth monitoring (Ma et al., 2019). The MODIS LAI 
time series now stretches over 20 years and is routinely used for global to 
regional land surface model validation and calibration (Bloom et al., 
2016; Demarty et al., 2007; Raoult et al., 2016). At the time of writing, 
there is currently no Sentinel-2 MSI LAI product available for download, 
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however open-source scripts for deriving LAI from atmospherically 
corrected MSI are available, enabling 10 m 5 day LAI time series pro-
duction from 2017 onwards (e.g. Yin (2020); Yin et al. (2022)). 

For both crop growth models and the application of EO data, a 
remaining challenge is the access to sufficient volumes of empirical 
measurements of actual crop yields against which to validate and cali-
brate models over larger spatial or temporal extents (Hunt et al., 2019). 
In recent years, there has been a widespread uptake of precision farming 
technologies, used by farmers to provide agronomic data to improve 
farming efficiency. One of these technologies is the introduction of high- 
accuracy GPS technology onto harvesting equipment, which is equipped 
with meters capable of obtaining instantaneous measurements of yield. 
By combining these yield measurements with the position of the 
harvester, it is possible to create maps of yield variation at the sub-field 
scale. Since many of these systems upload data directly to cloud storage, 
it is now possible to collect very large volumes of crop yield data for 
large numbers of fields. 

In this paper, we describe the development of a new national 
modelling framework to provide improved field-scale predictions of 
crop yields across the UK, both within year and over longer timescales 
under future climate scenarios. The modelling system integrates the key 
data elements of climate science, crop growth modelling, EO and pre-
cision agricultural data. We discuss potential improvements of this 
framework, and its application to provide improved climate risk as-
sessments for agricultural production. Section 2 describes the winter 
wheat yield model, the climate datasets, the satellite-derived leaf area 
index data used in the data assimilation, and the precision yield mea-
surements used for validation of the model. Section 3 presents results of 
the model validation, the effect of data assimilation on the modelled 
yield, and forecasts of future wheat yields. In Section 4, we discuss the 
results and the limitations of the modelling approach. We also describe 
the extension of the modelling framework to other crops and the 
development of a crop yield demonstrator based on the modelling 
framework. 

2. Methods and materials 

Our integrative modelling framework predicts the impacts of climate 
change on crop yield using simple, functional crop growth models, 
augmented by ancillary data on soil water holding capacity and with the 
option to assimilate within year plant growth parameters derived from 
EO. We focus on winter wheat as an example, which is the largest crop 
grown in the UK by area (1.8 million hectares, 39.8 % of all arable crops 
(Defra, 2019)). Fig. 1 shows a schematic of the modelling system and the 
data flows. 

We drive the crop yield model for winter wheat (Section 2.1) with 
the latest climate projections for the UK (Section 2.2) providing localised 
‘potential’ future crop-yield predictions. We have the option to assimi-
late EO data on leaf area index (Section 2.3). We evaluate the accuracy 
of the modelled yields against actual yield measurements collected using 
precision yield monitoring sensors on combine harvesters operating in 
891 fields across the UK (Section 2.4). This integrated modelling 
framework then provides localised estimates of ‘actual’ crop yields. 

2.1. Crop yield model for winter wheat 

For this application, we need crop yield models that are responsive 
and efficient to run, and could be readily adapted to assimilate EO data. 
While there are detailed process-based crop yield models available (e.g., 
the Sirius wheat model of Semenov et al. (2014)), the model are often 
site-based and also require detailed data on crop management and va-
riety. For our UK-scale application, such data are not readily available as 
maps of current patterns, let along future projections under climate 
change. 

We develop a crop yield model for winter wheat based on approaches 
developed by Sylvester-Bradley and Kindred (2014) and Lynch et al. 
(2017). The model simulates ‘potential’ yield. The model accounts for 
climatic variables, soil effects on water availability, and day length, but 
does not represent the impact from non-climatic, agronomic parameters 
such as crop nutrition, pests or diseases. In this initial model develop-
ment, we did not include these biotic or management processes as we 

Fig. 1. Schematic of the crop yield modelling system for winter wheat and data flows.  
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would require information at the national scale. 
The crop model for winter wheat was parametrised using benchmark 

values for UK wheat crops (Sylvester-Bradley et al., 2015). The key 
model parameters are listed in Table 1. Supporting Information, Ap-
pendix S3 of Redhead et al. (2020) provides some more details on the 
winter wheat model. 

The model has three main stages, which cover a number of growth 
stages. 

Model Stage 1: Estimation of the green area index (GAI) over the 
growing season: 

The model assumes a fixed sowing date of 1st of October, in line with 
the benchmark for winter wheat growth in the UK (Sylvester-Bradley 
et al., 2008). The same dates are used for the whole of Great Britain. 
Sowing dates for GB winter wheat crops do vary considerably, 
depending on a variety of factors, including ground conditions required 
for tillage and drilling, weed pressure and farmer preferences. It is 
therefore challenging to derive a consistent relationship with meteoro-
logical parameters. As sowing of winter wheat in GB usually takes place 
in a window from September (considered early sown) to November 
(considered late sown), we have run the model with sowing dates at 
these extremes to explore the sensitivity of the model to this parameter 
(Section 3.2 and Appendix 3). 

Following sowing, the model accumulates GAI as a function of 
growing degree days above 0 ◦C through the three key phases of wheat 
growth, further subdivided by growth stages (GS): foundation (Sowing- 
GS30 and GS30-GS31), construction (GS31-GS61) and production 
(GS61-GS69, GS69-GS87, GS87-senescense) (Sylvester-Bradley et al., 
2015). 

During each growth phase, GAI is linked to growing degree days by 
multiplying the benchmark GAI value at the end of the growth stage by 
the proportional accumulation of thermal time from the end of the 
previous growth stage. Thus, a grid cell that has accumulated 50 % of the 
required thermal time to progress to the next growth stage will be 
assigned a GAI that is 50 % of the benchmark GAI for the end of the 
current growth stage. 

Degree days accumulate as follows: 
If Tmin > 0 ◦C: degree days =(Tmax+Tmin)

2 . 
If Tmin < 0 ◦C: degree days =.(Tmax − 0)

2 −
(0− Tmin)

4 
If Tmax < 0 ◦C: degree days = 0. 
In order to account for vernalisation requirements, cumulative ver-

nalisation days were also calculated as a function of mean daily tem-
perature, following the equations in Spink et al. (2000) and Lynch et al. 
(2017). The crop accumulates one vernalisation day when the daily 
mean temperature is within the range 3–10 ◦C, while a proportionally 
lower vernalisation day is acquired if the daily mean temperature is 
within either of the ranges − 4 to 3 ◦C or 10–17 ◦C. A crop requires 50 
vernalisation days before progressing beyond GS31. When this does not 
occur, the estimated GAI remains constant until the crop is adequately 
vernalised and degree days accumulated over this period do not 
contribute to the following growth phases. We account for the effect of 
day length by limiting progression beyond GS31 until the day length has 
progressed beyond 14 h. We calculate the day length from the latitude 
and date using the geosphere package (Hijmans et al., 2017). Where the 
accumulated degree days are sufficient to progress beyond GS31 before 
day length >14 h, GAI remains constant until this threshold is met. 

The speed of progression through the growth stages will be quicker at 
higher temperatures, resulting in a reduced grain-filling period and thus 
a reduced amount of accumulated biomass available for yield. We also 
account for the effects of heat stress on the wheat plant during flowering 
(i.e. post anthesis); the yield is penalised by 1 % for every degree day 
over 30 ◦C, following Liu et al. (2016). 

GAI development is stalled if the temperature falls below − 5◦C once 
the crop has passed GS31 (Spink et al., 2000). We assume that harvesting 
takes place on the 31st of August. Where the GS87-senescense phase is 
not complete before this date, we assume that this phase progressed 
more rapidly, with GAI of zero by harvest and a subsequent reduction in 
yield due to the decreased time to accumulate yield-contributing 
biomass. 

We thus produce a time series of GAI for each year and each location, 
whether these ‘locations’ are the individual 1 km x 1 km grid cells for the 
national-scale modelling (Section 3.1) or the fields where there are 

Table 1 
(a) Key parameters used in the winter wheat model.  

