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ABSTRACT: Efforts to parameterize ice shelf basal melting within climate models are limited by an incomplete under-
standing of the influence of ice base slope on the turbulent ice shelf–ocean boundary current (ISOBC). Here, we examine
the relationship between ice base slope, boundary current dynamics, and melt rate using 3D, turbulence-permitting large-
eddy simulations (LESs) of an idealized ice shelf–ocean boundary current forced solely by melt-induced buoyancy. The
range of simulated slopes (3%–10%) is appropriate to the grounding zone of small Antarctic ice shelves and to the flanks
of relatively wide ice base channels, and the initial conditions are representative of warm-cavity ocean conditions. In line
with previous studies, the simulations feature the development of an Ekman boundary layer adjacent to the ice, overlaying
a broad pycnocline. The time-averaged flow within the pycnocline is in thermal wind balance, with a mean shear that is
only weakly dependent on the ice base slope angle a, resulting in a mean gradient Richardson number hRigi that decreases
approximately linearly with sina. Combining this inverse relationship with a linear approximation to the density profile, we
derive formulations for the friction velocity, thermal forcing, and melt rate in terms of slope angle and total buoyancy
input. This theory predicts that melt rate varies like the square root of slope, which is consistent with the LES results and
differs from a previously proposed linear trend. The derived scalings provide a potential framework for incorporating slope
dependence into parameterizations of mixing and melting at the base of ice shelves.

SIGNIFICANCE STATEMENT: The majority of Antarctica’s contribution to sea level rise can be attributed to
changes in ocean-driven melting at the base of ice shelves (the floating extensions of the Antarctic ice sheet). Turbulent
ocean currents and melting are strongest where the ice base is steeply sloped, but few studies have systematically exam-
ined this effect. We use an idealized ice shelf–ocean model to examine how variations in ice base slope influence ocean
mixing and ice melting. We derive a formula predicting that melting varies like the square root of the ice base slope,
and this scaling is supported by the simulations. These results provide a potential framework for improving the repre-
sentation of ice shelf melting in climate models.
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1. Introduction

Mass loss from the Antarctic ice sheet contributes signifi-
cant uncertainty to global sea level predictions (Fox-Kemper
et al. 2021). The present-day retreat of the ice sheet is pre-
dominantly attributed to an increase in ocean-driven melting
of its floating ice shelves (Rignot et al. 2013). Accurately cap-
turing ice shelf–ocean interactions in climate models has
therefore become an essential prerequisite for improving the
reliability of sea level forecasting.

While continental shelf processes and bathymetry impact
basal melting by influencing the properties of the water
masses present in the ice shelf cavity (e.g., Azaneu et al. 2023;
Haigh et al. 2023), local melt rates are ultimately governed by
the vertical convergence of heat and salt fluxes at the ice–
ocean interface, in turn regulated by the exchange of heat,
freshwater, and momentum across the turbulent ice shelf–

ocean boundary layer (Holland and Jenkins 1999). Con-
strained by computational cost, regional and circum-Antarctic
ocean models do not explicitly resolve small-scale turbulence
within the ice–ocean boundary layer. As a result, these mod-
els rely on parameterizations to represent the structure of the
boundary flow and the fluxes that it generates at the ice–
ocean interface.

In this paper, we follow the terminology introduced by
Jenkins (2016) which refers to the ice shelf–ocean boundary
flow, comprising a boundary layer adjacent to the ice and a
pycnocline beneath, as the ice shelf–ocean boundary current
(ISOBC). In contrast to the boundary layer in which Ekman
dynamics are relevant, the flow in the pycnocline has been
shown to be mostly geostrophic (Jenkins 2021; Patmore et al.
2023). However, the most commonly used ice shelf–ocean
boundary layer parameterizations (Holland and Jenkins 1999)
were originally developed to evaluate melt under flat sea ice
(McPhee et al. 1987). In contrast to the broad pycnocline char-
acterizing the ISOBC, in the flat sea ice configuration, the pyc-
nocline is very sharp meaning that the pressure gradient
driving the boundary flow can be assumed to be constant with
depth. Applying this model to the ISOBC means that, depend-
ing on vertical grid resolution, the representation of the outer,
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geostrophic portion of the ISOBC in large-scale ocean models
is either omitted or captured by generic vertical mixing schemes
with poorly constrained parameters. This resolution depen-
dency in turn affects simulated basal melt rates (Gwyther et al.
2020; Patmore et al. 2023).

While a number of recent modeling studies have investi-
gated ISOBC dynamics (e.g., Vreugdenhil and Taylor 2019;
Middleton et al. 2021; Begeman et al. 2022; Patmore et al.
2023; Rosevear et al. 2022), one aspect that is not yet fully un-
derstood is the effect of basal slope on the interplay between
melt-induced buoyancy force, stratification, and mixing. Given
that the presence of a sloped ice base under ice shelves is one
of the key differences compared to the sea ice–ocean bound-
ary layer, addressing this knowledge gap is a necessary step
toward improved ISOBC parameterizations. Jenkins (2021) stud-
ied this question using a 1D numerical model in which turbulence
was parameterized. The present study is an extension to that
work; rather than relying fully on turbulence closure models, we
use 3D turbulence-permitting simulations to examine the struc-
ture and dynamics of the turbulent boundary current beneath a
sloped ice base. Moreover, while previous ice shelf–ocean inter-
action studies have focused primarily on improving the represen-
tation of the boundary layer adjacent to the interface, we choose
to focus more directly on the pycnocline, which has received less
attention to date.

A key objective of this paper is to quantify the sensitivity of
basal melt rate to ice base slope. Several authors have used
1D plume theory to derive steady-state scalings between
mean melt rate and basal slope (Jenkins 2011; Magorrian and
Wells 2016; Jenkins et al. 2018). While the plume framework
offers the advantage of incorporating lateral advection, result-
ing in a steady-state solution, its main limitations include the
neglect of Coriolis forces, the reliance on a simple entrain-
ment parameterization that may not be appropriate in the
sub–ice shelf setting (Burchard et al. 2022), and the use of
mean plume properties resulting in the model’s inability to ac-
count for stratification effects. The latter two limitations were
addressed by nonrotating turbulence-resolving simulations
performed by Mondal et al. (2019) for slope angles 28–908.
Similar to the findings described by Magorrian and Wells
(2016) based on 1D plume simulations, Mondal et al. (2019)
noted an increase in melt rate with slope. For small ice base
slope angles up to 0.028, Jenkins (2021) suggested a near-linear
relationship between melt rate and slope accounting for Earth’s
rotation, although with parameterized turbulence. More re-
cently, a study by Begeman et al. (2022) based on turbulence-
permitting large-eddy simulations (with rotation) also found a
linear sensitivity of melt rate to slope angle, with a threshold-
like behavior at very shallow slopes. However, Begeman et al.
(2022) only considered four slope angles ranging between
0.018 and 18 and the suggested linear trend was inferred by fit-
ting a curve through the data points. While the numerical
modeling studies listed above have each highlighted important
aspects of slope-induced dynamics, an expression for the
melt rate as a function of ice base slope, derived based on
turbulence-permitting simulations accounting for the effects
of Earth’s rotation and melt-induced stratification, has not
yet been established.

To examine ice base slope effects, we conduct a series of
turbulence-permitting large-eddy simulations (LESs) where
we vary the slope angle and fix other parameters. We use an
idealized rectangular model geometry with a uniformly sloped,
planar ice base. Periodic lateral boundary conditions are ap-
plied to generate a boundary flow that is solely forced by the
resultant meltwater buoyancy, thereby neglecting any external
drivers of turbulence present under real-world ice shelves like
tidal currents (Davis and Nicholls 2019; Richter et al. 2022).
We initialize each simulation with uniform temperature and
salinity and no mean velocity. This allows us to isolate pro-
cesses associated with the buoyancy-driven ISOBC. As a re-
sult of this assumption, the water column beneath the ISOBC
is not turbulent. It is also worth noting that we do not consider
the diffusive convective regime observed in quiescent ice shelf
cavities (e.g., Middleton et al. 2022). These intentional omis-
sions are justified by our overall aim to consider a controlled
system in which we can examine the underlying physics of
buoyancy-forced ISOBC dynamics, rather than attempting re-
alistic simulations of any specific ice shelf cavity environment.

