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Abstract

National or regional grid-based hydrological models are usually run at relatively fine

spatial resolutions. But the meteorological data necessary to drive such models are

often coarser resolution, so some form of spatial downscaling is generally required. A

1 km hydrological model for Great Britain is used to test the performance of a simple

method of downscaling precipitation based on 1 km patterns of long-term mean

annual rainfall (Standard Average Annual Rainfall; SAAR). For a range of coarser reso-

lutions (5, 10, 25 and 50 km), a 1 km grid of multiplicative scaling factors is derived as

the ratio of the 1 km grid box SAAR divided by the mean SAAR of the coarser resolu-

tion grid box that contains it. A dataset of 1 km daily observation-based precipitation

is then degraded to the coarser resolutions, and application of SAAR scaling factors is

compared to no downscaling and direct use of 1 km data, for simulating river flows

for a large set of catchments. SAAR-based downscaling provides a clear improvement

over no downscaling. Using monthly rather than annual long-term mean rainfall pat-

terns provides minimal further improvement. There are no strong relationships

between performance and catchment properties, but performance using 50 km pre-

cipitation without downscaling tends to be worse for smaller, steeper catchments

and those with a more south-westerly aspect; these benefit more from SAAR-based

downscaling. An assessment using high-resolution convection-permitting model data

shows relatively small changes in derived SAAR scaling factors between a baseline

and far-future period, suggesting that use of historical scaling factors for future

periods is reasonable. Applicability of this simple downscaling method for other parts

of the world should be similarly assessed, for both historical and future periods.

While use of annual patterns seems to be sufficient in Britain, areas where spatial

rainfall patterns are more variable through the year may require use of sub-annual

patterns.
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1 | INTRODUCTION

Global hydrological models are usually run at relatively coarse scales

(�0.5–1�), although efforts are underway to develop so-called ‘hyper-
resolution’ models (0.1–1 km; Bierkens et al., 2015). However,

national- or regional-scale hydrological models typically require such

finer resolutions, to better represent the local detail of particular areas

and river networks. Examples of national- or regional-scale grid-based

hydrological models include; the Grid-to-Grid (G2G) model (usually

1 km resolution, Bell et al., 2009, Kay et al., 2021), the WaSIM-ETH

model (typically 1 km; Kleinn et al., 2005), the mHM model (resolution

�1–50 km; Thober et al., 2018), and the Hebei model (resolution 1–

9 km, Tian et al., 2020). Models based on hydrological response units,

rather than grids, can also have fine spatial scales (e.g., Coxon

et al., 2019; Skaugen, 2002).

The meteorological data required to drive hydrological models

typically includes precipitation and potential evaporation (PE), plus

(at least) temperature if a snow module is included. However, gridded

meteorological data are often at a coarser spatial resolution than

required by national or regional grid-based hydrological models

(e.g., Gagnon et al., 2012; Maina et al., 2020). For example, ERA5 re-

analysis data is �30 km resolution, (ecmwf.int/en/forecasts/datasets/

reanalysis-datasets/era5), and global and regional climate models

(GCMs/RCMs) typically have resolutions of tens of kilometres

(e.g., the latest UK Climate Projections, UKCP18, include GCM data at

60 km resolution and RCM data at 12 km resolution; Murphy

et al., 2018). The same issue applies for finer-scale land-surface

modelling (e.g., Fiddes & Gruber, 2014; Martinez-de la Torre

et al., 2018), although a wider range of driving variables is typically

then required (Robinson et al., 2020a). Some form of spatial downscal-

ing is thus required to use such datasets for hydrological or land-

surface modelling (some form of bias-correction may also be desired,

but this essentially separate issue is not considered here).