Parameter Units Default 

Daily Precipitation mm Per 1 km grid cell, values 
derived from CHESS-met 
(historic) or CHESS-SCAPE 
(future) 

Maximum daily 
temperature 

◦C Per 1 km grid cell, values 
derived from HadUK-Grid 
(historic) or CHESS-SCAPE 
(future) 

Minimum daily 
temperature 

◦C Per 1 km grid cell, values 
derived from HadUK-Grid 
(historic) or CHESS-SCAPE 
(future) 

Mean daily 
temperature 

◦C Per 1 km grid cell, values 
derived from CHESS-met 
(historic) or CHESS-SCAPE 
(future) 

Net shortwave solar 
radiation 

MJ Per 1 km grid cell, values 
derived from downward 
shortwave radiation from 
CHESS-met and HadUK- 
Grid (historic) or CHESS- 
SCAPE (future) (See Section 
2.2 and Appendix 1) 

Required thermal 
time per growth 
stage 

Growing degree days See Table 1b 

Green area index per 
growth stage 

dimensionless See Table 1b 

Soil maximum 
available water 
content 

mm Per 1 km grid cell, values 
derived from Bell et al. 
(2018) 

Atmospheric CO2 

concentration 
ppm Determined by year from 

RCP8.5 
Day length threshold 

for start of 
construction phase 

hours 14 

Base temperature for 
accumulation of 
degree days 

◦C 0 

Base temperature for 
frost damage 

◦C − 5 

Sowing date Julian day 1st October (274) 
Harvest date Julian day 31st August (243) 
Radiation use 

efficiency 
g MJ− 1 3.1 

Waterlogging penalty kg ha− 1 yield loss per day 
of waterlogging 

117.7 

Base temperature for 
heat stress 

◦C 30 

Heat loss penalty % yield loss per degree day 
of heat stress during 
flowering (i.e. post 
anthesis) 

1  

(b) Growth periods used by the crop yield model for winter wheat to determine the 
rate of GAI development as a function of thermal time (growing degree days), based 
on benchmark values for UK wheat crops (Sylvester-Bradley et al., 2015). 

Growth phase GAI at start GAI at end Thermal time 

(1) Foundation 
Sowing-GS30  0.0  1.6 1100 
GS30-GS31  1.6  2.0 100 
(2) Construction 
GS31-GS61  2.0  6.3 900 
(3) Production 
GS61-GS69  6.3  6.3 50 
GS69-GS87  6.3  1.3 750  
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precision yield measurements, for the LAI data assimilation (Section 
3.3). An example GAI time series is shown later in Fig. 6. 

Model Stage 2: Estimation of the intercepted solar radiation and 
conversion to biomass: 

Following the construction of the GAI time series from temperature 
and day length data for the grid cell, we calculate the intercepted ra-
diation and convert this to biomass using an assumed radiation use ef-
ficiency (RUE) (Shearman et al., 2005). We assume the RUE to be 3.1 g 
biomass m− 2 (MJ intercepted light)-1, as estimated to be maximal for UK 
wheat crops (Lynch et al., 2017). 

We sum the rainfall from sowing to GS30 to estimate the available 
water before the onset of rapid growth, with the plant available water 
content (PAWC) at this point being the lower of the cumulative rainfall 
to date and the estimated soil available water content (AWC) (Bell et al., 
2018), as most soils are saturated prior to this date. We define the 
available water content as the difference between the maximum and 
minimum soil moisture content (from Bell et al. (2018)). It is therefore a 
representation of the maximum water available to the crop when the soil 
is saturated. We accept that our usage may differ from other 
applications. 

After this date, we calculate the daily PAWC (PAWCd) of the soil 
following (Lynch et al., 2017) as: 

PAWCd = 0.65(AWCd− 1 + Rainfalld− 1 − 0.2Biomassd− 1)

where AWC is the available water content of the soil. When PAWC drops 
below the amount required for that day’s biomass accumulation, no 
further biomass is accumulated until PAWC has increased from subse-
quent rainfall. This accounts for any effects of water limitation and 
drought. 

Model Stage 3: Apportionment of the accumulated biomass to grain 
yield: 

Following Lynch et al. (2017), we assume that all the biomass 
accumulated after GS69 (end of flowering) is transferred to the growing 
seeds, rather than to the vegetative parts of the plant, and thus con-
tributes to harvestable yield. We calculate the potential yield as the sum 
of biomass accumulated between GS31 and GS61 multiplied by 0.3 plus 
the sum of biomass accumulated after GS69. The former (i.e. the accu-
mulated sum of biomass between GS31 and GS61) accounts for the 
redistribution of water-soluble carbohydrates from the stem after flow-
ering (Lynch et al., 2017; Sylvester-Bradley et al., 2008). The yield is 
penalised if waterlogging occurs after the onset of flowering (GS61). 
Waterlogging occurs when the daily rainfall exceeds the residual PAWC. 
If this occurs for more than 5 days, a yield penalty of 11.77 g− 1 m− 2 d-1 is 
also applied (Olgun et al., 2008), until such time as PAWCd falls below 
the maximum. 

We include an option to account for the fertilisation effect of higher 
atmospheric concentrations of carbon dioxide (CO2). We follow the 
approach used by Senapati et al. (2019) in the Sirius wheat model, 
where the radiation use efficiency is assumed to be proportional to the 
atmospheric concentration of CO2 ([CO2]) and increases by 30 % for a 
doubling of the atmospheric concentration of CO2 from its baseline 
concentration of 338 ppm, with RUE reaching its maximum at 750 ppm. 
As discussed by Senapati et al. (2019), this increase in RUE is consistent 
with the meta-analysis of different field-scale experiments on the effects 
of [CO2] on crops (Vanuytrecht et al., 2012) and is consistent with the 
responses used in other wheat simulation models. 

2.2. Climate/Meteorological data 

We use daily-averaged values of the following meteorological pa-
rameters in our winter wheat crop growth and yield model: surface air 
temperature, net shortwave radiation and precipitation (i.e., rainfall), 
see Table 1a. We thereby account for impacts on crop growth resulting 
from waterlogging (in winter) and drought (in summer), during key 
periods of crop growth. We can take or derive the required 

meteorological variables from (a) historical and/or current-day 
observed or modelled datasets, or (b) modelled future projections of 
climate. 

(1) Historic and Current Meteorological Datasets 
We use two observationally based datasets: the Climate Hydrology 

and Ecology research Support System meteorology dataset for Great 
Britain (CHESS-met) and HadUK-Grid, as neither dataset fully provides 
the meteorological parameters required for the modelling (Table 1a). 
CHESS-met and HadUK-Grid can be used together as they are both 
derived from the same station observations, interpolated to the 1 km 
grid, adjusting for local topography. As they provide different variables, 
we select the most appropriate variables from each dataset. 

(a) CHESS-met is an observation-based, daily meteorological dataset 
for Great Britain at 1 km x 1 km spatial resolution, covering the period 
1961–2019 (Robinson et al., 2020; Robinson et al., 2023a). We use this 
dataset to provide the mean daily surface air temperature, incoming 
shortwave solar radiation and precipitation. 

(b) the HadUK-Grid gridded and regional average climate observa-
tions for the UK (Hollis et al., 2018). HadUK-Grid is a meteorological 
station observation-based dataset at 1 km x 1 km spatial resolution for 
the UK, providing, amongst other variables, the daily minimum and 
maximum temperatures from 1960 and monthly sunshine hours from 
1929 (Hollis et al., 2018). 

(2) Future projections of climate 
The CHESS-SCAPE future projections of meteorological variables 

(Robinson et al., 2022; Robinson et al., 2023b) are derived from the 
UKCP18 climate projections for the UK (Lowe et al., 2018). The down-
scaling of the three meteorological variables of interest (surface air 
temperature, incoming short wave solar radiation and precipitation) is 
based on the approach used by Robinson et al. (2017), but has been 
adapted for the UKCP18 climate model output (Robinson et al., 2023b). 
The downscaled meteorological fields are then bias corrected or 
adjusted for each 1 km grid cell and for each season. We use all 4 
members of the CHESS-SCAPE 1 km ensemble for the RCP8.5 scenario 
(Robinson et al., 2023b). 

The winter wheat model uses net shortwave radiation as input to 
calculate the photosynthetically active radiation. The CHESS-met and 
CHESS-SCAPE datasets provide incoming or downward shortwave ra-
diation, from which we derive the net shortwave radiation required for 
the modelling using surface albedo and cloud cover fraction. Appendix 1 
contains more information about the meteorological datasets, the 
downscaling and bias correction approaches used. 

We use the spread from the 4 member CHESS-SCAPE RCP8.5 
ensemble as a measure of uncertainty. For the potential yields (see 
Section 3.1), we take the minimum and maximum of the ensemble. For 
the data assimilation, we use the standard deviation from the uncor-
rected 12-member UKCP18 RCP8.5 ensemble as a measure of the error 
in the modelled GAI. These are conservative estimates of the uncer-
tainty, as the uncertainty spread of a bias corrected ensemble is expected 
to be smaller than an uncorrected ensemble, because by reducing biases 
between ensemble members and the historical data, one also reduces 
biases between ensemble members, and therefore reduces the overall 
spread. However, even in a bias-corrected ensemble there would still be 
uncertainty due to the different climate sensitivities of the ensemble 
members. However, the fact that the bias correction is applied season-
ally in fact increases the amplitude of the seasonal cycle in air temper-
ature and precipitation in this ensemble member, so increases the 
seasonal variability. 