It is also important to mention that, due to the periodic
boundary conditions in the ice base-parallel dimensions re-
quired to generate a buoyancy-driven flow in a domain that is
sufficiently small to allow for a turbulence-permitting grid res-
olution, our simulations do not account for large-scale lateral
advection of heat and salt that may be present under real ice
shelves (Schmidt et al. 2023). Given the absence of heat and
salt restoring sources in our model configuration, this results
in a boundary flow that continuously freshens and cools, im-
plying that steady-state conditions will not be reached until
all the available ocean heat has been consumed (at which
point there will be no further melting). We are therefore
studying the transient initial value problem, in line with the
approach taken in previous ISOBC modeling studies (e.g.,
Jenkins 2016, 2021; Vreugdenhil et al. 2022; Patmore et al.
2023), as well as in large-eddy simulations of other stratified
turbulent flows such as wakes (e.g., Zhou 2022). The time-
evolving behavior is a useful problem to study in itself be-
cause in reality, the development of the boundary current
would be halted at the stage when a balance between the lat-
eral convergence of advected heat and the vertical divergence
of interfacial and pycnocline heat fluxes was attained. This
would then result in a steady state with similar characteristics
to the transient solution at that stage (Jenkins 2016).

The layout of this paper is as follows: section 2 outlines the
LES model setup; section 3 describes the effects of ice base slope
on the boundary current structure and dynamics; section 4 for-
mulates an expression for transient melt rate in terms of slope
angle; and section 5 summarizes the key findings, discusses
potential ocean modeling implications, and suggests further re-
search avenues.

2. Model design

a. Simulation setup

The turbulent shear flow beneath a sloping ice base is mod-
eled using idealized large-eddy simulations performed in the
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computational fluid dynamics solver Diablo (Taylor 2008). A
schematic of the cuboid model domain is shown in Fig. 1. The
upper boundary (z 5 0) represents the base of the melting ice
shelf, and the bottom boundary is an arbitrary far field. The
slope is introduced by tilting the computational domain by an
angle a from the horizontal such that the x–y plane aligns
with the ice shelf base, with x upslope, y across slope, and z
perpendicular to the ice base. The slope is varied from 3% to
10%, in 1% increments. For comparison with other studies,
note that this corresponds to slope angles a ranging between
1.78 (tan210.03) and 5.78 (tan210.10). Hereafter, we refer to
the slope values in percentage rather than angle. While this
range of slopes is appropriate to the near grounding line re-
gion of small ice shelves and the flanks of relatively wide basal
channels (Stanton et al. 2013; Dutrieux et al. 2014; Alley et al.
2016), mean ice shelf slopes can be as low as 0.01%, which is
less than the lower bound tested here. However, for slopes
smaller than 3%, we found that turbulence was suppressed to
an extent that it could not be sufficiently resolved on our grid
given available computational resources, which is why these
shallower angles are excluded from our analysis.

To simulate a buoyancy-driven flow along the sloped ice
base, while keeping the domain size sufficiently small to en-
able the use of turbulence-permitting grid resolution, we ap-
ply periodic boundary conditions along the ice plane-parallel
dimensions and impenetrable conditions in the z direction.
No external forcing is applied, meaning that the simulated
flow is driven solely by melt-induced buoyancy forcing. We
impose a no-flux, free-slip condition on the bottom boundary.
At the top boundary, we implement a near-wall model, which
estimates the stress, heat flux, salt flux, and melt rate at the

ice–ocean interface based on the velocity, temperature, and
salinity at the top grid point of the computational domain (de-
tails in section 2c). As noted in the introduction, the use of pe-
riodic lateral boundary conditions coupled with the no-flux
bottom boundary condition means that the simulations are an
initial value problem. The key limitation to this approach is
that our results are quantitatively dependent on the choice of
initial conditions. To reach a long-term equilibrated state in
the periodic domain, the alternatives would have been either
to include a restoring zone at the base of the domain or to
specify vertical heat and salt fluxes at the bottom boundary.
However, while removing the dependence on initial condi-
tions, given that the physical processes leading to steady-state
conditions under ice shelves are not well understood, both of
these model setup options would have introduced a depen-
dence on an arbitrary choice of boundary conditions.

The temperature and salinity fields are initialized with uni-
form values of T 5 20.128C and S 5 34.5 psu. Setting the hy-
drostatic background pressure to P 5 300 dbar (equivalent to
a depth below sea level of approximately 300 m), this gives a
thermal driving [defined as the difference between the ocean
temperature and the freezing temperature Tf(S, P) of 28C,
representative of conditions in “warm” Antarctic ice shelf
cavities flooded by Circumpolar Deep Water (Dinniman et al.
2016)]. The velocity field is initialized with small-amplitude
random noise on the order of 0.01 m s21 to help initiate turbu-
lence. Each simulation is run until an accumulated melt of
3 m has been achieved, plus one inertial period tin of 12.5 h.
Due to the variation of melt rate with slope (discussed later),
this results in different simulation durations. For the simula-
tions presented here, the durations range from 23 inertial pe-
riods for the steepest slope to 120 inertial periods for the
shallowest slope.

The model domain is 64 m in each ice plane-parallel di-
rection and 400 m in the ice plane-normal direction. The
flow is discretized on a uniform grid with a uniform resolu-
tion of Dx 5 Dy 5 2 m in the ice plane-parallel dimensions
and Dz 5 0.5 m in the wall normal dimension. This resolution
is comparable to the highest resolution used in Vreugdenhil
et al. (2022). For the simulations presented in this paper, and
with the exception of the near-wall layer (between the upper-
most grid point and the ice base), this grid resolution is suffi-
ciently high for at least 80% of the scalar and momentum
fluxes to be generated by resolved turbulence (with the re-
maining unresolved portion parameterized with a subgrid-
scale model), ensuring the accuracy of the solution obtained
using LES. The chosen grid configuration also meets the isot-
ropy requirement for accurate LES of a stratified wall-
bounded flow (vertical-to-horizontal aspect ratio of at least
0.25) identified by Vreugdenhil and Taylor (2018).

b. Governing equations

Diablo solves a low-pass-filtered version of the nonhydrostatic
Navier–Stokes equations under the Boussinesq approximation,
along with conservation equations for mass, heat, and salt and a
linear equation of state. The simulations apply the traditional
approximation of rotation, which neglects the local horizontal

FIG. 1. Schematic of the simulated LES domain (not to scale).
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component of Earth’s angular velocity. Under this approxima-
tion, Earth’s rotation is included with a slope-independent
Coriolis parameter (set here to f 5 21.4 3 1024 rad s21 based
on typical Antarctic latitudes). This simplification is justified
given that the correction is small for the range of slope angles
considered here. Moreover, maintaining f independent of
slope enables us to isolate the effect of slope-driven buoyancy
force when interpreting the result, which supports our aim to
gain insight into fundamental physical processes rather than to
reproduce flow conditions under a specific ice shelf. In the ab-
sence of external forcing, and for a model domain tilted by an
angle a from the horizontal, the grid-filtered equations are as
follows:

Du

Dt
52

1
rr
=p 2

Dr

rr
g(sinai 1 cosak) 2 fk 3 u 1 n=2u 2 = ? t,

(1)

= ? u 5 0 , (2)

DT
Dt

5 kT=
2T 2 = ?lT , (3)

DS
Dt

5 kS=
2S 2 = ?lS, (4)

Dr

rr
52bT(T 2 Tr) 1 bS(S 2 Sr), (5)

where u(u, y , w) is the 3D resolved velocity field with the corre-
sponding position vector (x, y, z); i and k are the unit vectors in
the x direction (upslope) and z direction (ice plane-normal),
respectively; t is the time; p is the pressure; T and S are the
resolved scalar fields; and Tr and Sr are the reference tempera-
ture and salinity set to initial conditions. The density deficit is
Dr 5 r 2 rr with r as the resolved density field and rr as the ref-
erence density. The gravitational acceleration is g 5 9.81 m s22

and the coefficients of thermal expansion and haline contraction
are bT 5 3.283 1025 8C21 and bS 5 7.843 1024 psu21, chosen
to be consistent with typical values used in ice shelf–ocean in-
teraction studies (e.g., Patmore et al. 2023). We use realistic
values of molecular viscosity (n 5 1.83 1026 m2 s21) and molec-
ular diffusivities for temperature (kT 5 1.33 1027 m2 s21 giving
Pr 5 n /kT 5 13.8) and salt diffusivity (kS 5 7.2 3 10210 m2 s21

giving Sc5 n /kS 5 2500).
Derivatives are calculated with a pseudospectral method in

the x and y directions. Derivatives in the z direction are com-
puted using second-order finite differences. The equations are
solved using an adaptive time-stepping scheme with a semi-
implicit Crank–Nicholson method applied for the viscous and
diffusive terms and an explicit third-order Runge–Kutta
method for all other terms. Further details on the numerical
method implemented in Diablo can be found in Taylor
(2008). The subgrid-scale stress tensor t and the subgrid-scale
scalar fluxes (lT, lS) in Eqs. (1), (3), and (4) are evaluated us-
ing the anisotropic minimum dissipation (AMD) turbulence
closure scheme (Abkar et al. 2016; Vreugdenhil and Taylor
2018). The AMD model setup employed here is identical to

the setup implemented in previous simulations of the ice
shelf–ocean boundary current (Vreugdenhil et al. 2022).