For downscaling temperature data, a lapse rate can be used

alongside often readily available finer-scale elevation data (e.g., Bell

et al., 2016; Kleinn et al., 2005; Perra et al., 2020; Robinson

et al., 2017), as there is typically a strong relationship between eleva-

tion and temperature. PE is highly seasonally predictable and signifi-

cantly less (spatially and temporally) variable than precipitation (Calder

et al., 1983), and river flows are generally less sensitivity to errors in

PE than in precipitation (e.g., Kay et al., 2013; Manning et al., 2009),

thus relatively simple PE data are often considered sufficient to close

the water balance in hydrological models (e.g., Boughton, 2006; Oudin

et al., 2005). Consequently, PE data can generally be copied down to

a finer-scale spatial grid without significant loss of model performance

for river flows (e.g., Bell et al., 2016; Lane et al., 2022). Alternatively,

some form of statistical downscaling can be used (e.g., Yang

et al., 2005), or the meteorological variables required to estimate PE

can be downscaled before use (e.g., Robinson et al., 2017, 2020b).

Appropriate downscaling of precipitation is more important for

hydrological modelling. Sampson et al. (2020) show that use of

coarse-scale (0.125�) gridded precipitation data leads to large errors in

the water balance compared to use of point-scale data, for locations

across the United States with a range of climate regimes and soil

types. They state that ‘hyperresolution modelling at continental to

global scales may produce inaccurate predictions if there is not paral-

lel effort to produce higher resolution precipitation inputs or sub-grid

precipitation parameterizations’. There are many possible ways to

downscale precipitation data, ranging from complex statistical disag-

gregation methods (e.g., Gagnon et al., 2012; Sharma et al., 2007;

Skaugen, 2002), to regression-based methods (e.g., Kara & Yucel,

2015; Sharifi et al., 2019), to much simpler methods based on typical

rainfall patterns (e.g., Fiddes & Gruber, 2014; Früh et al., 2006; Kleinn

et al., 2005; Marke et al., 2011). The more complex methods can be

time-consuming to setup (e.g., requiring more ancillary data and

potentially subjective choices on what to include) and more difficult

to apply (e.g., requiring the full downscaled dataset to be produced

prior to running the hydrological model), whereas simpler methods are

more straightforward in terms of setup (e.g., requiring less ancillary

data and few, if any, choices) and application (e.g., they can be applied

during the hydrological modelling process), but less flexible.

Past applications of the G2G hydrological model for GB have

used spatial patterns of Standard Average Annual Rainfall (SAAR) data

for 1961–1990, available on a 1 km grid across Britain (catalogue.ceh.

ac.uk/documents/2a2b1b05-a30f-4e04-9b37-75fa5ef5c26bht), to

downscale coarser resolution precipitation data (Bell et al., 2007a).

For each 1 km grid box, a scaling factor is calculated as the ratio of

the 1 km SAAR divided by the mean SAAR of the coarser resolution

grid box that contains it. This is used as a multiplication factor to

downscale the coarser resolution precipitation time-series to the

finer-scale grid. This method has been used with observation-based

data (e.g., Met Office 5 km rainfall data; Bell et al., 2007a, 2016) and

with RCM data at various resolutions (e.g., 12 km, Lane & Kay, 2021,

Robinson et al., 2022; 25 km, Bell et al., 2007b, 2016, Rudd

et al., 2019; 50 km, Kay et al., 2018), and a variation has been used to

make catchment-average RCM data (Kay et al., 2006). A similar

approach is used for downscaling climate model data by Kleinn et al.

(2005) over Germany, and by Früh et al. (2006) and Marke et al.

(2011) for the upper Danube catchment, which includes part of

the Alps.

The aims of this paper are to

1. demonstrate the performance of the simple SAAR-based precipita-

tion downscaling method for hydrological modelling, for a large set

of catchments across GB, and

2. assess the applicability of historically-derived SAAR scaling factors

for use in future periods, for hydrological climate change impact

studies.