2.3. Earth observation data assimilation 

The crop growth and yield models give water-limited potential 
yields, as the models do not account for many non-meteorological/ 
hydrological effects on crop growth, such as local management his-
tory, fertiliser input, pests and diseases. We obtain yields closer to the 
actual yields through the assimilation of Earth observation data into the 
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crop growth model. This assimilation calibrates the growth model to 
local environmental conditions and management practices, without the 
need for more complex growth models requiring detailed local obser-
vations of both. 

We assimilate EO data on leaf area index for a given growing season 
to adjust the modelled GAI time series for that season. Although GAI 
includes all green plant parts and LAI just includes leaves, the difference 
between the indices is very small in the case of crops. We use a Four- 
Dimensional Variational (4D-Var) data assimilation method (Tala-
grand and Courtier, 1987), based on that used in the EO-Land Data 
Assimilation System (Lewis et al., 2012). The assimilation method aims 
to minimize a cost function (see Appendix 2 for further information on 
the data assimilation approach). 

For the assimilation, we use LAI derived from atmospherically cor-
rected Sentinel-2 MSI data, following approaches described in Gómez- 
Dans et al. (2016) and Yin et al. (2022). Sentinel-2 MSI has a revisit 
frequency of 5 days and spatial resolution of 10 m. The Sentinel-2 MSI 
data is available for download from the Sentinel hub. The Sentinel-2 LAI 
product has been evaluated against surface LAI measurements of winter 
wheat in Austria (Novelli et al., 2019), Bulgaria (Kamenova and Dimi-
trov, 2021), China (Pan et al., 2019) and France (Mercier et al., 2020). 
Novelli et al. (2019) find good agreement and low error. Pan et al. 
(2019) report that the retrieved LAI has a high accuracy, with a coeffi-
cient of determination of 0.892, an MRE of 10 % and an RMSE of 0.745. 

We run the wheat crop model with assimilations of the 10 m MSI LAI 
data for those precision yield fields which have at least 7 cloud-free MSI 
observations between May and August inclusive. The LAI data capture 
criterion reduces the number of precision yield field locations from 891 
to 719 (Section 2.4). For the MSI LAI, we use the average of all the cloud- 
free pixels within each field’s boundaries. The averaging of the MSI LAI 
data over each field used in the validation ensures that sampling errors 
arising from using individual pixels within each field are removed. All 
MSI observations are used that have at least 70 % of the field marked as 
cloud-free. The number of LAI observations used in the data assimilation 
varied across the precision yield field sites and across years, from a 
minimum of 10 to a maximum of 52 observations (Table 2) The mete-
orological driving data is taken from the encompassing 1 km grid box. 
We then calculate an estimate of the yield from the optimised GAI time 
series. 

As the Sentinel-2 data are only available from 2017, we also use 
MODIS LAI data, specifically the MCD15A2H product, which has a 
temporal resolution of 8 days and a lower spatial resolution of 500 m, 
downloaded from https://modis.ornl.gov. The MODIS LAI data are only 
used for the purposes of enabling projection of predicted yields into the 
future in section 3.3. For a given field, we take the average LAI across the 
encompassing MODIS pixel and use this for the assimilation. 

2.4. Precision yield data 

Over the last 10 years, many farms across the UK have adopted 
precision yield monitoring and mapping services available on most 
modern combine harvesters. Similar capabilities to measure cut grass 
herbage yields are increasingly available on self-propelled forage har-
vesters. These systems work by linking physical sensors in the harvester 
that constantly measure crop weight and moisture content with accurate 
GPS location systems. This results in a high density of point data that can 

be used to map fine-scale (<10 m) spatial variation in arable and grass 
crop yields within fields (Pywell et al., 2015). This has many applica-
tions for precision agriculture, including variable rate fertiliser appli-
cation and pest management (Shannon et al., 2018). Over time, this 
approach can also be used to build up a time series of crop yields for 
given fields that enable analysis of temporal trends in patterns of yield. 
Recently, combine and forage harvesters have begun to automatically 
upload real-time yield data onto cloud storage platforms developed by 
the machinery manufacturers. These data are thus a valuable resource 
for the calibration and validation of crop modelling and EO monitoring 
(Hunt et al., 2019). 

We have access to precision yield data from 891 fields, collected as 
part of the Achieving Sustainable Agricultural Systems (ASSIST) project, 
each representing the average yield for that field in a given year between 
2016 and 2019. Yield data were supplied by volunteer farmers through 
manual data exports from farm management software or downloads 
from the CLAAS Telematics cloud platform (www.claas-telematics.com 
). In addition to recording crop yields, the yield monitoring systems 
also provide high accuracy RTK GPS positions of the combine harvester, 
grain moisture content, a timestamp and machine operating metrics (e. 
g. speed) (Fincham et al., 2023). The fields are located across the agri-
cultural areas of lowland England (i.e., the dominant wheat-growing 
areas), as shown in Fig. 2. 

The calibration of the yield sensors is a known issue, but with suf-
ficiently large sample sizes, we expect this to add ‘noise’ to the data (i.e., 
there is no systemic bias). Many other factors affect the accuracy of 
precision yield data, and we used a standardised data cleaning process to 
account for these (e.g., speed and turn angle of the combine harvester, 
incomplete swath width, grain moisture content), as described in Fin-
cham et al. (2023). Each field contained several hundred individual data 
points. We take the mean yield of the cleaned points in each field to 
represent the average yield for that field. The average field size used in 
the validation of the winter wheat model is 13.9 ha, with a range (one 
standard deviation) from 2.4 to 25.4 ha. 

Table 2 
Number of LAI observations used in the data assimilation, across the precision 
yield field sites and years from 2017 to 2019.  

Year Minimum Number Mean Maximum Number 

2017 10  14.1 17 
2018 16  35.9 52 
2019 21  31.3 45 
All years 10  27.1 52  

Fig. 2. Map of England showing locations of the winter wheat precision yield 
measurements. 

G. Hayman et al.                                                                                                                                                                                                                               

https://modis.ornl.gov/
http://www.claas-telematics.com/


Climate Services 34 (2024) 100479

7

3. Results 

3.1. Winter wheat water-limited potential yields 

We undertake runs with the winter wheat yield model using mete-
orological parameters from the CHESS-met and HadUK-Grid datasets for 
the historic period (pre-2020) and from the four members of the bias- 
corrected CHESS-SCAPE ensemble for RCP8.5 (Section 2.2) to derive 
modelled water-limited potential yields between 1980 and 2080 for 

each 1 km x 1 km Ordnance Survey grid cell covering Great Britain. 
These runs include the CO2 fertilisation effect (Section 2.1). We use a 
time series of global mean annual CO2 concentrations developed for the 
RCP8.5 scenario by Meinshausen et al. (2011) (and available from htt 
ps://www.pik-potsdam.de/~mmalte/rcps/). 

Applying masks of the current wheat growing areas in Great Britain 
(i.e. all 1 km cells with greater than 0 % cover of 2015 of arable land, 
from the UK Land Cover Map 2015; Rowland et al. (2017)), we derive 
the mean annual predicted water-limited potential yields for Great 

Fig. 3. Time series (panel a) and scatter plots of annual mean modelled potential winter wheat yield for Great Britain against the actual national annual yields for 
winter wheat, from the annual Defra Farming Statistics, as (panel b) and (panel c) ranked yields, yields in t/ha. For panels (b) and (c), the dotted line indicates a 
hypothetical 1:1 relationship. 
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Britain and compare these to the actual national yields obtained from 
the annual Defra Farming Statistics for the years 1990–2020 (Defra, 
2020b), as a time series in Fig. 3a. The Defra Crop Survey provides 
nationally averaged yields, based on annual surveys of a stratified 
random sample of ~2000 farms each year. We use this period because 
prior to 1990, wheat yields showed an increasing trend due to factors 
other than climate (i.e. changes to farming practices and agricultural 
intensification). The results demonstrate that the modelled national 
potential yields are able to capture the overall increase in yield and the 
year-to-year variation in yield to some extent, with a positive relation-
ship between the modelled potential and the observed actual yields (R =
0.428, 0.461 and p = 0.016, 0.001 for the raw and ranked yield data, 
respectively). Modelled potential yields are always higher than actual 
yields (as expected), but the ability of the model to use observation- 
based meteorological data to distinguish years of high relative yield 
from those with low relative yield is clear, especially when ranked yield 
values are compared (Fig. 3c). This gives us confidence that the model is 
able to capture the trends and the year-to-year variability in yields. 