c. Boundary conditions for ice shelf melting

Our vertical model resolution of Dz 5 0.5 m is too coarse to
resolve the very small turbulent motions near the ice base,
where the size of the eddies is limited by distance from the
wall. We therefore use a near-wall model recently developed
by Vreugdenhil and Taylor (2019) and verified for a stratified
shear-driven turbulent flow beneath a melting ice base
(Vreugdenhil et al. 2022) to estimate the stress, scalar fluxes,
and melt rate at the ice–ocean interface from the velocity,
temperature, and salinity at the top grid point of the computa-
tional domain (located Dz/2 5 0.25 m beneath the ice base).
The near-wall model uses Monin–Obukhov similarity scaling
(law-of-the-wall logarithmic scaling modified to account for
melt-induced stratification) coupled with the diffusive melt
equations (McPhee et al. 1987; Holland and Jenkins 1999).
Originally developed for evaluating melt under sea ice, the
diffusive melt equations describe the balance of heat and salt
fluxes at the ice–ocean interface and constrain the temperature
at the ice base to be equal to the local depth- and salinity-
dependent freezing point. Neglecting heat conduction into the
ice and volume input of meltwater [as justified in Holland and
Jenkins (1999)] yields the following system of equations:

cw rr qT 5 ri Li m , (6)

rr qS 5 ri S0 m , (7)

T0 5 l1S0 1 l2 1 l3P , (8)

where T0 and S0 correspond to the interface temperature and
salinity and qT and qS are the heat and salt fluxes. The specific
heat capacity of water is cw 5 3974 J kg21 8C21, the latent heat
of fusion is Li 5 3.34 3 105 J kg21, and l1 5 25.73 3 1022 8C,
l2 5 8.323 1022 8C, and l3 5 27.533 1024 8C dbar21 are the
empirical constants used to express the seawater freezing point
as a function of salinity and depth (Hewitt 2020). The near-wall
model computes qT and qS at each time step and in each grid
cell, which results in spatially and temporally varying melt rates
at the ice base. Full details on the derivation of the near-wall
algorithm can be found in appendix B of Vreugdenhil et al.
(2022).

It is also worth mentioning here that most regional and
circum-Antarctic ocean models that incorporate ice shelves
apply the same diffusive melt equations as implemented in
the near-wall model. However, these larger-scale models gen-
erally parameterize the turbulent fluxes of heat and salt via
prescribed (and constant) heat and salt transfer coefficients
GT and GS:

qT 5 GTu∗(T 2 T0), (9)

qS 5 GS u∗(S 2 S0), (10)

where T and S correspond to far-field conditions. In practice,
these values are sampled either in the first grid cell beneath
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the ice or averaged over a set distance away from the ice base
(e.g., Losch 2008), which may or may not correspond to far-
field conditions depending on model resolution. The friction
velocity u∗ gives a measure of the strength of the interfacial
shear stress. In ocean models, the friction velocity is com-
monly modeled as a function of the horizontal velocity magni-
tude just outside the boundary layer U and a constant drag
coefficient Cd as u∗ 5

����
Cd

√
U. This quadratic drag law friction

velocity parameterization neglects boundary layer stratifica-
tion effects which have been shown to impact basal melt rates
(Vreugdenhil and Taylor 2019). In contrast, the near-wall
model implemented here estimates momentum flux from the
law of the wall following a linear stability function of stabiliz-
ing buoyancy forcing, meaning that the effect of boundary
layer stratification on basal melt rates is accounted for. Fur-
thermore, given that the values of Cd, GT, and GS are poorly
constrained beneath Antarctic ice shelves, the main advan-
tage of estimating the shear stress and scalar fluxes at the ice–
ocean interface using the near-wall algorithm is that it does
not rely on having to make assumptions about the most ap-
propriate values of Cd, GT, and GS.

3. Results

a. Mean boundary current structure

The temporal evolution of the simulated mean boundary cur-
rent structure is illustrated in Fig. 2. The first three panels pre-
sent time-evolving ice base-normal profiles of density deficit Dr,
upslope velocity u, and across-slope velocity y , sampled at dif-
ferent inertial periods tin throughout the 7% slope simulation.
The profiles have been averaged in space in the slope-parallel
directions (this average is referred to as “ice plane-average”
and indicated by angle brackets throughout the rest of the pa-
per) and averaged in time (denoted by an overbar) over two in-
ertial periods. The density deficit profiles (Fig. 2a) highlight that
the melt-induced release of freshwater at the ice base acts to
cool and freshen the near-ice region of the boundary layer. As
the meltwater is mixed downward, the thickness of the buoyant
layer increases. As the simulation progresses, the stratification
at the top of the profile weakens, and the density structure

evolves from a nearly uniformly stratified boundary current to a
two-layer structure with a relatively well-mixed boundary layer
adjacent to the ice base, overlying a broad pycnocline.

In line with Jenkins (2021) and Patmore et al. (2023), we
find that the mean velocity structure under a sloped ice base
can be described by upslope flow in an Ekman layer adjacent
to the ice base, embedded within a thicker across-slope geo-
strophic current (Figs. 2b–d). The dashed lines in Fig. 2c cor-
respond to estimates of the ice plane-averaged geostrophic
velocity hygi, calculated by integrating the ice plane-averaged
thermal wind balance with respect to z. In the tilted coordi-
nate frame, this gives the following expression for the ice
plane-averaged geostrophic velocity as a function of ice
plane-averaged density deficit and the sine of the slope angle:

hygi 52
ghDri
rr

sina
| f | : (11)

Note that hDri, and hence hygi, vary as a function of z. The
pink markers in Fig. 2 indicate the depth above which the sim-
ulated across-slope velocity deviates from the estimated geo-
strophic velocity (with the deviation diagnosed based on
hyi/hygi . 1:002). In what follows, we refer to this depth as
the top of the thermal wind layer (TWL) and we use the terms
pycnocline and thermal wind layer interchangeably. Figure 2d
further emphasizes the geostrophic nature of the pycnocline
and the Ekman layer set up by the ageostrophic component
of the flow above the top of the TWL. Although not shown
here, the base of the ageostrophic layer (i.e., the top of the
TWL) is relatively well approximated by the boundary layer
thickness in an unstratified Ekman layer dEK ’ 0.4hdfi (Pope
2000), where df is the Ekman scale defined as u∗/| f |.

Varying the slope has two main effects. First, for a given
amount of meltwater accumulated in the water column, the
buoyancy force driving the current increases with slope due to
the sina factor in the buoyancy term of the momentum equa-
tion [second term on the right-hand side of Eq. (1)]. Second,
at any particular time in the simulation, the amount of accu-
mulated meltwater (and hence the thickness of the boundary
current) increases with slope due to the positive feedback be-
tween buoyancy and melt rate (caused by an increase in

FIG. 2. Ice plane-averaged profiles of (a) density deficit, (b) upslope velocity, and (c) across-slope velocity generated by the 7% slope
simulation. The profiles are averaged over two inertial periods tin centered at 5, 10, 15, 20, 25, and 30 inertial periods (color coded). The
dashed lines in (c) correspond to the estimated ice plane-averaged geostrophic velocity, calculated based on Eq. (11). (d) The difference
between hyi [solid lines in (c)] and hygi [dashed lines in (c)]. The pink markers indicate the top of the TWL.
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buoyancy-driven flow, which increases turbulence and hence
enhances melting). This more rapid evolution of the boundary
current for steeper slopes is illustrated in Fig. 3a, where the
base of the boundary current h is defined as the distance from
the ice base where hyi , 0.013 max(hyi). It clarifies the anal-
ysis if we single out the first effect, so following Patmore et al.
(2023), we choose to compare simulations with different
slopes at the same accumulated melt (which is equivalent to
depth-integrated buoyancy) rather than at the same time. This
removes the second effect.

The deepening of the ISOBC with time shown in Fig. 3 is
associated with a thickening of both the Ekman layer and the

TWL (see portions above and beneath the pink markers in
Fig. 2) due to turbulent mixing of momentum through the
TWL. However, the turbulent momentum flux (Reynolds
stress) is small compared to the Coriolis and pressure gradient
terms in the upslope x momentum equation, and hence, ther-
mal wind balance remains a very good approximation. Note
that the turbulent momentum flux is a leading-order term in
the across-slope ymomentum equation (not shown).