To demonstrate the performance of the method for hydrological

modelling, a 1 km daily observation-based precipitation dataset is

degraded to a range of coarser spatial resolutions, then use of the

SAAR-based downscaling method is compared against use of

degraded precipitation data, and against direct use of the original

1 km precipitation data, for simulating river flows across Britain. This

allows comparison of differences in performance due solely to

2 of 15 KAY ET AL.
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precipitation spatial resolution and downscaling. Performance of a

simple extension of the method, using patterns of Standard Average

Monthly Rainfall (SAMR), is similarly assessed. The variation in perfor-

mance of SAAR-based downscaling for catchments with different

properties is also investigated. To assess the applicability of histori-

cally derived SAAR ratios for use in future periods, data from a very

high resolution Convection-Permitting Model (CPM) are used to

derive and compare SAAR scaling factors for a historical baseline

time-slice (1980–2000) and a far-future time-slice (2060–2080).

2 | METHODS

2.1 | Precipitation data

The historical assessment uses 1 km daily observation-based precipi-

tation from CEH Gridded Estimates of Areal Rainfall (CEH-GEAR;

Tanguy et al., 2016, Keller et al., 2015). CEH-GEAR rainfall estimates

are derived from UK rain gauge network precipitation totals, using

natural neighbour interpolation and a normalization step based on

average annual rainfall, and were developed to provide reliable 1 km

grids of daily and monthly rainfall across the UK to support hydrologi-

cal modelling. These data are degraded (averaged up) to a range of

coarser resolutions; 5, 10, 25, and 50 km. In each case, three options

for converting data back to the 1 km grid are then applied:

1. Copy the data back down to the 1 km resolution, by simply taking

data for each 1 km pixel from the coarser resolution box within

which it sits. This option is hereafter termed ‘without downscaling’
(or ‘wo_d’);

2. Copy the data back down to the 1 km resolution and multiply by a

SAAR scaling factor (the ratio of the SAAR of the 1 km grid box to

the average SAAR across the coarser resolution grid box within

which it sits). This option is hereafter termed ‘with SAAR-based

downscaling’ (or ‘w_saard’).
3. Copy the data back down to the 1 km resolution and multiply by a

SAMR scaling factor (the ratio of the SAMR of the 1 km grid box

to the average SAMR across the coarser resolution grid box within

which it sits, calculated separately for each of the 12 months of

the year). This option is hereafter termed ‘with SAMR-based

downscaling’ (or ‘w_samrd’).

The data from each combination of resolution and downscaling

option above is used to drive a national-scale grid-based hydrological

model for GB (Section 2.2). The CEH-GEAR 1 km daily precipitation

data are also used directly to drive the hydrological model (hereafter

‘direct_1km’), as a benchmark of performance.

It should be noted that the SAAR and SAMR scaling factors for a

given 1 km grid box will obviously vary depending on the positioning

of the coarser resolution grid. Only one position of each coarser reso-

lution grid has been tested here; that with the bottom left corner at

GB national grid coordinate 0 Easting and 0 Northing. It should also

be noted that, by definition, the mean of the SAAR or SAMR ratios

across each coarser resolution grid box is equal to 1, so the total

amount of precipitation across the area is the same with or without

downscaling.

Figure 1 presents SAAR maps, showing the typical distribution of

annual rainfall across GB, and maps and boxplots of the 1 km grids of

SAAR scaling factors (SAAR ratios), for each degraded precipitation res-

olution (5, 10, 25 and 50 km). The maps show that the spatial variation

in SAAR ratios is greater in hillier areas to the north and west of Britain

than in the flatter regions to the south/east of the country. The box-

plots show that the range of SAAR ratio values increases for the

coarser resolutions. The median value across GB also decreases slightly

for the coarser resolutions; this seems to be because the (typically

higher altitude) areas where the SAAR ratios are greater than 1 are

more concentrated than those where the SAAR ratios are less than 1.

Figure 2 presents maps and boxplots of the 1 km grids of SAMR

scaling factors (SAMR ratios) for each month, for precipitation degraded

to 50 km resolution. The maps show that the spatial pattern of SAMR

ratios is similar for each month. The boxplots show very similar median

values for each month, but with lower variability for summer months

than winter months, perhaps because of a higher occurrence of strong

cyclonic weather types in winter than summer (Pope et al., 2022). The

corresponding 1:50 km SAAR ratios (Figure 1) have a similar variability

to the SAMR ratios for spring and autumn months (Figure 2).