Fig. 4 maps the modelled water-limited potential yield averaged 
from 2010 to 2020 and the change in the average potential yield for 
2030–2040, 2050–2060 and 2070–2080, relative to the average yield in 
2010–2020. The model results show a cumulative decline in crop yields 
in the south eastern part of Great Britain and an increase in yields in the 
cooler northern parts of Great Britain, with south western areas 
remaining comparatively stable. We have masked out entirely non- 
agricultural areas using the criteria outlined above, as these are 
currently unsuitable for crop production and likely to remain so in the 
future due to constraints of topography and land use conversion. 

In Fig. 5, we present three exemplar grid cells: (a) Scotland; (b) 
Eastern England and (c) South West England (see Fig. 4 for locations) to 
illustrate contrasting behaviour in the water-limited potential yields 
between 1980 and 2080 based on the projected climate from CHESS- 
SCAPE (mean of the 4-member ensemble). For each of these locations, 
we compare the modelled annual potential yield for the grid square 
between 1980 and 2080, with the mean modelled yield from the current 
wheat growing areas in Great Britain (“national”) for the same periods. 
We also include a time series of the mean annual surface temperature 
and total precipitation for the location and for Great Britain for the same 
period (1980–2080; Fig. 5). The shading gives the uncertainty spread as 
the range (min–max) derived from the four member CHESS-SCAPE 
ensemble. 

Although we take account of the effect of heat stress on yield caused 
by elevated temperature during flowering, we find changes in temper-
ature (mostly) and precipitation generally lead to increased wheat 
growth and yields up to around 2040, but the trends for the different 
locations vary for the latter part of the time series. For location (a) in 
Scotland, the location shows a smaller increase in temperature to that 
forecast nationally and precipitation is above the national mean. This 
led to a significant increase in wheat yield from a 2–3 t ha− 1 to values 
(14–15 t ha− 1) comparable to the national mean. The large number of 
zero yields indicates yields in this area of Scotland remain low for the 
first half of the time series, with at least some ensemble members pre-
dicting yields of zero up to around 2025 (i.e. crop failure due to exces-
sive cold or failure to reach a harvestable growth stage). By the end of 
the time series around 2080, the curve reaches the national average, 
suggesting that climate change has dramatically increased the suitability 
of this area for wheat. For location (b) in East Anglia, yields remain 
stable until around 2040, but then show a decline as decreased precip-
itation offsets the temperature increase. As indicated earlier, we 
accounted for the impact of waterlogging (in winter) and drought (in 
summer) during key periods of the crop growth, through the use of a 

daily time step. Location (c) in South West England showed a steady 
increase in yield, similar to the national average, despite the similar 
change in temperature to location B. This is probably due to precipita-
tion remaining slightly higher than the national average and the soils in 
this region being less prone to drought. 

3.2. Sensitivity to sowing date and heat stress 

The sensitivity of the model to the sowing date was investigated by 
running the model with three sowing dates: Early = 1st September, 
Benchmark = 1st October, Late = 1st November, following Sylvester- 
Bradley et al. (2015). Sowing date clearly affected yields, with early or 
late sowings yielding lower than benchmark sowings in the historic time 
period. For the future time period, varying sowing dates resulted in 
changes in projected potential yields, but this effect was inconsistent 
year on year, with no one sowing date consistently favouring a higher 
yield, and no indication that selecting the most beneficial sowing date 
for a given year would be sufficient to offset the effects of climate change 
(Appendix 3, Figure A3.1). There was also no indication of sowing date 
changing the spatial patterns of yield under future climate scenarios 
(Appendix 3, Figure A3.2). 

Heat stress was modelled by applying a penalty to the final yield 
based on the number of accumulated heat stress days over 30 ◦C. 
Application of the heat stress penalty reduced the national average 
yields by up to 2 % in the historic time period and 16 % in the future time 
period (Appendix 3, Figure A3.3). Effects on individual cells were 
considerably higher, with some cells predicted to experience reductions 
in yield of up to 60 % due to heat stress by 2080. 

3.3. Impact of EO data assimilation on predicted yields of winter wheat 

We run the wheat crop model with assimilations of the 10 m MSI LAI 
data for the 791 precision yield fields, where there are precision yield 
data and at least 7 cloud-free MSI observations between May and August 
inclusive (Section 2.3). The assimilation assumes a fixed sowing date of 
1st October, although the sowing date could be adjusted as a possible 
future development, as discussed in Section 4.2 An example of the 
assimilation of the LAI data is shown for an illustrative field in Fig. 6. We 
take meteorological parameters from the CHESS-met and HadUK-Grid 
datasets for the encompassing 1 km grid box. 

The effect of assimilating the MSI LAI data into the crop model is to 
reduce the mean water-limited potential yield from all precision yield 
field sites from 13.26 to a yield of 8.99 tonnes per hectare. We show the 
distribution of the ensemble-mean yields with and without assimilation 
in Fig. 7, together with the distribution of the measured yields. The prior 
model before DA in Fig. 7 displays a much narrower distribution of yield 
values than the measured precision yields. This is because many of the 
precision yield sites are located close together and often within the same 
1 km2 grid cell. Hence, the sites share common driving meteorology. In 
the first instance, the model predicts the same green area index and yield 
for any points using the same input meteorological data. Once we update 
the green area index with the high-resolution Sentinel-2 observations in 
the DA, the model predicted yields are also updated, resulting in a much 
better distribution of yield values despite common meteorological 
forcing. In Fig. 7 (right), we show the distribution of the ensemble-mean 
yields with and without assimilation, as averages over the 1 km2 grid 
cell. 

The CropNET model was developed to assess the impact of longer- 
term climate change on crop yields. As shown earlier in Fig. 4, the 
base model captures the large-scale variability from North to South and 
from East to West. It is less able to capture the field-scale spatial 
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Fig. 4. Maps of water-limited potential yields of winter wheat modelled for Great Britain for the past decade (2010–2020) in t/ha (Map A) and of change in potential 
yield between the past decade and d 2030–2040 (Map B), 2050–2060 (Map C) and 2070–2080 (Map D). Climatic inputs to the model were derived from CHESS-met 
and HadUK-Grid for the historic period (pre-2020) and from the mean of the four bias-corrected ensemble members of the CHESS-SCAPE RCP8.5 dataset for the 
future time period. Points a, b and c are exemplar locations in England and Scotland for discussion. 
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Fig. 5. Time series of the mean annual air temperature at 1.5 m (in ◦C) (left-hand set of panels), the total annual precipitation (in mm) (middle set of panels) and the 
modelled annual water-limited potential yield for winter wheat (in t/ha) between 1980 and 2080 for locations in (a) Scotland; (b) Eastern England and (c) South West 
England (right-hand set of panels). The solid line represents the CHESS-met and HadUK-Grid for the historic period (pre-2020) and the single bias-corrected CHESS- 
SCAPE ensemble member for the future (2020–2080). The shading gives the range (min–max) from the four member CHESS-SCAPE ensemble. The red, blue and 
green lines are for the grid cell and the black line is the “national” GB average value. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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variability provided by the precision yield data. Most of the precision 
yield sites are in the South and East of England (see Fig. 2). That said, we 
show scatter plots of the actual yield against the modelled yield in Fig. 8, 
for the model with (blue) and without (red) assimilation for 2018 (panel 
a) and 2019 (panel b). We have averaged precision yield field sites in the 
same CHESS 1 km grid. 

The root mean square error, unbiased root mean square error 
(Entekhabi et al., 2010) and correlation all show improvements 
(Table 3). Fig. 8 and Table 3 show an increase in the coefficient of 
determination (R2) between the observed and modelled yields after 
assimilation and the slope of the regression line improves slightly, 
indicating that the assimilation captures aspects of the crop growth that 
are not modelled. This, in addition to the improvement in the unbiased 
RMSE, shows that after assimilation the model reduces the scatter in the 
modelled yields, and therefore improves the ability of the model to 
distinguish years when there is a drought (such as 2020). We note that 
the model yield performance for 2018, both before and after data 
assimilation, is better than is the case for 2019. The model captures more 
of the spatial variability in the 2018 yields. 2019 was a uniformly good 
year in terms of wheat growing weather across much of England, with 
resultant high yields (see the ranked yields in Fig. 3b). To some degree, 
this masked much of the usual spatial variation. The model does capture 
this to some extent (points clustering tighter on both the X and the Y 
axes, with fewer low-yielding outliers). 