Figure 4 shows density and velocity profiles for 1-m accu-
mulated melt in the top row and 3-m accumulated melt in the
bottom row. The mean boundary current structure described
earlier for the 7% slope simulation (Fig. 2) is a generic

FIG. 3. Evolution of the boundary current depth for the differently sloped simulations (color coded), (a) as a func-
tion of time and (b) as a function of accumulated melt. The red and yellow markers indicate the point at which an ac-
cumulated melt of 1 and 3 m has been reached, respectively. The black markers indicate when the stability parameter
hmi is equal to 1.

FIG. 4. Ice plane-averaged profiles of (a),(b) density deficit, (c),(d) upslope velocity, (e),(f) across-slope velocity averaged over two iner-
tial periods at an accumulated melt of (top) 1 m and (bottom) 3 m. The dashed lines in (e) and (f) correspond to the estimated ice plane-
averaged geostrophic velocity, calculated based on Eq. (11). (g),(h) The difference between hyi [solid lines in (e) and (f)] and hygi [dashed
lines in (e) and (f)]. Pink markers indicate the top of the TWL, and black markers in (e)–(h) indicate the depth of the maximum ice plane-
averaged across-slope velocity. Note the horizontal axis limits vary between (c) and (d) and (e) and (f).
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feature. Comparing the density deficit profiles between the dif-
ferently sloped simulations (Figs. 4a,b) shows that for the
same amount of buoyancy input, increasing the ice slope
causes the boundary current depth to increase and the density
deficit at the ice base to decrease. This can be explained by a
more vigorous turbulent transport from the far field toward
the ice for steeper slopes. Furthermore, as expected based on
the slope dependence of the buoyancy force term in the mo-
mentum equations, for the same input of buoyancy from melt-
ing, the flow is faster under a steeper ice shelf basal slope
(Figs. 4c–f).

For all the simulated slope values, the upslope velocity
peaks within a few meters of the ice base. In comparison, the
maximum across-slope velocity occurs further from the ice
base. Although the depth of maximum across-slope velocity
increases with accumulated melt, it is independent of slope
when evaluated at the same value of accumulated melt (see
black markers in Figs. 4e,f).

For a given total input of buoyancy, the near-surface strati-
fication increases with slope (Figs. 4a,b). This can be ex-
plained using the stability parameter hmi, defined as the ratio
between the depth scale of the Ekman layer hdfi and the Obu-
khov length scale hLObi52hu∗i3/(kvonhB0i), with kvon as von
Kármán’s constant and B0 as the interfacial buoyancy flux
(Rosevear et al. 2022). The Obukhov length scale describes
the relative strength of shear and stratification produced by
melting at the boundary. When the melt-induced buoyancy
flux is strong compared to shear production (i.e., when the
boundary layer is strongly affected by stabilizing buoyancy),
hLObi ,, hdfi; hence, hmi .. 1. As the simulation progresses,
hmi decreases (not shown). When hmi approaches unity, rota-
tion starts to limit the thickness of the boundary layer, leading
to the formation of a more clearly defined mixed layer. For a
given amount of accumulated melt, hmi increases with slope
(see Fig. 3b), explaining why steeper slopes feature a more
stratified boundary layer in the profiles in Fig. 4.

It is also interesting to note that in the TWL, ice plane-normal
gradients in across-slope velocity are nearly independent of
slope (Figs. 4e,f), and ice plane-normal gradients in both the
density and the across-slope velocity appear to be steady in
time (Figs. 2a,c). These observations are examined in more de-
tail in the next section.

b. Coupling between stratification, shear, and mixing

Melting beneath a sloped ice base generates a buoyancy-
forced sheared flow parallel to the ice as well as a buoyancy
gradient perpendicular to the ice. While the former drives tur-
bulence, the latter tends to suppress it. The relative strength
of the shear and stratification can be quantified using the gra-
dient Richardson number. Here, we calculate the ice plane-
averaged gradient Richardson number in the tilted reference
frame as

hRigi 5
2g/rr­hDri/­z

(­hui/­z)2 1 (­hyi/­z)2 5
hN2i
hSi2 : (12)

The buoyancy frequency squared hN2i 5 ­hbi/­z, with buoy-
ancy defined as b 5 2gDr/rr, gives a measure of the strength

of stratification normal to the ice base, and hSi denotes the
mean shear of the ice plane-parallel flow. Note that for the
range of slopes considered in this study, the difference be-
tween hRigi in the tilted and geophysical (i.e., nontilted) coor-
dinate frames is negligible (0.5% at most). As described in the
previous section, our simulations all feature a pycnocline
within which the time-averaged flow is approximately in ther-
mal wind balance, implying a coupling between mean shear
and stratification via thermal wind balance. Assuming that in
the pycnocline, the shear of the mean ice plane-parallel flow is
dominated by its across-slope component (i.e., hSi ’ |­hyi/­z|),
the frictionless thermal wind balance equation in the tilted co-
ordinate frame can then be expressed as

hN2i 5 |hSi‖f |(sina)21: (13)

If hSi can be approximated by a slope-independent value, as ob-
served in Figs. 4e and 4f, then this explains why the density gra-
dient required for maintaining thermal wind balance decreases
approximately linearly with slope, as observed in Figs. 4a and 4b.
Furthermore, combining Eqs. (12) and (13) yields an ex-
pression for the gradient Richardson number in the thermal
wind layer:

hRigi 5
| f |
hSi (sina)

21: (14)

If hSi is assumed to be slope independent, this suggests that
the ISOBC beneath a steeper ice base features a lower hRigi,
hence a more turbulent pycnocline.

The decrease in the mean gradient Richardson number
with slope in the thermal wind layer, as expressed by Eq. (14),
is illustrated in the top row of Fig. 5. Here, the panels show
scatterplots of instantaneous hN2i versus hSi2 sampled in the
thermal wind layer over four inertial periods for four differently
sloped simulations. In each panel, the solid gray line corre-
sponds to the hN2i 2 hSi2 combinations required for thermal
wind balance from Eq. (13) and the dashed black lines indicate
where hRigi 5 1/4. Any data points above the dashed line are
then characterized by hRigi . 1/4 and vice versa. As expected,
based on Eq. (14), under thermal wind balance, hRigi is higher
for shallower slopes, as indicated by the position of the cluster
of darker markers relative to the dashed black lines. Assuming
that stratified shear-driven turbulence requires hRigi ’ 1/4
(Rohr et al. 1988; Holt et al. 1992) leads us to expect that turbu-
lence cannot be maintained in a steady state for the shallower
slope angles.

The top row in Fig. 5 also highlights that the pycnocline is
not in thermal wind balance at all times. Moreover, and as
noted in Figs. 4e and 4f, the simulations with slopes steeper
than 4% feature a well-defined cluster of data points centered
around a similar ice plane-averaged shear value (as indicated
by the cyan marker) with a spread of shear values not exceed-
ing hSi2 ’ 2 s22 in all of these cases. In comparison, the 3%
(not shown) and 4% simulations feature a larger spread of
values, in terms of both hN2i and hSi2.

The clustering around a nearly slope-independent mean
shear value (at least for steeper slopes), as well as the decrease
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in mean stratification and gradient Richardson number with
slope, is further emphasized in Fig. 6, presenting statistics of
hRigi, hSi, and hNi, each sampled within the TWL for the entire
duration of each of the differently sloped simulations. The hRigi
probability distribution curves each feature a distinct peak, indi-
cating that for a given ice base slope, the flow through the pyc-
nocline can be characterized by a most probable hRigi. The
peak probability hRigi decreases with slope, with a percentage
change of around 80% between the 10% slope and 4% slope
simulations (see colored markers in Fig. 6d). The results there-
fore differ from the previous characterization of the TWL as
having a state of marginal instability associated with a single
critical gradient Richardson number that is independent of forc-
ing (e.g., Jenkins 2021).

Compared to hRigi, the ice plane averaged flux Richardson
number, defined as the ratio of the buoyancy flux hBi to the
turbulent kinetic energy shear production rate hPi:

hRif i 5
hBi
hPi 5

2hw′b′i
(2hu′w′idhui/dz) 2 (hy ′w′idhyi/dz) , (15)

with primes denoting fluctuations calculated here with re-
spect to ice plane-averaged values, features a much smaller
spread in values across the eight differently sloped simula-
tions (|hRifi|5 0.256 0.030; see Fig. 7a). The weak slope depen-
dency of hRifi is highlighted in the bottom row of Fig. 5 where
the dashed black lines correspond to |hRifi| 5 1/4. This shows a
qualitative difference between hRigi and hRifi, demonstrating a

new result from the LES that the relationship between bulk
property gradients and turbulent fluxes changes as a function of
slope. The small remaining reduction in the absolute value of
hRifi with slope suggests that a smaller fraction of the turbulent
kinetic energy (TKE) shear production is used to mix the density
profile as the slope angle increases. This is consistent with a de-
crease in pycnocline stratification with increasing slope.