Using UKCP18 GCM data, Pope et al. (2022) show that future

large-scale circulation changes for GB tend towards an increase in

weather types associated with cyclonic and westerly winds in winter,

whereas in summer there is an increase in dry settled weather types

and a reduction in the wet/windy weather types. Such changes in typi-

cal weather patterns could affect SAAR and SAMR ratios for future

periods. Thus, the applicability of historically derived SAAR ratios for

future periods is assessed, using the UKCP18 Local projections (Kendon

et al., 2021). These projections comprise a 12-member ensemble of the

Hadley Centre CPM, nested in an RCM perturbed-parameter ensemble

(PPE), for three 20-year periods (December 1980–November 2000,

December 2020–November 2040 and December 2060–November

2080) under RCP8.5 emissions. The data are available on their �2.2 km

rotated lat-lon grid, but also re-projected to a 5 km grid aligned with the

GB national grid (Met Office Hadley Centre, 2019); the re-projected

5 km CPM precipitation data are used here (see Section 2.5).

2.2 | Hydrological modelling

The Grid-to-Grid (G2G) is a grid-based runoff-production and routing

model that typically uses a 1 km grid and a 15-min time-step across

GB (Bell et al., 2009). The optional snow module (Bell et al., 2016) is

applied here. River flows simulated by G2G perform well for a wide

range of catchments (Bell et al., 2009, 2016; Formetta et al., 2018;

Rudd et al., 2017), particularly where the flow regime is relatively

unaffected by artificial influences as the model essentially simulates

natural, rather than gauged, flows.

Daily 1 km precipitation is divided equally over each model time-

step within a day. Monthly 40 km grids of short grass PE (MORECS;

KAY ET AL. 3 of 15
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Hough & Jones, 1997) are copied down to the 1 km grid and divided

equally over each model time-step within a month. Daily 1 km grids of

min and max temperature (Met Office et al., 2019) are interpolated

through the day using a sine curve (Kay & Crooks, 2014).

Simulations are run for October 1980–December 2010 for each

precipitation option described in Section 2.1. The simulations were all

initialised using the same states file, saved from the end of a prior sim-

ulation using 1 km precipitation. Outputs were only analysed for

January 1981–December 2010 (i.e., October–December 1980 was

treated as a spin-up).

2.3 | Performance of downscaling methods

The model outputs time-series of daily mean river flows for selected

1 km pixels corresponding to gauged catchments in the National River

F IGURE 1 Maps of the SAAR values (mm/year) across GB (top row), maps of the SAAR scaling factors (ratios) on the 1 km grid (middle row),
and boxplots showing the SAAR ratio ranges (bottom), for each degraded precipitation resolution (5, 10, 25 and 50 km). The boxes show the
25th–75th percentile range, the line across the box shows the median, the whiskers show the 10th–90th percentile range, and dashes beyond
the whiskers show the overall min and max (if within the plotted range)

4 of 15 KAY ET AL.
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Flow Archive (NRFA; ceh.ac.uk/data/nrfa/). The performance of the vari-

ous spatial rainfall processing options is assessed by calculating several

performance measures comparing simulated and observed flows (for

January 1981–December 2010), for a large set of catchments across GB

(Figure 3). The 831 catchments included in the assessment have an area

of at least 50 km2, and less than 50% missing data in the required period.

The performance measures include the standard Nash-Sutcliffe

efficiency (NS, Equation 1, which focuses more on high flows), Nash–

Sutcliffe using the square-root of flows (NSroot, which focuses more

on average flows), Nash–Sutcliffe using the natural logarithm of flows

(NSlog, which focuses more on low flows) (e.g., Rudd et al., 2017), as

well as overall Bias (Equation 2).

