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Abstract
Anthropogenic climate change is resulting in spatial redistributions of many spe-
cies. We assessed the potential effects of climate change on an abundant and widely 
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1  |  INTRODUC TION

Anthropogenic climate change is resulting in redistributions of spe-
cies worldwide with marine species redistributing poleward at a 
rate six times faster than terrestrial species (Lenoir et al., 2020). The 
Southern Ocean (defined here as including the southern zones of 
the Indian, Atlantic and Pacific Oceans, from the Subtropical Front 
to the Antarctic continent; Deacon, 1982) is one of the most rapidly 
warming oceans on the planet (Sallée, 2018). Here, abundant pop-
ulations of marine predators play a key structuring role in marine 
ecosystems (Bestley et al., 2020), and act as bio- indicators of the 
ecosystem state (Hazen et al., 2019). Many marine predators may be 
threatened by the rapid changes taking place in the Southern Ocean 
(Barbraud et al., 2011; Constable et al., 2014; Le Bohec et al., 2008; 
Trathan et al., 2007). Despite this, the first Marine Ecosystem 
Assessment for the Southern Ocean (MEASO) highlighted the lack 
of knowledge on how marine predators will be redistributed across 
their ranges (Bestley et al., 2020; but see Cristofari et al., 2018; 
Hindell et al., 2020; Reisinger et al., 2022). The MEASO project 
aims to collate research and assess trends on Southern Ocean 

ecosystems under climate change (with the aim of enabling policy 
makers to achieve consensus in adapting their management strate-
gies to ecosystem change). Conservation and management of these 
animals relies on understanding their distributions, how these relate 
to the bio- physical environment (Reisinger et al., 2018); and how 
these distributions may alter in a changing marine environment (Pecl 
et al., 2017). Predicting how distributions of species may change is 
critical in predicting their potential for adapting to climate- related 
environmental change (Jenouvrier et al., 2014; Rose et al., 2010).

Marine predators, such as penguins, are limited in their capac-
ity to respond to rapid changes in their environment and the re-
sulting mismatch in the distribution of foraging habitat and prey 
(Bost et al., 2015; Dias et al., 2019; Grémillet & Boulinier, 2009; 
Morgenthaler et al., 2018). Penguins represent nearly 90% of the 
avian biomass in the Southern Ocean (Croxall & Lishman, 1987). 
However, populations of several species are declining and are 
predicted to decline further as warming of the ocean continues 
(Barbraud et al., 2008; Boersma et al., 2020; Jenouvrier et al., 2020; 
Ropert- Coudert et al., 2019). Penguin species are particularly vul-
nerable to changes in preferred habitat or prey redistribution 
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distributed group of diving birds, Eudyptes penguins, which are the main avian con-
sumers in the Southern Ocean in terms of biomass consumption. Despite their abun-
dance, several of these species have undergone population declines over the past 
century, potentially due to changing oceanography and prey availability over the im-
portant winter months. We used light- based geolocation tracking data for 485 indi-
viduals deployed between 2006 and 2020 across 10 of the major breeding locations 
for five taxa of Eudyptes penguins. We used boosted regression tree modelling to 
quantify post- moult habitat preference for southern rockhopper (E. chrysocome), east-
ern rockhopper (E. filholi), northern rockhopper (E. moseleyi) and macaroni/royal (E. 
chrysolophus and E. schlegeli) penguins. We then modelled their redistribution under 
two climate change scenarios, representative concentration pathways RCP4.5 and 
RCP8.5 (for the end of the century, 2071– 2100). As climate forcings differ regionally, 
we quantified redistribution in the Atlantic, Central Indian, East Indian, West Pacific 
and East Pacific regions. We found sea surface temperature and sea surface height to 
be the most important predictors of current habitat for these penguins; physical fea-
tures that are changing rapidly in the Southern Ocean. Our results indicated that the 
less severe RCP4.5 would lead to less habitat loss than the more severe RCP8.5. The 
five taxa of penguin may experience a general poleward redistribution of their pre-
ferred habitat, but with contrasting effects in the (i) change in total area of preferred 
habitat under climate change (ii) according to geographic region and (iii) the species 
(macaroni/royal vs. rockhopper populations). Our results provide further understand-
ing on the regional impacts and vulnerability of species to climate change.