An alternative way of viewing these results is that the abso-
lute value of the turbulent Prandtl number hPrti5 n t/kt, which
can be shown to be equal to hRigi/hRifi (see Kundu et al.
2016), decreases with slope. Our simulations feature peak
probability |hPrti| values ranging from 0.90 (for the 3% slope)
to 0.70 (for the 10% slope), which are relatively close to a
|hPrti| ’ 1 often found in stratified turbulent flows (Caulfield
2020). The slight decrease in simulated |hPrti| with slope is
consistent with the positive correlation between |hPrti| and
hRigi that emerges from commonly used turbulence closure
models that parameterize effective viscosity and diffusivity as
a function of the gradient Richardson number (e.g., Pacanowski
and Philander 1981). However, it is interesting to note that the
hPrti values calculated from the model of Pacanowski and
Philander (1981) (using the simulated peak probability hRigi)
are larger than 1 and at least twice as large as the simulated
|hPrti| values (see Fig. 7c).

Comparing the vertical spread of the colored markers in
Figs. 6e and 6f shows that the mean shear displays a weaker
sensitivity to slope angle variations than the buoyancy fre-
quency (’40% vs’80% increase between the 10% slope and

FIG. 5. (top) Ice plane-averaged buoyancy frequency squared and shear squared and (bottom) buoyancy flux and shear production in
the TWL sampled over four inertial periods centered at an accumulated melt of 1 m. The color map indicates the frequency of events
(light 5 low frequency; dark 5 high frequency). In the top row, the solid gray lines correspond to the thermal wind balance relationship
calculated as per Eq. (13) using the relevant slope angle, and the dashed black lines correspond to hRigi 5 1/4. The cyan markers indicate
where hSi5 0.0076 s21. In the bottom row, the dashed black lines correspond to |hRifi|5 1/4.
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4% slope simulations), as discussed above. This difference in
slope sensitivity can be explained based on the hRifi values
from the LES combined with an empirical model for Prt.
Venayagamoorthy and Stretch (2010) give an empirical rela-
tionship between Prt and Rig based on laboratory experiments
and direct numerical simulations [their Eq. (3.6)]. Using their
relationship with the peak probability values of hRifi from the
LES, the definition hPrti 5 hRigi/hRifi, and an asymptotic
value of the flux Richardson number of 0.32 [Rf‘ in Eq. (3.6)

of Venayagamoorthy and Stretch (2010)], gives a prediction
for hRigi. Using these estimated gradient Richardson number
values, hSi and hNi can then be inferred from thermal wind bal-
ance [Eqs. (13) and (14)]. The inferred percentage changes in
hSi and hNi agree very well with the simulated relative ranges
(cf. circle markers and star markers in Fig. 6d). This demon-
strates that the weak slope sensitivity of the mean shear found
empirically from the LES may be explained by combining the
weakly varying hRifi with the known increase in Prt with Rig

FIG. 7. Statistical distribution of ice plane-averaged (a) |hRifi| and (b) |hPrti| sampled at each z-direction grid point within the TWL over
the entire duration of the differently sloped simulations and (c) |hPrti| as a function of slope angle. The colored markers in (c) indicate the
most probable values inferred from the probability curves in (b), with the colors corresponding to the slope values as labeled in (a). The
black star markers correspond to estimated values obtained from the turbulence closure model of Pacanowski and Philander (1981) com-
bined with the peak probability hRigi values from the LES.

FIG. 6. Statistical distribution of ice plane-averaged (a) hRigi, (b) hSi, and (c) hNi sampled at each z-direction grid point within the TWL
over the entire duration of the differently sloped simulations. (d)–(f) The colored markers indicate the most probable values inferred from
the probability curves in (a)–(c), with the colors corresponding to the slope values as labeled in (a). The black star markers correspond to
estimated values (expressed as percentage change compared to the value of the sina 5 0.1, i.e., slope 5 10%, case), with estimates ob-
tained based on the Prt formulation from Venayagamoorthy and Stretch (2010) combined with thermal wind balance conditions (more de-
tails given in the text). Note that the absolute values on the left y axis only apply to the simulated values (gray markers), while the percent-
age change values on the right y axis apply to both quantities.
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that is found in stratified turbulence (Venayagamoorthy and
Stretch 2010).

The results above show that the dependence of the shear
on slope angle is considerably weaker than for stratification.
This motivates us to approximate the shear in the TWL with a
slope-independent value, which we refer to as the critical
shear hSci. For our model configuration, hSci is found to be
approximately equal to 0.0076 s21, as indicated by the bold
dashed line in Fig. 6b. When combined with thermal wind bal-
ance, a slope-independent critical shear implies that the gradi-
ent Richardson number must increase with decreasing slope
angle. For sufficiently large values of the gradient Richardson
number, we might expect that the mean shear and stratifica-
tion cannot support a sustained turbulent flow and that the
flow becomes intermittently turbulent. This is explored in the
next section.

c. Turbulence intermittency

The intensity of turbulence can be quantified by the TKE:

e 5 0:5[(u′)2 1 (y ′)2 1 (w′)2] : (16)

The time history of ice plane-averaged TKE, along with the
evolution of hRigi and hSi2, is shown in Figs. 8a–c for the 7%
slope case.

Turbulence is strongest near the ice base in the Ekman
layer. Within the thermal wind layer (beneath the pink line),
hei decreases with distance from the wall and it goes to zero at
the base of the boundary current. Near the base of the bound-
ary current, there is a region in which mixing appears to be
intermittent. As highlighted in Fig. 8d, this deeper layer fea-
tures periods with no mixing interrupted by bursts of turbu-
lence occurring on an inertial time scale. The hRigi and hSi2
Hovmöller diagrams in Figs. 8b and 8c reveal the same dis-
tinction between a uniform and an intermittent mixing region
within the thermal wind layer. As expected, based on the vari-
ation of hei with depth observed in Fig. 8a, hRigi increases
with distance from the ice base, which is driven, at least partly,
by a decrease in mean shear with depth (Fig. 8c). The other
simulations exhibit similar oscillations in the thermal wind
layer (not shown here), with the thickness of the intermittent
region taking up a larger proportion of the pycnocline as the
slope gets shallower. This is consistent with the scatterplots in
the top row of Fig. 5, which highlighted a larger deviation
from the mean thermal wind balance state for lower slope an-
gles. Although not shown here, it is worth pointing out that
the melt rate curves do not feature inertial oscillations.

The intermittency of turbulence in the TWL can be ex-
plained using the buoyancy length scale Lb 5 w′/N, which is
an estimate of the vertical scale at which the vertical kinetic

FIG. 8. Temporal evolution of (top) ice plane-averaged TKE, (middle) gradient Richardson number, and (bottom) shear squared for
the 7% sloped simulation (a)–(c) over the entire simulation and (d)–(f) over three inertial periods at a single depth indicated by the
cyan dotted lines in the bottom right corner of (a)–(c). The pink lines in (a)–(c) correspond to the top of the TWL. The color maps in
(a)–(c) have been deliberately capped to make the oscillatory features near the base of the boundary current visible. In (b), hRigi is set to
zero beyond the base of the boundary current h, to make the boundary current more clearly visible. The dashed line in (e) corresponds to
the peak probability value of hRigi, as diagnosed from Fig. 6a for the 7% simulation. In (f), the solid lines correspond to the simulated
hN2i (blue) and hSi2 (black) and the dotted black curve corresponds to hSi2 predicted from thermal wind balance [Eq. (13)] based on the
simulated hN2i.
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energy is equal to the potential energy associated with dis-
placed parcels (Smyth and Moum 2000). As expected, based
on the reduction in TKE with distance from the ice base and
the approximately constant stratification through the pycno-
cline, the buoyancy scale decreases with distance from the ice
base and goes to zero at the base of the TWL. When Lb is suf-
ficiently small, the turbulence will be suppressed by viscosity.
A similar argument can be made using the buoyancy Reynolds
number (also known as the turbulent activity parameter).
When the downward momentum flux through a turbulent re-
gion of the TWL encounters a nonturbulent region, the mo-
mentum flux convergence will lead to a local acceleration of
the flow and an increase in the shear. This will decrease Rig
until a turbulent event is triggered. If the transition to turbu-
lence is sufficiently fast, it will excite inertial oscillations, which
appear to couple with the intermittency.