The precision yield data against which we evaluate against our 
model outputs is an accurate and spatially precise measurement of 
actual yield harvested. There are a wide range of factors that affect the 
relationship between this value and the estimated yield of the wheat 
plant, even once data assimilation has adjusted the prediction to account 
for local factors affecting the green area index. These include farmer 
actions to help mitigate against poor harvests (e.g., adjusting timing of 
harvest, application of agrochemicals) and factors that impact on yield 
without affecting the general shape of the GAI curve (e.g., competition 
with other wheat plants, lodging, delayed harvest, pest damage post 
senescence). These can all act to suppress or mask the relationship be-
tween potential yields as modelled from climatic factors and reduce the 
extent to which assimilation of EO data can correct the models, thus 
reducing the proportion of variance explicable by the model (i.e., R2). 
However, the modelled potential yield still provides the ‘ceiling’ for the 
yield achievable under ideal conditions. Thus, changes in potential yield 
over time and space are important to consider in terms of indicating the 
likely degree of adaptation required by farming systems to maintain 
current levels of productivity. 

Overall, the data assimilation reduces the modelled potential yield 
values (based on idealised benchmark values, Section 2.1) and brings 
them closer to the measured actual yields, although the spatial vari-
ability is reduced. This gives us some confidence in our data assimilation 
approach and highlights the value of the Sentinel-2 LAI product. 

3.4. Winter wheat trends at a precision-yield site 

The EO data assimilation approach currently considers the entire 
growing season within a given year. We use a simple regression 
approach to demonstrate how the forecast potential wheat yield could 
be converted into more realistic predicted yields. We take the modelled 
yields with and without data assimilation of MODIS LAI data for the 
years 2002 to 2019 (as Sentinel-2 data is only available since 2017) and 
performed a linear regression of the yield with data assimilation against 
the yield without data assimilation, independently for each location 
considered. We apply this regression relationship to convert the time 
series of water-limited potential yields into more realistic predicted 
yields. In Fig. 9, we show the regression fit (Fig. 9a), and the modelled 

Fig. 6. Example of the data assimilation using Sentinel-2 MSI LAI data. The top, 
red line is the modelled GAI, the lower, black line is the GAI after assimilation 
and the blue crosses are the Sentinel-2 MSI LAI observations. The red shaded 
area is the standard deviation assumed for the modelled GAI, the black shaded 
area is the standard deviation of the assimilated GAI, and the blue vertical lines 
show the standard deviation assumed for the MSI LAI observations. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. Box plot showing the distribution of the yield from all the precision 
yield fields and years run, with (middle) and without (left) assimilation. The 
right box plot shows the observed yields. The black horizontal line within each 
box plot shows the mean, and the boxes extend out to the 25th and 75th per-
centiles. The whiskers of the box plots extend out to the 10th and 90th per-
centiles, with the points marked by horizontal lines above and below these the 
maximum and minimum values respectively, plotted where within the 
axis range. 
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potential yield and the yield after data assimilation for an example 
location in Northamptonshire, where we have precision yield mea-
surements for the years 2016 to 2019 (Fig. 9b). We find other locations 
show a very similar behaviour, which is not surprising given the loca-
tions of the precision yield measurements. From Fig. 9 and for the period 
of the time series when data assimilation is used (2002–2019), we see 
that the model predicted significantly lower yields in 2004, 2012 and 
2014. The yields, especially in 2012, were affected by drought. We note 
that the yields predicted after data assimilation shows these years as 
having lower yields. Ideally, we would have confirmed this by com-
parison against precision yields measurements. We would like to extend 
the analysis to include more recent measurements from the winter 
wheat precision yield field sites (after 2019) to provide further data-
points for the evaluation of the approach. However, the present CHESS- 
met datasets are only available to the end of 2019. The present analysis 
provides some reassurance regarding the performance of the crop yield 
model and our data assimilation method. 

4. Discussion 

4.1. Winter wheat 

We find that increasing temperature generally leads to increased 
wheat growth and yields up to around 2040, but the trends vary for the 
latter part of the time series at different locations. Our model suggests 

that many of the key wheat growing areas of the UK will become pro-
gressively less suitable for growing this crop after 2040 due to re-
ductions in precipitation. In terms of climate risk assessment, our results 
suggest that farmers and agri-businesses in these areas will need to adapt 
to the predicted changing climate. 

CO2 fertilisation acts in the model by modifying radiation use effi-
ciency. Therefore, its impacts are greatest when the yield is not strongly 
limited by temperature and available water, and thus the effects of CO2 
fertilisation on yield vary both spatially (depending on which factors 
have the greatest limiting effect on yield) and temporally (as CO2 rises to 
and beyond the point where its impact on radiation use efficiency is 
maximal). However, by comparing national average values, CO2 fertil-
isation can result in an additional yield increase of up to 13 % over the 
change based on meteorological factors alone. However, the general 
shape of the yield curves over time remains similar, with an initial rise 
driven by the benefits of increased temperature on early growth and the 
effect of CO2 fertilisation, followed by a decline as other factors become 
limiting (extreme temperature and water availability). 

According to Semenov et al. (2014), the primary factors contributing 
to wheat yield increase are improvement in light conversion efficiency, 
extended duration of grain filling and optimal phenology. Maintaining 
and increasing yields will require resilience to adverse climatic condi-
tions and simultaneous crop breeding to select traits for increased 
tolerance to heat and drought stress (in Chapter 3 of the Evidence Report 
for the UK second Climate Change Risk Assessment, Brown et al. 

Fig. 8. Scatter plots of the actual yield against the modelled yield for the model with (blue) and without (red) assimilation for (a) 2018 and (b) 2019. The actual 
yields have been aggregated to CHESS 1 km grid by averaging yields from fields in the same grid cell (which have the same climate data). The 1:1 lines are shown in 
black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Statistics of the modelled yield compared against observed yield before and after assimilation of Sentinel-2 LAI.  

Year Before/After Data Assimilation RMSE Unbiased RMSE Coefficient of Determination (R2) 

2018 Before 
After 

4.31 
1.37 

1.77 
1.37 

0.08 
0.38 

2019 Before 
After 

3.21 
1.75 

1.31 
1.14 

0.02 
0.14 

Both Before 
After 

3.82 
1.57 

1.64 
1.44 

0.04 
0.11  
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(2016)). Further, Brown et al. (2016) suggest that it will not be possible 
to adapt agriculture by simply moving southerly-adapted crop geno-
types (and ‘novel’ crops) northwards. Day-length (and rate of change of 
day-length) plays a critical role in the timing of key developmental 
processes (tuberisation, bolting and flowering), which affect the yield 
and quality of harvested products (roots, fruits, seeds and leafy shoots). 
The winter wheat crop growth model used in this study includes many of 
these features. Additional adaptation measures might include the pro-
vision of infrastructure for water storage and crop irrigation, and man-
agement to improve soil moisture holding capacity. 

Our initial application was to consider the impact of climate change 
over many decades across the UK at 1 km spatial resolution. For that 
reason, we used a simpler modelling approach, made assumptions about 
sowing and harvesting dates and fixed parameters at typical values. 
There are a number of features of the current approach that we can 
improve in future developments of the model. For example, we can 
account for the input and impact of nutrients or allow greater flexibility 
in the sowing and harvesting dates. We could do this by inputting 
empirical or modelled data on how these vary over space and time into 
the model, or by using the data assimilation system to optimise these 
parameters. We could also use data assimilation to further increase the 
realism of the model by incorporating other aspects of management 
where relevant EO data sources exist (e.g., soil and water management). 
We could include other factors, such as disease incidence, which we 
could model independently of the climate projections (e.g., Gouache 
et al. (2013); Juroszek and von Tiedemann (2013)). We could adapt the 
model to account for their impacts on yield. 

4.2. Data assimilation 

Previous studies have shown the ability of the coarser resolution 
(500 m) MODIS LAI product to improve within growing season crop 
yield estimates at a variety of locations (Doraiswamy et al., 2004; Wu 
et al., 2012; Ines et al., 2013; Huang et al., 2015). Since 2017, the 
operation of the Copernicus Sentinel-1 and Sentinel-2 pairs have been 
providing SAR and MSI data at field-scale spatial resolutions (30 m and 
10 m respectively), every 5 days, within 12 h of the acquisition. Some 
studies are already showing the benefit of utilising such information in 
combination with crop growth models (Novelli et al., 2019; Pan et al., 
2019; Zhuo et al., 2019), to improve within growing season and long- 
term field-scale predictions of crop growth. 