NS¼1�
P

Qobs�Qsimð Þ2
P

Qobs�Qobs

� �2 ð1Þ

Bias¼100
Qsim

Qobs

�1

� �

ð2Þ

For the Nash–Sutcliffe measures, a value of 1 signifies perfect perfor-

mance, while a value less than zero indicates performance worse than

that of mean flow. For the Bias measure, a value of zero indicates per-

fect performance, while positive values indicate over-estimates and

negative values are under-estimates.

F IGURE 2 Boxplots and maps showing the SAMR scaling factors (ratios) for each month on the 1 km grid, for precipitation degraded to
50 km resolution. Also shown as a boxplot are the corresponding 1:50 km SAAR ratios (‘Ann’, left), for comparison

KAY ET AL. 5 of 15
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2.4 | Performance relative to catchment properties

Scatter plots are used to assess relationships between performance

differences and various catchment properties taken from the NRFA

(nrfa.ceh.ac.uk/feh-catchment-descriptors). This is done both to

assess the types of catchment which perform worse when no down-

scaling is applied (performance values from use of data at 50 km reso-

lution ‘wo_d’ minus values from ‘direct_1km’), and those which

benefit most from the application of SAAR-based downscaling

(performance values from use of data at 50 km resolution ‘w_saard’
minus ‘wo_d’). Note that, for the Bias measure, the difference in the

absolute value is calculated. The catchment properties used are catch-

ment drainage area (‘Area’; km2), mean drainage path slope (‘dpsbar’,
m/km), and mean aspect (‘aspbar’; degrees), although since the Area

distribution is highly skewed, with few large catchments, log10Area is

used (Figure S1). The aspbar property takes values between 0� and

360�, with 0� (=360�) northwards, 90� eastwards, 180� southwards,

and 270� westwards. There are no strong dependencies between

F IGURE 3 The 831 catchments used
to assess performance

6 of 15 KAY ET AL.
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these catchment properties, although large catchments tend to have

shallower slopes and a more easterly aspect (Figure S1).

To better highlight potential relationships, a best fit line is derived

for each combination of performance measure and catchment prop-

erty. A linear fit is used for log10Area and dpsbar, but since aspbar

values are circular a sinusoid of the form A + B*sin(aspbarrad + C) is

fitted, where aspbarrad is the aspbar values converted from degrees to

radians. In each case, the fitting excludes outliers by only using points

where the y values have a z-score <3 (i.e., those within three standard

deviations of the mean).

2.5 | Downscaling for future time-slices

Grids of 5 km CPM time-slice mean annual total precipitation are used

(‘ann-20y’ from Met Office Hadley Centre, 2019), for the baseline

period (December 1980–November 2000) and the far-future period

(December 2060–November 2080). These are averaged up to 50 km

resolution, then 5 km SAAR-ratio grids are calculated (the ratio of the

SAAR of the 5 km grid box to the average SAAR across the 50 km res-

olution grid box which contains it). Maps of the baseline 5:50 km

SAAR ratios for each CPM ensemble member (Figure S3) all look very

similar to each other and to the map of observation-based 1:50 km

SAAR ratios in Figure 1. The baseline and far-future SAAR-ratio grids

are compared, to assess any potential changes due to climate change.

The assessment looks at

1. If 5 km grid boxes are more likely to see increases/decreases in

far-future SAAR ratios according to whether their baseline SAAR

ratios are above or below 1;

2. If 5 km grid boxes located in particular quadrants (SW, NW, NE,

SE) of each 50 km grid box are more likely to see increases/

decreases in SAAR ratios in the far-future. Each quadrant com-

prises the 5 x 5 set of 5 km grid boxes located in the given direc-

tion from the centre of the 50 km grid box.

As well as looking at the above across the whole of GB, the analy-

sis looks at whether there are differences according to location within

GB, by using a simple West/East split of 50 km grid boxes, and a sim-

ple North/South split of 50 km grid boxes. The general analysis pools

all 12 CPM ensemble members together, but the scale of the variation

between ensemble members is also shown.