Figures 8d–f show ice plane-averaged e, Rig, N
2, and S2

over two inertial periods sampled at z 5 2250 m (chosen to
be within the region of intermittent turbulence; see cyan dot-
ted line in the bottom right corner of Figs. 8a–c). Comparing
Figs. 8d and 8e highlights that turbulence intensity and the
gradient Richardson number are inversely related; when hei is
highest, hRigi reaches its minimum and vice versa. The flow
oscillates between laminar flow when the ice plane-averaged
TKE is near zero and a state of maximum turbulence intensity
characterized by the same hRigi as in the turbulent region of
the pycnocline. Moreover, the curves in Figs. 8d–f highlight
the oscillation of the flow about a state of thermal wind bal-
ance, as described in the previous section. During laminar pe-
riods, buoyancy and momentum accumulate, which leads to
an increase in hN2i and hSi. The resulting mixing weakens the
stratification and shear, and since hSi2 decreases faster than
hN2i, hRigi increases until the flow becomes laminar again.

4. Melt rate relationship to slope

Ice sheet models rely on parameterizations to represent the
effect of ice shelf–ocean interactions on basal melting. The de-
pendence of melt on ice base slope is not accurately captured
in presently used basal melt parameterizations (Burgard et al.
2022). In this section, we propose a formulation for the tran-
sient melt rate as a function of slope angle, supported by the
results of the LES. While the assumptions made to derive this
scaling will need to be validated in other settings, the deriva-
tion described in this section provides a framework that
could be adjusted for incorporating slope effects in basal
melt parameterizations.

Substituting the parameterized heat flux expression [Eq. (9)]
into the heat balance at the ice–ocean interface [Eq. (6)] gives
the following expression for the domain-averaged melt rate ap-
plicable to the shear-controlled ISOBC regime modeled here:

hmi 5 cwrr
riLi

GThu∗i(hT1i 2 hT0i), (17)

with hu∗i as the ice plane-averaged friction velocity and
(hT1i 2 hT0i) as the temperature difference between the first
grid point beneath the ice base and the ice base. In what follows,

we refer to this temperature difference as “thermal forcing” fol-
lowing the terminology employed in Holland and Jenkins (1999).
Also note that for the remainder of this section, the subscripts 0
and 1 are used to indicate the ice base and the first grid point be-
neath the ice base, respectively.

As demonstrated by the differently colored curves in Figs. 9a
and 9b, the simulated friction velocity and thermal forcing in-
crease with slope angle, irrespective of the sampling time. As-
suming that the heat transfer coefficient GT is independent of
slope and constant throughout the simulation (as justified in
appendix A), the increase in the friction velocity and thermal
forcing with slope translates into an increase in simulated
melt rate with slope (Fig. 9c). To quantify this slope-induced melt
rate increase, we now derive expressions for hu∗i and
(hT1i 2 hT0i), which are then substituted into Eq. (17) to
yield an expression for the transient ice plane-averaged melt
rate as a function of basal slope angle.

a. Friction velocity

Ocean models typically estimate stress at the ice–ocean in-
terface from the standard drag law, which relates the friction
velocity to the flow speed just outside the boundary layer,
where frictional effects become negligible (Holland and
Jenkins 1999). This implementation of the drag law implies
that the pressure gradient driving the flow is constant with
depth throughout the boundary layer. While this assumption
holds for a flat ice base, it is not always valid in the case of a
stratified boundary layer on a slope. In the latter configura-
tion, the geostrophic velocity decreases approximately line-
arly with distance from the ice (see dashed lines in Fig. 4e) so
using the velocity just outside the boundary layer would un-
derestimate the friction velocity. Instead, in a rotating strati-
fied flow near a sloping boundary, the magnitude of the stress
at the boundary scales with the geostrophic velocity at the
boundary (Jenkins 2016, 2021). Assuming hyg1i ’ hyg0i, the
friction velocity can then be approximated by

hu∗i 5
����
Cg

d

√
hyg1i, (18)

with Cg
d as a constant, which we call the geostrophic drag

coefficient following Jenkins (2021). It is worth clarifying here
that in our LES simulations, rather than being calculated
from Eq. (18), the friction velocity is estimated from the near-
wall model (as described in section 2c). However, Eq. (18)
provides a simple shear stress formula that could be imple-
mented in a melt rate parameterization. Computing the geo-
strophic velocity at the uppermost grid point from Eq. (11)
and substituting into Eq. (18) give the following general ex-
pression for the ice plane-averaged friction velocity as a func-
tion of the ice plane-averaged buoyancy at the top grid point
hb1i5 2ghDr1i/rr:

hu∗i 5
����
Cg

d

√
| f | hb1isina: (19)

In our simulations, hb1i evolves in time (Fig. 2a). In principle,
any functional form could be used to approximate the shape
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of the buoyancy profile and relate the interfacial buoyancy
to the depth-integrated buoyancy. Assuming that the buoy-
ancy decreases linearly with depth (as seen for steep slopes
in Figs. 4a,b), the ice plane-averaged buoyancy can be esti-
mated from hbi ’ hN2i(z 1 h), leading to the following ap-
proximation for hb1i:

hb1i 5 hN2i(z1 1 h) ’ hN2ih: (20)

The boundary current depth h depends on the total melt-induced
buoyancy accumulated in the water column since the start of the
simulation. Using the linear buoyancy profile from Eq. (20) and
assuming that hN2i is steady in time (Fig. 2a), the integrated
buoyancy in the ISOBC is

�0

2h
hbidz 5 hN2i h

2

2
: (21)

Rearranging for h, combining Eqs. (12) and (13) to express
hN2i as a function of hRigi (which implies thermal wind bal-
ance) and substituting into Eq. (20) gives the following tran-
sient expression for the buoyancy at the top grid point:

hb1i 5
|f |

(sina)
2

hRigi
�0

2h
hbidz

( )1/2
: (22)

Substituting this expression into Eq. (19) gives the following
expression for the transient ice plane-averaged friction veloc-
ity as a function of the gradient Richardson number:

hu∗i 5
�������
2Cg

d

hRigi

√ �0

2h
hbidz

( )1/2
: (23)

According to Eq. (23), if we assume that the flow in the ISOBC
has a slope-independent hRigi, then for a given amount of accu-
mulated melt (i.e., a fixed depth-integrated buoyancy), the ice
plane-averaged friction velocity is independent of slope angle
(illustrated by the horizontal dotted green line in Fig. 9g). How-
ever, as described earlier, our simulations suggest instead that the
mean shear can be approximated by a critical slope-independent
value hSci, so that Eq. (14) implies an inverse relationship be-
tween hRigi and sina. Substituting Eq. (14) into Eq. (23), we ob-
tain the following slope-dependent estimate for hu∗i:

hu∗i 5
�����������
2Cg

dhSci
| f |

√
sina 3

�0

2h
hbidz

( )1/2
, (24)

suggesting that, for a given amount of accumulated melt,
hu∗i ~ (sina)1/2, which aligns well with the simulated trend (cf.
dashed black line and red markers in Fig. 9g).

FIG. 9. Friction velocity, thermal forcing across the top grid cell, and melt rate sensitivity to ice base slope. The first two columns show
the evolution of the ice plane-averaged properties for the differently sloped simulations as a function of (a)–(c) simulated inertial periods
and (d)–(f) integrated buoyancy force. The different line colors correspond to the differently sloped simulations, with the same color code
as in previous figures. The red markers indicate the point at which an accumulated melt of 1 m has been reached, the black markers indi-
cate when the stability parameter hmi 5 1. (g)–(i) The simulated ice plane-averaged properties as a function of ice base slope angle, sam-
pled at 1-m accumulated melt (red markers) compared with the estimated quantities based on a slope-independent gradient Richardson
number of hRigi 5 1/4 (dotted green lines) and based on an empirically derived slope-independent critical shear value (dashed black
lines).
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Figure 10 shows the simulated hu∗i for all slopes (colored
curves; same as plotted in Fig. 9d), as well as the friction ve-
locity estimates from Eq. (23) in the left-hand panel (dotted
green lines) and from Eq. (24) in the right-hand panel (dashed
black line). As highlighted in Fig. 10b, Eq. (24) works remark-
ably well for all slopes, justifying the assumption made,
namely, linear and steady stratification, thermal wind balance,
and a slope-independent shear. In contrast to the curves esti-
mated based on a slope-independent hRigi, the estimates
based on a slope-independent hSi collapse onto a single curve.
The collapse of the simulations can be interpreted by noting that
the term inside the brackets of Eq. (24), sina 3

	0
2h

hbidz, corre-
sponds to the buoyancy force generated by the total meltwa-
ter accumulated in the water column since the start of the
simulation. In what follows, we refer to this term as
“integrated buoyancy forcing.” As shown in Eq. (1), when
the basal slope changes, the fundamental change that occurs
in the system is a change in the buoyancy force per unit den-
sity deficit. It is therefore not surprising that the integrated
buoyancy forcing is the predictor in the hu∗i relationship
and that scaling the hu∗i curves by this term collapses the
curves.