In this study, we use LAI data derived from Sentinel-2 MSI at 10 m 
spatial resolution and have taken a state-based approach to data 
assimilation, optimising the modelled LAI time series for current and 
past years with available Sentinel-2 MSI data. While the assimilation 
clearly reduces the general ‘bias’ (i.e., offset) and partially improves the 
regression (slope and coefficient of determination, R2), it does not 
appear to match the observed variability. The modelled yield of winter 
wheat before the assimilation is the maximum ‘potential’ yield based on 
climatic/weather factors and the soil properties only. We use the 
assimilation of the LAI data to account for factors, which are not 
modelled explicitly but which affect the crop yield, such as pest and 
disease, farm management practices. Strictly, the data assimilation will 
only capture those agronomic factors that affect LAI/GAI. Although we 
consider our approach to be the start of a potential operational frame-
work, to gain full predictive capability will require knowledge of these 
other forcings such as pest extent and their impact on LAI. An assessment 
of the quality of the LAI product used for the locations studied here and 
its uncertainties is needed before converting the current demonstration 
tool into an operational UK-based framework. Another option would be 
to use data assimilation to optimise the parameters of our crop model to 
improve its predictive power of LAI, and hence yield, into the future 
(Pinnington et al., 2020). For example, we could adjust the thermal 
times and sowing dates of the crop in the model to better match the 
observed LAI trajectory on a field or sub-field scale. 

In addition, methods of machine learning (Suykens and Vandewalle, 
1999) or model emulation (Gómez-Dans et al., 2016; Fer et al., 2018) 
could be used to improve future predicted yields on a field or sub-field 
scale where precision yield and Sentinel-2 data are available. This 
would involve training an algorithm based on the current outputs of the 
state-based assimilation system, precision yield data, and meteorolog-
ical drivers to find an optimal estimate of yield at each individual field, 
given the current day covariates. Machine learning, model emulation 
and data assimilation for parameter estimation would allow us to predict 
estimates closer to the actual yield under climate change instead of the 
water-limited potential yield currently predicted by the model. 

Fig. 9. Upper: Scatter plot of the yield before (x axis) and after (y axis) 
assimilation for 2002 to 2019. The equation is that of the straight blue line, 
derived using a least squares fit. Lower: Time series of the modelled annual 
mean potential winter wheat yield (in t/ha, green) and the modelled yield (in t/ 
ha, blue) after data assimilation, for a location in Northamptonshire. The solid 
line represents the ensemble mean and the shading gives the minimum and 
maximum. The red dots are the precision yield measurements measured at the 
location for 2016–2019. The vertical, dashed lines indicate the years between 
which EO data was available and used for assimilation. Outside this range, yield 
after data assimilation is estimated by applying a correction factor based on the 
linear relationship between pre- and post- assimilation estimates. (For inter-
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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4.3. Extension to other crops and development of a crop-yield 
demonstrator 

A key component of the CropNET project was to provide a demon-
strator for stakeholders to visualise and explore local impacts of climate 
change on the yields of major crops for stakeholders. In so doing, the 
demonstrator aims to raise awareness of the risks posed by climate 
change to crop production and support the development of adaptation 
strategies. We co-designed the demonstrator with users from the arable 
and livestock & grassland farming sectors (Janes-Bassett et al., in 
preparation). 

It uses a data cube approach to enable users to rapidly explore water- 
limited potential yields from the crop yield models, described in this 
paper, for every field in Great Britain (approximately 2 million parcels). 
The demonstrator is implemented on the UK JASMIN computing plat-
form, with a web interface (https://cropnet-demonstrator.datalabs.ceh. 
ac.uk/). Fig. 10 shows a screenshot of the demonstrator, with the 
calculated potential yields for winter wheat between 1980 and 2080 for 
a location in southern England (OS grid reference 594010, 290175), 
using the uncorrected 12-member UKCP18 12 km RCM RCP8.5 climate 
projection ensemble. Users can compare local water-limited potential 
yields with those calculated for the surrounding region and for Great 
Britain. Users can also input actual yield values to provide a location- 
specific correction to actual yield. 

Our modelling framework can readily be adapted to accommodate 
growth and yield models for other important crops, for which we have 
three key components: (a) a process-based yield model that incorporates 
meteorological data, (b) EO data that can be assimilated into that model; 
and (c) yield data of adequate resolution and accuracy for validation. We 
have begun to integrate crop growth models for oilseed rape and grass, 
which will be the subject of future publications. 

5. Conclusions 

In this paper, we describe the development and use of a crop growth 
model to predict climate change impacts on winter wheat. We obtained 
water-limited potential yields for current and future years using the 
latest climate projections for the UK. Our yield models suggest that 
much of the UK will become progressively less suitable for growing 
winter wheat after 2040 because of reduced summer precipitation. 
Although the wheat model is currently based on a general wheat crop, it 
could in principle be used to investigate performance of new drought- 
resistant varieties. 

This paper provides a benchmark for future development of both the 
crop model and the modelling framework. Further work is needed to 

improve and extend the data assimilation component (including evalu-
ation against in situ measurements to quantify uncertainties) and to 
compare the data-driven approach against more process-based models 
to demonstrate the benefit of our approach. Our integrated approach to 
crop yield modelling has great potential for the application of machine 
learning techniques to provide continual model improvement based on 
the automated assimilation of field specific EO growth parameters and 
precision yield data. 

Growth and yield models for other crops (e.g., maize, chickpeas) can 
readily be added to our modelling framework to give a fuller picture of 
the impacts of climate change on UK food production and the potential 
of crops not currently grown in the UK. Exploration of this framework 
will also provide farmers with the opportunity to design future, climate- 
smart crop rotations. 

Code and data availability 

The crop model parameterisations and processing codes are available 
on request to the corresponding author. We use processing scripts 
developed and made available by Yin (2020) to derive leaf area index 
from Sentinel-2 top of atmosphere reflectance observations. 

The UKCP18 data are available for download from the CEDA archive 
(https://catalogue.ceda.ac.uk/?q=ukcp18&sort_by). The HadUK-Grid 
data are also available from the CEDA archive (Hollis et al., 2018). 
The CHESS-SCAPE data are available from the CEDA archive (Robinson 
et al., 2022). The CHESS-met data (Robinson et al., 2020) and soil data 
(Bell et al., 2018) are available from the NERC Environmental Infor-
mation Data Centre. The precision yield data for wheat are provided to 
the authors on a confidential basis. 
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Fig. 10. Screenshot of the crop yield demonstrator showing the calculated water-limited potential yields for winter wheat between 1980 and 2080 for a location in 
southern England (OS grid reference 446393, 187197). The solid line is the mean yield of the ensemble and the range gives the minimum and maximum yields. 
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Appendix 1. – Meteorological data 

A1.1 Observationally-based meteorological data 
We use two observationally based datasets (CHESS-met and HadUK-Grid) as neither dataset fully provides the meteorological parameters required 

for the modelling. We require data at a spatial resolution of 1 km. 
CHESS-met is an observation-based, daily meteorological dataset for Great Britain at 1 km x 1 km spatial resolution, covering the period 

1961–2017 (Robinson et al., 2020) and since updated to 2019 (Robinson et al., 2023a). CHESS-met is derived from the observation-based MORECS 
dataset (Thompson et al., 1981; Hough and Jones, 1997), and then downscaled using information about topography. This is augmented by an in-
dependent precipitation dataset derived from station observations, Gridded Estimates of daily and monthly Areal Rainfall for the United Kingdom 
(CEH-GEAR; Tanguy et al. (2014); Keller et al. (2015)), along with variables from two global datasets – WATCH Forcing Data and Climate Research 
Unit (CRU) time series 3.21. 

HadUK-Grid is a meteorological station observation-based meteorological dataset at 1 km x 1 km spatial resolution for the UK, providing, amongst 
other variables, daily temperature data from 1960 and monthly sunshine hours from 1929 (Hollis et al., 2018). 

The daily temperature range variable (used with daily mean temperature to infer daily minimum and maximum temperature) in the CHESS-met 
dataset is taken from the CRU dataset, copied down to the 1 km resolution without any downscaling applied. As it is in reality at a coarser spatial 
resolution, we therefore chose to use the daily minimum and maximum temperature variables from the HadUK-Grid dataset. 

We also require net short wave solar radiation, instead of the incoming solar radiation provided by the CHESS-met dataset. Although HadUK-Grid 
only provides monthly sunshine hours, we use this dataset to estimate the average cloud-cover fraction for a given month. Applying the MORECS 
equation 4.17 in Thompson et al. (1981), we obtain the maximum possible sunshine hours for a given month and derive the cloud fraction by dividing 
the actual monthly sunshine hours from HadUK-Grid by the maximum sunshine hours. We then derive the monthly average albedo, using the 
following equation: 

α = ((1 − dfrac)*bs albedo )+ (dfrac*ws albedo)

where dfrac is the cloud cover fraction, bs albedo is the black sky albedo and ws albedo is the white-sky albedo. The black- and white-sky albedos are 
taken from the 1 km x 1 km GlobAlbedo dataset (Muller et al., 2012). This monthly albedo (α) was then used to convert the daily CHESS-met 
downwelling solar radiation to net solar radiation. Although there are other published datasets that would have all the required variables, there 
are none that have all the required variables at 1 km spatial resolution. Our approach here, using both HadUK-Grid and CHESS-met, allows us to obtain 
all the required variables at the high spatial resolution required for this study. 