3 | RESULTS

3.1 | Performance of downscaling methods

Boxplots of the performance measure ranges at each degraded resolu-

tion show that SAAR- and SAMR-based downscaling improves perfor-

mance over no downscaling, bringing it back towards the performance

of using the 1 km data directly (Figure 4). However, the performance

without downscaling falls off relatively slowly, with little difference

seen at 5 and 10 km resolutions. At 25 km resolution, the perfor-

mance without downscaling starts to reduce, with worse performance

at 50 km resolution. In both cases, the use of SAAR-based downscal-

ing improves the performance significantly, particularly for overall

bias. The use of SAMR-based downscaling provides only a small fur-

ther improvement, for the NSlog measure (i.e., low flows).

Scatter plots directly comparing the performance without down-

scaling and with SAAR- and SAMR-based downscaling from 50 km

resolution, to direct use of 1 km data, show a clearly better match

from use of downscaling (Figure 5). Pearson correlation coefficients

are in the range 0.894–0.981 without downscaling, but increase to

0.996–0.999 with SAAR-based downscaling. The greatest improve-

ment is seen for the Bias measure. There is a small further improve-

ment for each measure when using SAMR-based downscaling, with

Pearson r in the range 0.998–0.999.

3.2 | Performance relative to catchment properties

While there are no strong relationships between performance differ-

ences and catchment properties (Figure S2), performance at 50 km

resolution without downscaling tends to be worse (compared to direct

use of 1 km data) for smaller catchments, steeper catchments, and

catchments with a more south-westerly aspect. This is because smal-

ler or steeper catchments are more likely to experience differing typi-

cal rainfall than neighbouring catchments, due to the influence of

orography on local weather patterns. Similarly, since the predominant

direction of weather fronts in the United Kingdom is from the south-

west, catchments with a more south-westerly aspect will experience

differing typical rainfall compared to neighbouring catchments to the

leeward side of elevated areas.

Satisfyingly, performance at 50 km resolution with SAAR-based

downscaling (compared to 50 km without downscaling) shows the

greatest improvement for smaller or steeper catchments and those

with a more south-westerly aspect (Figure 6). Note that the linear best

fit lines plot as non-linear because of the log scale on the catchment

property axes, and that the exclusion of outliers from the calculation

of the best fit lines only has a significant effect on those for the NS

measure (not shown).

3.3 | Downscaling for future time-slices

Boxplots summarizing the percentage changes in CPM-derived SAAR

ratios between the baseline and far-future periods show only small

differences according to whether the baseline SAAR ratios are above

or below 1 (when pooled over the 12 CPM ensemble members,

Figure 7). For GB as a whole, there a slight tendency towards a

decrease in the SAAR ratio in grid boxes where the baseline value is

above 1, and an increase in the SAAR ratio in grid boxes where the

baseline value is below 1, but this does not hold for all CPM ensemble

members (plus signs in Figure 7). This result is similar when split by

West/East 50 km grid boxes, but when split by North/South 50 km
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grid boxes the more Northern boxes show a stronger pattern of

decrease where the baseline value is above 1 and increases where the

baseline value is below 1. The median changes for the 12 individual

CPM ensemble members indicate that the penultimate CPM ensemble

member (13) shows quite different changes in SAAR ratios to the rest.

Maps of the changes in SAAR ratios (far-future minus baseline) for

each CPM ensemble member also show some differences between

ensemble members (Figure S3).

Boxplots summarizing the baseline to far-future percentage

changes in CPM-derived SAAR ratios by quadrant show clearer differ-

ences (when pooled over the 12 CPM ensemble members, Figure 8).

For GB as a whole, there a tendency towards an increase in the SAAR

ratio in 5 km grid boxes located in the SW or NW quadrants of their

50 km grid box, and a decrease in the SAAR ratio in 5 km grid boxes

located in the NE or SE quadrants of their 50 km grid box. This pat-

tern is more accentuated for West rather East 50 km grid boxes, and

for North rather than South 50 km grid boxes. In the West 50 km grid

boxes in particular, the median changes for the 12 CPM ensemble

members (plus signs in Figure 8) show the same sign.