Empirically, we find that any small deviations from the
collapsed friction velocity (see Fig. 9d) occur when the ice
plane-averaged stability parameter m approaches unity (as
highlighted by the black markers). As introduced in section 3a,
the evolution from hmi .. 1 at the start of the simulations
toward hmi , 1 after a certain amount of meltwater has
accumulated indicates the transition from a stratified boundary
layer adjacent to the ice base to a relatively homogeneous
Ekman layer in which turbulence is not as strongly affected
by the melt-induced buoyancy flux. When hmi .. 1, we can
assume that the ice plane-averaged ice-normal density gra-
dient is approximately constant with depth and hence that
the buoyancy profile can be approximated by a linear func-
tion of depth.

b. Thermal forcing

Since we have expressed friction velocity as a function of
integrated buoyancy, we now seek an analogous expression
for thermal forcing. Buoyancy in the ISOBC is dominated by
salinity, so this requires a linkage between thermal forcing
and salinity anomalies. We therefore introduce the concept of
thermal driving, which can be used to relate temperature,
salinity, and density anomalies in the ISOBC (e.g., Holland
and Jenkins 1999; Jenkins 2016). Thermal driving is defined as
the temperature of a water mass relative to its salinity-dependent
freezing point at the pressure experienced at the ice base. This
enables us to combine the freezing point relation [Eq. (8)], the
equation of state [Eq. (5)], and assumptions about the relative
mixing of heat and salt to derive an expression for thermal forc-
ing as a function of buoyancy.

We first consider processes close to the ice, in order to
relate the thermal driving at the top grid point hT∗1i to ther-
mal forcing across the top grid cell hT1i 2 hT0i. Following
Holland and Jenkins (1999) and Eq. (8), the difference in ther-
mal driving between the first grid point and the ice base can be
written as

hT∗1i 2 hT∗0i 5 hT1i 2 hT0i 2 l1(hS1i 2 hS0i): (25)

Dividing Eq. (9) by Eq. (10) and substituting for qT and qS
using Eqs. (6) and (7) give

hT1i 2 hT0i
hS1i 2 hS0i

5
Li

cwhS0i
GS

GT

: (26)

Assuming that molecular diffusion dominates the ratio be-
tween salt and heat transfer, the transfer coefficient ratio in
Eq. (26) can be approximated by GS/GT ’ (Pr/Sc)2/3 (Holland
and Jenkins 1999). Combining the resulting expression with
Eq. (25) and setting hT∗0i5 0 (which is true by definition in
our model given that the ice shelf basal temperature equals
the local freezing point; see section 2c) yield

FIG. 10. Simulated (solid colored curves) and estimated ice plane-averaged friction velocity, with the estimates cal-
culated from (a) Eq. (23) with a slope-independent hRigi 5 1/4 (dotted green curves) and from (b) Eq. (24) with a
slope-independent hSci 5 0.0076 s21 (dashed black curves, collapsed). For the simulated curves, the different line col-
ors correspond to the differently sloped simulations, with the same color code as in previous figures. The value of����
Cg

d

√
in Eqs. (23) and (24) was selected to optimize the match between the simulated and estimated values in (b).
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(hT1i 2 hT0i) 5
hT∗1i

1 2 l1
Li

cwhS0i
Pr
Sc

( )(2/3)[ ]21⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭
: (27)

Next, we consider processes in the wider turbulent boundary
layer in order to link thermal driving and buoyancy in the top
grid point. Assuming a linear equation of state [Eq. (5)], uni-
form far-field properties, a turbulent Lewis number close to
unity, and negligible dilution, thermal driving and buoyancy
at the top grid point can be related via

hT∗1i 5 hT∗‘i 2
hb1i
g

Li

cwhS‘i
2 l1

( )

bS 2 bT

Li

cwhS‘i

( ) , (28)

with T∗‘ denoting far-field thermal driving (see appendix B
for the derivation of this expression). Substituting Eq. (28)
into Eq. (27), we obtain the following estimate of thermal
forcing as a function of hb1i:

(hT1i 2 hT0i) 5 hT∗‘i 2
hb1i
g

Li
cwhS‘i 2 l1

( )
bS 2 bT

Li
cwhS‘i

( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 1 2 l1
Li

cwhS‘i
Pr
Sc

( )(2/3)[ ]21⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭
21

: (29)

Substituting the previously derived interface buoyancy approxi-
mation [Eq. (22)] into Eq. (29), it follows that the transient ther-
mal forcing is given by

(hT1i 2 hT0i) 52C1
| f |

g sina

�������
2

hRigi

√ �0

2h
hbidz

( )1/2
1 C2,

(30)

with

C1 5

Li

cwhS‘i
2 l1

( )

bS 2 bT

Li

cwhS‘i

( ) 1 2 l1
Li

cwhS‘i
Pr
Sc

( )(2/3)[ ]21⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭
21

, and

(31)

C2 5 hT∗‘i 1 2 l1
Li

cwhS‘i
Pr
Sc

( )(2/3)[ ]21⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭
21

: (32)

c. Melt rate

Having derived estimates for the friction velocity Eq. (23)
and thermal forcing Eq. (30), we may now substitute these
into Eq. (17) to obtain an expression for the transient ice
plane-averaged melt rate. This yields

hmi 5 cwrr
riLi

GT 2
2| f |C1

����
Cg

d

√
g sinahRigi

�0

2h
hbidz

( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 C2

�������
2Cg

d

hRigi

√ �0

2h
hbidz

( )1/2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (33)

which does not depend on any assumed relationship between
hRigi and ice base slope angle. Assuming a slope-independent
thermal wind shear hSci, implying that hRigi decreases linearly
with slope as per Eq. (14), we obtain the following expression
for the melt rate:

hmi 5 cwrr
riLi

GT 2
2hSciC1

����
Cg

d

√
g

�0

2h
hbidz

( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 C2

�����������
2Cg

dhSci
| f |

√
sina 3

�0

2h
hbidz

( )1/2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (34)

with the three empirically derived constants hSi5 0:0076s21,����
Cg

d

√
5 0:0220, and GT 5 0.0112. As indicated by the black

and green dashed lines in Fig. 9i, the estimate with the slope-
independent shear assumption reproduces the simulated re-
sults better than the estimate based on a constant gradient
Richardson number.

The key conclusions from this section are that the constant
stratification assumption seems to provide a good approxima-
tion of the mean ISOBC structure and that the relationship
between melt rate and slope is tied to the assumed slope de-
pendence of the gradient Richardson number. Assuming an
inverse relationship between hRigi and sina as inferred from
thermal wind balance with a slope-independent shear [Eq. (34)]
implies that melt rate scales with the square root of sina as per

hm(t)i 5 A(t) 3 (sina)1/2 1 B(t), (35)

with A(t) and B(t) representing the time-dependent, but
slope-independent, values. It is important to note that the
values of A(t) and B(t) are controlled by three empirically

derived parameters (hSci,
����
Cg

d

√
, GT). The sensitivity of these

values to varying far-field conditions and external forcing
has not been tested as part of this study, but would consti-
tute an interesting area of further research.

5. Summary and discussion

Improving our understanding of the physical processes gov-
erning vertical mixing and ocean-driven melting underneath
ice shelves is a necessary step toward reducing uncertainty of
Antarctic ice shelf melt rate predictions and hence sea level
rise projections. The central objective of the present study is
to examine the influence of ice base slope on the interplay be-
tween ice shelf–ocean boundary current (ISOBC) structure,
shear-driven turbulence, and melting. Given the scarcity of
observations required to investigate these interdependent
processes, the study is instead performed using turbulence-
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permitting large-eddy simulations. Our analysis considers
slopes ranging between 3% and 10%, which is representative
of ice base slopes typically found near the grounding line of
small ice shelves and in the presence of wide basal channels.
A number of simplifying approximations are made, including
a planar ice base, a small-angle approximation in the Coriolis
force, uniform far-field conditions, and the omission of exter-
nal sources of turbulence (the simulated ISOBC is forced
solely by melt-induced buoyancy), and the results should be
interpreted in this context.