In summary and as indicated in Table 1, precipitation is taken from the CHESS-met dataset (note it is effectively the CEH GEAR dataset in different 
units). The mean air temperature is also taken from CHESS-met dataset, with the minimum and maximum daily temperature taken from the HadUK- 
Grid dataset. We use a combination of the HadUK-Grid and CHESS-met datasets to derive the net incoming solar radiation. 

A1.2 UKCP18 projections 
The regional UKCP18 climate projections for the UK comprise a set of 12 high resolution climate projections at 12 km spatial resolution (Lowe 

et al., 2018). We use the ensemble for the RCP8.5 scenario, as this is the only UKCP18 scenario available at 12 km spatial resolution. Although there is 
a set of 12 high resolution climate projections available at 2.2 km spatial resolution, we choose not to use these as that set of projections comprises 3 
time slices (1981–2000, 2021–2040 and 2061–2080), whereas the UKCP18 RCP8.5 12 km projections provide a complete time series with daily time 
steps from 1981 to 2080. 

The RCP8.5 scenario is a higher warming scenario than the RCP2.6 scenario (Table A1.1). In the RCP8.5 scenario, the fastest rate of change in 
surface air temperature is at the end of the century, whereas the fastest rate of change is in the near future for the RCP2.6 scenario (Lowe et al., 2018). 
The rates of change over the next 20–30 years are very similar between the RCP2.6 and RCP8.5 scenarios to 2040.  
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Table A1 
1. Projected change in temperature and precipitation for the UK region from 1981 to 2000 to 2041–2060, showing the 10th, 30th and 90th percentiles from the 
probabilistic projections. Adapted from (Lowe et al., 2018).  

Scenario Annual Temperature Change (◦C) Winter Precipitation Change (%) Summer Precipitation Change (%) 

10th 50th 90th 10th 50th 90th 10th 50th 90th 

RCP8.5  0.9  1.8  2.7 − 5 7 21 − 31 − 15 0 
RCP2.6  0.5  2.0  2.3 − 5 5 16 − 24 − 11 1  

A1.3 CHESS-SCAPE projections and bias correction 
We use all 4 members of the CHESS-SCAPE 1 km ensemble for the RCP8.5 scenario (Robinson et al., 2023b). This dataset was derived from the 

UKCP18 RCP8.5 12 km ensemble by downscaling and has been bias corrected to the CHESS-met 1 km historical climate dataset (Robinson et al., 
2020). The downscaling of the three meteorological variables of interest (surface air temperature, incoming short wave solar radiation and precip-
itation) is based on the approach used by Robinson et al. (2017), but has been adapted for the UKCP18 climate model output (Robinson et al., 2023b). 
The downscaled meteorological fields are then then bias corrected to CHESS-met for each 1 km grid cell and for each season (Dec-Jan-Feb (DJF), Mar- 
Apr-May (MAM), Jun-Jul-Aug (JJA), Sep-Oct-Nov (SON)). 

1 Surface temperature 
Downscaling: Robinson et al. (2023b) first reduced the UKCP18 12 km RCM air temperature from the climate model grid box elevation (UKCP18, 

2020) to mean sea level, using a lapse rate of − 0.006 K m− 1 (Hough and Jones, 1997). They then used a bi-cubic spline to interpolate from the UKCP18 
12 km resolution to the CHESS-SCAPE 1 km grid. Finally, they adjusted the temperatures to the elevation of each 1 km square using the same lapse rate 
and grid box elevations from the Integrated Hydrological Digital Terrain Model (IHDTM) (Morris and Flavin, 1990) and the Ordnance Survey of 
Northern Ireland (OSNI) Open Data 50 m Digital Terrain Model (DTM) (OSNI, 2021). 

Bias-Correction: For each CHESS-SCAPE grid cell and season (DJF, MAM, JJA and SON), Robinson et al. (2023b) calculated the difference μT =

Td − Tm between the seasonal mean daily temperature in CHESS-SCAPE, Td, and CHESS-met, Tm, for the years 1980–2015. They removed this dif-
ference from the CHESS-SCAPE data, such that the bias-corrected daily temperature is given by Tc = Td − μT, where Td is the original CHESS-SCAPE 
daily data. The mean of the CHESS-SCAPE data is thus equal to that of the CHESS-met data for the bias-correction period. 

2. Precipitation 
Downscaling: Robinson et al. (2023b) downscaled the UKCP18 12 km RCM precipitation using Standardised Annual Average Rainfall 1961–90 

(SAAR 61–90) (Spackman, 1993). They copied the UKCP18 12 km precipitation values to the corresponding 1 km grid box with no interpolation. They 
then scaled these values using the ratio of each SAAR 1 km value to its corresponding 12 km area mean (Robinson et al., 2023b). 

Bias-correction: For each CHESS-SCAPE grid cell and season, Robinson et al. (2023b) removed errors with a multiplicative scaling μP = Pd/Pm, 
which is the ratio of the seasonal mean of the downscaled CHESS-SCAPE precipitation to the seasonal mean CHESS-met precipitation for the years 
1980–2015. They then calculated the bias-corrected daily precipitation using Pc = Pd/μP, where Pc is the corrected data, and Pd is the original CHESS- 
SCAPE daily data. 

3. Incoming short wave (SW) solar radiation 
Downscaling: Robinson et al. (2023b) interpolated the UKCP18 net shortwave radiation using a bi-cubic spline. They then corrected for the average 

inclination and aspect of the surface, assuming that only the direct beam radiation is a function of the inclination and that the diffuse radiation is 
homogeneous. They assumed that the cloud cover is the dominant factor in determining the diffuse fraction (Muneer and Munawwar, 2006) and used 
the cloud cover grid provided by UKCP18 interpolated to 1 km using a bi-cubic spline. They calculated the aspect and slope from the IHDTM and OSNI 
DTM at the native resolution, following the method of Horn (1981) and then aggregated to 1 km. They scaled the direct beam radiation using the ratio 
of the top of atmosphere fluxes for horizontal and inclined surfaces calculated following Allen et al. (2006). They then converted this to down-welling 
SW radiation using the albedo calculated from the GlobAlbedo black-sky and white-sky albedo (Muller et al., 2012) and the diffuse radiation fraction. 

Bias-correction: When considering a frequency distribution of values, Robinson et al. (2023b) found the highest attained radiation levels to be 
similar between CHESS-met and CHESS-SCAPE data. However, they found that the middle of the distribution, broadly the mean and its peak, could 
often be offset quite substantially. They defined two scale parameters, the first of which is the ratio of the seasonal means, μS1 = Sd/Sm, and the second 
of which is the ratio of the difference between the seasonal mean and the maximum value of CHESS-SCAPE, μS2 = (Sd − max(Sd) )/(Sm − max(Sd) ). 
Where the mean of CHESS-SCAPE was less than the mean of CHESS-met, μS1 was used to stretch the distribution such that up to the mean, CHESS- 
SCAPE values are increased. Then, from the peak to the maximum value, μS2 was used to do the opposite and compressed the distribution into the 
range between the CHESS-met mean and maximum value. Similarly, if the CHESS-SCAPE mean was larger than that that of the CHESS-met data, this 
compresses the lower part of the distribution and stretched the upper part. 

As the model requires net shortwave radiation for this study, we convert the bias-corrected CHESS-SCAPE down-welling shortwave data to net 
shortwave radiation, using albedo data derived from GlobAlbedo (ESA, 2011) and the HadUK-Grid cloud cover fraction. 

In Figure A1.1, we show, by season, the effect of the bias correction on the meteorological driving parameters (surface temperature, precipitation 
and the net incoming shortwave radiation at the surface). 
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Fig. A1. 1. Time series of the meteorological driving parameters used in the CropNET winter wheat model, by season (DJF, MAM, JJA, SON), for (a) surface 
temperature (◦C); (b) precipitation (mm day− 1) and (c) net incoming shortwave radiation at the surface (W m− 2). In each plot, we show the Great Britain average of 
the parameters derived from the historical CHESS-met data (black line), the original UKCP18 12 km data (blue), with a rolling 10-year average (solid blue line) and 
the bias-corrected CHESS-SCAPE data (red line). 