4 | DISCUSSION

The performance of a simple method of precipitation downscaling for

hydrological modelling, based on use of patterns of long-term mean

annual rainfall (SAAR), has been demonstrated for a large set of

F IGURE 4 Summary of performance without downscaling (‘wo_d)’, with SAAR-based downscaling (‘w_saard’) and with SAMR-based
downscaling (‘w_samrd’) for 5, 10, 25 and 50 km resolutions, compared to direct use of 1 km data (‘direct_1km’). The boxes show the 25th–75th
percentile range across the set of catchments, with the median shown by the line across the box. The whiskers show the 10th–90th percentile
range, with overall min and max shown by dashes beyond the whiskers (if within the plotted range)
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catchments across Great Britain (Section 3.1). The method provides a

clear improvement over simply copying coarse resolution (10, 25 or

50 km) precipitation down to the resolution required by the

hydrological model (1 km). However, overall performance of SAAR-

based downscaling from 50 km resolution is not quite as good as that

from direct use of 1 km data. A minimal further improvement is

F IGURE 5 Scatter plots showing the performance without downscaling (‘wo_d’, left), with SAAR-based downscaling (‘w_saard’, middle) and
with SAMR-based downscaling (‘w_samrd’, right) from 50 km resolution (y-axis), versus direct use of 1 km data (x-axis). The median performance
in each case is shown by the red dashed lines. The Pearson correlation coefficient r is given to the top-left of each plot
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provided by use of monthly rather than annual patterns of long-term

mean rainfall, likely due to the predominance in Britain of frontal rain-

fall systems coming from the west throughout the year (Pope

et al., 2022; metoffice.gov.uk/weather/learn-about/weather/

atmosphere/weather-fronts).

Analyses of performance relative to catchment properties shows

that, while there are no strong relationships, performance using

50 km precipitation data without any downscaling tends to be worse

for smaller, steeper catchments, and catchments with a more south-

westerly aspect (Section 3.2). This is also likely to be related to

F IGURE 6 Scatter plots showing the relationship between catchment properties (x-axis) and the difference in the four performance measures
from use of data at 50 km resolution with SAAR-based downscaling and without downscaling (y-axis). The catchment properties (left to right) are
the log of the catchment drainage area (Area, km2), mean drainage path slope (dpsbar; m/km), and mean aspect (aspbar, �). Note that Area and
dpsbar are plotted on log scales. Also shown is the median performance difference (red dashed horizontal line) and a best fit line (orange solid
line; see Section 2.4)
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predominant rainfall systems, and so performance with SAAR-based

downscaling shows the greatest improvement for these same types of

catchment. However, the performance assessment presented here

only includes catchments with an area of at least 50 km2, due to the

use of daily precipitation data. Use of the method for smaller catch-

ments, perhaps with sub-daily precipitation data, would need further

consideration.

An assessment using data from a convection-permitting model

(CPM) ensemble for the UK shows relatively small changes (typically

±2%) in derived 5:50 km SAAR downscaling factors between baseline

(1980–2000) and far-future (2060–2080) periods (Section 3.3). There

tends to be an increase in westerly quadrants and a decrease in east-

erly quadrants, which is consistent with the UKCP18 GCM analysis of

Pope et al. (2022) showing an increase in occurrence of weather types

F IGURE 7 Boxplots showing the range of the percentage change in the 5 km SAAR-ratio grids, for all land 5 km grid boxes (‘all’), and split by
grid boxes where the SAAR-ratio for the baseline period is greater than 1 (‘base_ratio>1’) or otherwise (‘base_ratio<=1’). The top-left plot shows
the results over GB, while the middle pair of plots shows the results over the West/East of GB, and the bottom pair of plots shows the results
over the North/South of GB. The West/East and North/South divisions are show in the map (top-right). In each case, the boxes show the 25th–
75th percentile range across the CPM ensemble, with the median shown by the line across the box, the whiskers show the 10th–90th percentile
range. The plus signs show the medians for each CPM ensemble member separately (in order of ensemble member number, left to right)
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associated with cyclonic and westerly winds in winter. Overall though,