In line with recent numerical modeling studies investigating
the ISOBC under a sloped ice base (Jenkins 2021; Patmore
et al. 2023), our simulations feature the development of an
Ekman boundary layer overlaying a broad pycnocline, within
which the mean flow is approximately in thermal wind bal-
ance. While the upslope momentum balance in the pycnocline
is dominated by the Coriolis and buoyancy terms, the base of
the ISOBC deepens with time due to the vertical transport of
momentum, heat, and salt associated with turbulence in the
TWL. Previous studies have proposed that the pycnocline has
a constant gradient Richardson number, but we show that the
mean flow in the pycnocline is instead characterized by a criti-
cal mean shear value that is only weakly dependent upon
slope. Combined with thermal wind balance conditions, the
assumption of a constant critical shear value hSci yields an in-
verse relationship between hRigi and sina. This scaling could
be applied to account for slope effects in turbulence closure
models that rely on a gradient Richardson number criterion
to diagnose the base of the boundary layer (e.g., Jenkins 2021;
Burchard et al. 2022). However, it is important to emphasize
that the value of hSci is derived empirically rather than analyt-
ically, so it may not hold outside the conditions tested here.
Investigating the emergence of a slope-independent critical
shear value for a wider range of slope angles and far-field
ocean conditions is an important avenue for future research.

Accounting for the slope dependence of hRigi as per Eq.
(14) and assuming a linear buoyancy profile (which we find to
be a valid assumption for hmi .. 1), we propose a formulation
for the transient melt rate in terms of total buoyancy input
and ice shelf basal slope angle. The resulting relationship be-
tween melt rate and (sina)1/2 agrees remarkably well with the
simulations, implying that while basal features with steeper lo-
cal slopes do enhance melt rates, this enhancement weakens
as the slope increases. Moreover, the derived square root rela-
tionship suggests that the linear scaling found by previous
studies (e.g., Jenkins et al. 2018; Jenkins 2021; Begeman et al.
2022) may not always be applicable, particularly in the steep-
est parts of ice shelves, which dominate their overall melting.
However, the melt rate scaling derived here may be specific
to our idealized model setup, and it is worth reiterating that
we have not considered the shallow slope angles appropriate
to the overall slope of an ice shelf (up to’2%). Further simu-
lations with an expanded range of ocean conditions and basal
slope angles, and with the inclusion of external sources of tur-
bulence such as tides, internal waves, and mesoscale eddies,
would be necessary to evaluate the validity of our conclusions
across the full Antarctic ice shelves parameter space. More-
over, our proposed melt rate estimate is only valid under the

assumption of a uniform boundary current stratification. A
natural extension to this study would be to evaluate the im-
pact that the formation of underice mixed layers as hmi de-
creases would have on the derived slope dependency.

As a result of periodicity in the ice base-parallel dimen-
sions, lateral heat advection processes are omitted from our
model, which prevents a steady state from being achieved in
our simulations. This represents a key limitation of our study,
as it means that our findings are quantitatively dependent on
the selected initial conditions (chosen here to be representa-
tive of ocean conditions under warm-cavity Antarctic ice
shelves). An important avenue of further research therefore
consists in evaluating the processes responsible for arresting
the transient evolution of the ice shelf–ocean boundary cur-
rent and characterizing the structure achieved in this steady
state.

Finally, while the analysis presented in this paper is ideal-
ized, it provides hypotheses that could be tested with in situ
data obtained from potential future targeted observational
campaigns. For example, current and density profiles through
the entire ISOBC combined with local ice base slope meas-
urements could be used to evaluate the emergence of thermal
wind balance conditions in the pycnocline. Ideally, these ob-
servations would be obtained in both quiescent and tidally
forced ice shelf cavities to test the sensitivity to background
currents. Furthermore, if basal melt rate data were collected
at the measurement sites, the melt rate estimate provided in
the present modeling study could be tested for realistic
conditions.
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APPENDIX A

Inferred Heat Transfer Coefficient

In our simulations, the fluxes at the ice–ocean interface are
computed using a near-wall model, which removes the need
to prescribe values for the transfer coefficients to calculate
melt rates at the top boundary. Using our simulation outputs,
we can calculate the effective value of GT to determine whether
prescribing a constant, slope-independent value in Eq. (17) is
appropriate. From Eq. (9), GT(z) is calculated as

GT(z) 5
qT

u* 3 [T(z) 2 T0]
, (A1)
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with qT and u∗ computed by the wall model. Plotting profiles
of ice plane-averaged GT for the differently sloped simulations
at 1- and 3-m accumulated melt (Figs. A1a,b) shows that GT

varies with distance from the ice base (i.e., it depends on the
depth at which T is sampled). The profiles also indicate that
when T is sampled above the depth of the peak in ice plane-
averaged across-slope velocity (as indicated by the black
markers), GT is independent of slope and appears to remain
constant in time. This latter point is emphasized in Fig. A1c,
where the solid lines show the temporal evolution of GT with
T sampled in the first grid point beneath the ice (z 5 2z1).
From our simulation outputs, we find that GT(2z1) ’ 0.0112,
as indicated by the black dashed lines in Fig. A1.

APPENDIX B

Relationship between Thermal Driving and Density
Deficit at the Top Grid Point

With a linear equation of state, uniform far-field proper-
ties, and equal mixing of heat and salt, the temperature, sa-
linity, and density anomalies caused by melting ice are all
linearly related (Jenkins 2016). In this appendix, we relate
the thermal driving to the density anomaly in the turbulent
ISOBC away from the interfacial boundary layer.

Buoyancy and temperature difference can be related using
Eq. (5). In our model setup, the reference temperature and
salinity are set to initial (far-field) conditions so we can write

hb1i 5 gbT(T1 2 T‘) 2 gbS(S1 2 S‘), (B1)

with the subscripts 1 and ‘ referring to the first grid point
beneath the ice and to the far field, respectively. Within the
ISOBC, the depth integral of the temperature and salinity
evolves as the time integral of the heat and salt fluxes at
the interface. Hence, if the Lewis number Le ’ 1, we have

hT1i 2 hT‘i
hS1i 2 hS‘i

5
qT
qS

: (B2)

Relating qT and qS to the heat consumption and freshwater
release of melting using Eqs. (6) and (7), respectively, we get

hT1i 2 hT‘i
hS1i 2 hS‘i

5
Li/cw
hS0i

, (B3)

which can be substituted into Eq. (B1) to give

hb1i 52(hS1i 2 hS‘i)g bS 2 bT

(Li/cw)
hS0i

[ ]
: (B4)

Similarly to Eq. (25), the difference in thermal driving be-
tween the far field and the first grid point is

(hT∗1i 2 hT∗‘i) 5 (hT1i 2 hT‘i) 2 l1(hS1i 2 hS‘i): (B5)

Combined with Eq. (B3), this yields

(hS1i 2 hS‘i) 5
(hT∗1i 2 hT∗‘i)
Li/cw
hS0i

2 l1

: (B6)

Substituting the salinity difference into Eq. (B4) gives

hb1i 52(hT∗1i 2 hT∗‘i)
g bS 2 bT

Li/cw
hS0i

( )
Li/cw
hS0i

2 l1

: (B7)

Expressing the interfacial salinity as the difference between far-
field salinity and melt-dependent dilution at the interface gives

hS0i 5 hS‘i 2 hDSi 5 hS‘i 1 2
hDSi
hS‘i

( )
: (B8)

Assuming that the dilution is negligible compared with far-
field salinity (i.e., hDSi/hS‘i ,, 1), hS0i can be substituted by
hS‘i in Eq. (B7). It follows that

hb1i 52(hT∗1i 2 hT∗‘i)
g bS 2 bT

Li/cw
hS‘i

( )
Li/cw
hS‘i

2 l1

, (B9)

FIG. A1. Inferred heat transfer coefficients calculated using Eq. (A1). (a),(b) Profiles averaged in time over two inertial periods at
1- and 3-m accumulated melt, respectively. Pink markers indicate the top of the TWL, and black markers show the depth of the maximum
ice plane-averaged across-slope velocity. (c) The temporal evolution of GT(2z1), i.e., with T sampled in the first grid cell beneath the ice
base (solid lines), and GT(2h), i.e., with T sampled at the base of the boundary current (dotted lines).

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 541560

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 08/08/24 11:31 AM UTC



which can be rearranged to give Eq. (28). Note that this
relationship is analogous to Eq. (8) in Jenkins (2016), but
adjusted to align with the boundary conditions in our LES
model setup (no heat conduction into the ice and no addi-
tion of meltwater).
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