Appendix 2. – LAI data assimilation 

The cost function used in the data assimilation routine consists of three terms, each of which provides a constraint: 

J = Jobs + Jmodel + Jsmooth (A1) 

1. The observation term 
The observation term constrains the state vector to the observations and is defined as 

Jobs = 0.5(yobs − Hx)T C− 1
obs(yobs − Hx) (A2)  

where yobs is the vector of observations (i.e., Sentinel-2 LAI). This can be of variable length, depending on the number of days with observational data. 
Here and in the subsequent equations, x is the state vector, i.e., the time series of LAI for any particular model grid cell. H is a matrix of shape [number 
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of days with observations by total number of days]. Each row of H will have a single 1 in it at the column index corresponding to the day through the 
time series at which each observation is valid. All other values in each row are zeros. Multiplying this by the state vector acts to transform the state 
vector into observational space, by removing the values of the state vector where there are no corresponding observations. Cobs is the error covariance 
matrix of the observations, a square matrix with the dimension length equal to the number of observations. The diagonal values correspond to the 
error associated with each observation value. In this application, the off-diagonal values, corresponding to correlations between observation errors, 
were set to zero, allowing us to rewrite the equation as: 

Jobs = 0.5
∑N

t=1

(
yobst − ymod t

)2

σ2
obs

(A3)  

where N is the number of observations and t is the observation number. 
From equation (A3), we see that the cost function is the sum of the squared differences between the observations and the model, weighted by the 

inverse of the error associated with the observations. Also note that in our application we are using a constant observation error term of 0.4 m2 m-2 that 
does not vary with time. This is consistent with the work of Verrelst et al. (2015), who derive an error of 0.44 for a Gaussian-process based emulator 
retrieval method of Sentinel-2 LAI, a similar method to that used in our study. 

2. The model term 
The model term constrains the state vector to the vector of LAI values predicted by the crop model, known as the prior, to ensure the retrieval of a 

physically reasonable LAI time series. This term is given by: 

Jmodel = 0.5(x − xmod)
T C− 1

mod(x − xmod) (A4)  

with xmod the model vector and Cmod is the error covariance matrix of the model vector. Once again this is a diagonal matrix, meaning we can rewrite 
the equation (A4) as: 

Jmodel = 0.5
∑P

t=1

(xt − xmodt)
2

σmod
2
t

(A5)  

where P is the number of time steps in the state vector and σmod are the diagonal terms of Cmod. 
For our application, we let σmod vary with time, as it is set to the standard deviation of the model ensemble at each time step. Where this is 

0 however, such as at the end of the time series, we set it to 0.001 to avoid errors in the assimilation. This has the effect of constraining the posterior 
(assimilated LAI) to the prior (modelled LAI) at the start and end of the time series. We note that for both the observations and model we assume no 
bias in the cost function. This could be included as an additional term for the model error or within the observation error covariance matrix, as shown 
by Howes et al. (2017). 

3. The smoothing term 
The smoothing term constrains the state vector to a smoothed version of itself: 

Jsmooth = 0.5γ2(Δx)TC− 1
smooth(Δx) (A6)  

where Δ is a first order differential operator matrix of size P-1 x P, formed by taking the forward difference down each separate column of an identity 
matrix of size P x P; Csmooth is the error covariance matrix of the smoothed state vector; γ is a term controlling the strength of the constraint provided by 
this term and thus how smooth the posterior state vector is. For our application, a value of 10 is used, as this was found to produce an optimal balance 
between the three terms in the cost function where the smoothing term was strong enough to smooth out all the variability arising from the obser-
vational term without dominating the minimisation routine (results not shown). Csmooth is once again a diagonal matrix, meaning we can write the 
equation: 

Jsmooth = 0.5γ2
∑P− 1

t=1

(xt − xt− 1)
2

σ2
smooth

(A7)  

where σsmooth are the diagonal terms of Csmooth. In this instance, assuming a diagonal Csmooth, we could combine the γ and σsmooth terms as they both have 
the same effect on the equation. The ‘error’, σsmooth, is more complex to define than the other errors but it can be understood from this equation as a 
parameter that constrains how much the state vector is allowed to change from one time step to the next. Here, we set it to vary according to the value 
of the prior state vector, with small values where this is small and vice versa, up to a maximum value of 1.5. This term therefore provides less of a 
constraint when the prior values of LAI are highest (which for LAI is generally when it is varying the fastest), allowing the posterior state vector to be 
more variable here, whilst also ensuring it is not too variable at the start of the season when LAI is low. Whilst this type of constraint could be included 
via the prior term, we found it difficult to achieve the desired effect using this method. 

4. Minimisation of the cost function 
From the cost function equations, it can be seen that the magnitude of each term is the sum of the squared differences between the various time 

series, weighted by the inverse of the errors associated with the three terms. Therefore, the terms with smaller errors contribute more to the cost 
function. When the cost function equation is minimised relative to the state vector, such terms provide a stronger constraint relative to the other terms. 
E.g., if the model (prior) term is the dominant term in the cost function, the posterior state vector, obtained by minimising the cost function, will be 
closer to the prior state vector than the observations, and will not be very smooth. 

To minimize the cost function efficiently the gradient of the cost function with respect to the state vector is required. This can be found by 
differentiating the cost function, J, to obtain: 

∇J = ∇Jobs +∇Jmodel +∇Jsmooth (A8) 
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∇J = − HT C− 1
obs(yobs − Hx)+C− 1

mod(x − xmod)+ γ2ΔTC− 1
smoothΔx (A9) 

The cost function, J, and its gradient, ∇J, are used alongside the initial guess to the LAI state vector and the MODIS LAI observations as inputs to the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimisation routine (Wright and Nocedal, 2006) in the Python package Scipy.optimize (Jones et al., 
2001). The output of this minimisation routine is the optimized time series of LAI values (the posterior state vector). The crop model is then re-run with 
these posterior LAI values to find an improved estimate of the crop yield. 

With the various assumptions made, we note that this model is linear and can be solved straightforwardly as shown. As we design the data 
assimilation system to be flexible for future, possibly more complex applications, we document the full system here. 

The minimum occurs when ΔJ = 0.

0 = − HT C− 1
obs(yobs − Hx)+ C− 1

mod(x − xmod) + γ2ΔT C− 1
smooth Δx (A10)  

0 = − HT C− 1
obsyobs − C− 1

modxmod +
(
HT C− 1

obsH+ C− 1
mod + γ2ΔT C− 1

smooth Δ
)
x (A11)  

(
HT C− 1

obsH+ C− 1
mod + γ2ΔT C− 1

smooth Δ
)
x = HT C− 1

obsyobs + C− 1
modxmod (A12)  

x = (HT C− 1
obsyobs + C− 1

modxmod )/
(
HT C− 1

obsH+ C− 1
mod + γ2ΔT C− 1

smooth Δ
)

(A13) 

5 Calculation of the posterior error 
The standard deviation associated with the posterior – the resulting LAI from the assimilation – can be calculated using the second derivative of the 

cost function as follows: 

A =
(
Δ2J

)− 1
=

(
HT C− 1

obsH + C− 1
mod + γ2ΔT C− 1

smoothΔ
)− 1 (A14)  

where A is the analysis error covariance matrix, and all other variables are as defined previously. The diagonal of A is the variance of the posterior 
estimate of LAI. We take the square root of this to obtain the standard deviation. 

Appendix 3. – Sensitivity to sowing date and heat stress 

1. Sensitivity to sowing date

Fig. A2. 1. Time series of modelled national mean water-limited potential yield (in t/ha) per year, as modelled with three different sowing dates. All three model 
runs included waterlogging and heat stress penalties. Climatic inputs to the model were derived from CHESS-met and HadUK-Grid for the historic period (pre-2020) 
and from bias corrected CHESS-SCAPE RCP8.5 data for the future time period. 
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Fig. A3. 2. Maps of water-limited potential yields of winter wheat (in t/ha) modelled for Great Britain for the past decade (2010–2020, first column) and for future 
decades: 2030–2040 (second column), 2050–2060 (third column) and 2070–2080 (final column). The upper, middle and lower panels use sowing dates of September, 
October and November, respectively. Climatic inputs to the model were derived from CHESS-met and HadUK-Grid for the historic period (pre-2020) and from bias 
corrected CHESS-SCAPE RCP8.5 data for the future time period. 
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2. Sensitivity to heat stress

Fig. A4. 3. Time series of the modelled national mean potential yield (in t/ha) per year. Modelled yields are shown with no water limitation (i.e. modelled from 
temperature and solar radiation only, with no effect of precipitation), water limited (i.e. including the effects of precipitation, soil water content and waterlogging) 
and water limited with the addition of the heat stress penalty. All three model runs used the benchmark (October) sowing date. Climatic inputs to the model were 
derived from CHESS-met and HadUK-Grid for the historic period (pre-2020) and from bias corrected CHESS-SCAPE RCP8.5 data for the future time period. 
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