the changes are small, suggesting that it is reasonable to use histori-

cally derived SAAR patterns for downscaling precipitation from cli-

mate change simulations for future periods. However, the analysis

only uses CPM data from a single climate model (that of the Met

Office Hadley Centre), and was limited to use of 20-year baseline and

future periods rather than WMO-recommended 30-year periods. It

would be informative to repeat the analysis for convection-permitting

versions of other climate models, for example using multi-model

ensembles under development across Europe (Coppola et al., 2020). If

a particular climate model suggests large changes in the predominant

rainfall systems across Britain, at least at some times of year, then it

may be that the historical SAAR- or SAMR-based downscaling pat-

terns would need to be adjusted for use in future periods for that

F IGURE 8 Boxplots showing the range of the percentage change in the 5 km SAAR-ratio grids, split by the 25 � 25 km quadrant within each

50 km grid box (‘South-West’, ‘North-West’, ‘North-East’, ‘South-East’). The top-left plot shows the results over GB, while the middle pair of
plots shows the results over the West/East of GB, and the bottom pair of plots shows the results over the North/South of GB. The West/East
and North/South divisions are show in the map (top-right). In each case, the boxes show the 25th–75th percentile range across the CPM
ensemble, with the median shown by the line across the box, the whiskers show the 10th–90th percentile range. The plus signs show the
medians for each CPM ensemble member separately (in order of ensemble member number, left to right)
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climate model. Schipper et al. (2011) develop an extended version of

the simple factor-based downscaling method of Früh et al. (2006) for

the upper Danube, adding a dependence on wind direction and speed

that would allow for potential changes in future climates.

It should be noted that if bias correction of climate model data is

also desired then spatial downscaling can be performed before or

after bias correction (e.g., Kay, 2021; Kleinn et al., 2005; Robinson

et al., 2022). The analysis of Skoulikaris et al. (2022) suggests that

bias-correction (using empirical quantile mapping) followed by down-

scaling (using spatio-temporal kriging) may be preferable to the

reverse ordering, but they only compare the effect of the ordering in

one mountainous basin in Greece. Alternatively, coarse resolution cli-

mate model data can be simultaneously bias-corrected and down-

scaled (e.g., Mamalakis et al., 2017; Prudhomme et al., 2012), but this

approach is less flexible as the effects of downscaling and bias-

correction cannot be independently assessed.

5 | CONCLUSIONS

A simple method of downscaling precipitation for input to a fully dis-

tributed national-scale hydrological model has been shown to perform

well for a large set of catchments across Great Britain. The method

could be applied in other regions of the world, dependent on the

availability of information on typical spatial patterns of precipitation

(e.g., Kleinn et al., 2005). While use of annual patterns seems to be

sufficient for GB, in areas where spatial patterns of rainfall are more

variable through the year the use of sub-annual (e.g., monthly or sea-

sonal) patterns is likely to be necessary. Testing the performance of

the method in other regions where rainfall is highly seasonal and has

larger spatial and temporal variations would be advisable, and compar-

ing the performance of the simple method against that of more com-

plex methods would be interesting.

Data from a convection-permitting model (CPM) ensemble for the

United Kingdom has been used to assess the applicability of historically

derived SAAR ratios for future periods. This showed relatively small

changes in derived SAAR ratios, suggesting that it is reasonable to use

historically derived patterns for downscaling precipitation from climate

change simulations for future periods in Britain. Again though, the appli-

cability of this conclusion for other regions would ideally be tested, and

extended to more than one climate model. Where CPM data are not

available, it may be possible to assess future applicability using coarser

resolution data and evaluating, for example, large-scale circulation

changes (e.g., Pope et al., 2022). Although CPMs use spatial resolutions

much closer to those typically required for hydrological modelling, they

are very expensive, both computationally and in terms of data storage

requirements (Kay, 2022). Thus, methods for spatial downscaling will still

be needed for modelling the potential impacts of climate change on river

flows using ensembles of coarser resolution climate model data.
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