K E Y W O R D S
climate change, habitat preference models, migration, overwinter, species redistributions, 
Subantarctic penguins
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    |  3GREEN et al.

compared to flying birds because they cannot as easily cover large 
distances to forage. Indeed, metabolic rates of swimming penguins 
are equivalent to 2.5 times those of soaring albatrosses of a similar 
body mass (Alexander, 2002). Migrations are energetically costly, 
and penguins can only perform these post- moult migration round 
trips of ~10,000 km through high energetic payoffs over this period 
(Alexander, 2002). Additionally, penguins are restricted by the lim-
ited number of breeding/moulting sites accessible to them which re-
duce their capacity to relocate colonies if resources move (Cristofari 
et al., 2018).

The penguin genus Eudyptes (crested penguins) consists of eight 
taxa (seven IUCN recognized species) that breed in locations from 
the subtropics to the Antarctica peninsula. This penguin assemblage 
is the main avian consumer in the Southern Ocean in terms of bio-
mass consumption, eating millions of tonnes of prey (including eu-
phausiids, myctophids and cephalopods) annually (Brooke, 2004). 
Yet, despite their widespread abundance, several species have un-
dergone population declines over the past century (Allinson, 2018). 
Eudyptes penguins are highly philopatric (Thiebot, Authier, 
et al., 2014; Thiebot, Cherel, et al., 2014; Williams & Rodwell, 1992). 
They perform two migrations annually: the pre- moult migration oc-
curs immediately after breeding and lasts 1– 2 months before their 
catastrophic moult (when they moult all their feathers at once), and 
the post- moult migration when they spend 4– 6 months overwinter-
ing at sea, covering vast distances. During the post- moult migration, 
the first and last months are particularly important as individuals un-
dergo hyperphagia (periods of intensive foraging) during which they 
recover condition following their catastrophic moult (throughout 
which they fast for 4– 5 weeks) and gain substantial fat and muscle 
reserves in preparation for breeding (Green et al., 2005; Ratcliffe, 
Crofts, et al., 2014; Thiebot, Cherel, et al., 2011).

Direct threats to Eudyptes penguin include oiling and bycatch 
(Crawford et al., 2017; Guggenheim & Glass, 2014; Pütz et al., 2002). 
However, population declines of marine predators are also mediated 
by the changing biotic and abiotic oceanographic conditions that in-
fluence the distribution and abundance of marine resources (Péron 
et al., 2012; Trathan et al., 2007). Population changes of Eudyptes pen-
guins, in particular, have been caused by changes in oceanography 
and prey availability which can impact on nonbreeding survival and 
on breeding success (Crawford et al., 2008; Crawford & Dyer, 2006; 
Horswill et al., 2016; Morgenthaler et al., 2018). Therefore, it is im-
portant to predict how future conditions under climate change might 
affect the availability and extent of preferred nonbreeding habitats 
(which reflects where preferred prey will be distributed) and hence 
post- moult distributions of Eudyptes penguins.

Here, we investigated the habitat preference and potential re-
distribution of preferred habitat in response to climate change for 
five Eudyptes taxa, during their post- moult period. We quantified 
current physical habitat characteristics of the southern rockhopper 
(E. chrysocome), eastern rockhopper (E. chrysocome filholi), northern 
rockhopper (E. moseleyi) and macaroni/royal (E. chrysolophus and 
E. schlegeli) penguins in the Southern Ocean. In this study, we de-
fine the Southern Ocean to include waters ranging from 30 °S to 

Antarctica following Deacon (1982) and Talley (2011) encompass-
ing the breeding islands and foraging ranges of northern rockhop-
pers. Thereafter, we identified potential future habitat analogues 
under two climate change scenarios, Representative Concentration 
Pathways RCP4.5 (our current projection) and RCP8.5 (worst case 
scenario). RCP4.5 and RCP8.5 correspond to medium and high ra-
diative forcing, respectively. Radiative forcing is the measure of 
the amount of downward- directed radiant energy upon the Earth's 
surface from greenhouse gas emissions, aerosol emissions and solar 
irradiance (Portner, 2019). RCP4.5 projects global temperatures in-
creasing by 1.1– 2.6°C and a mean sea level rise of 0.47 m, by the 
year 2100 and RCP8.5 projects global temperatures increasing by 
3.0– 12.6°C and a mean sea level rise of 0.62 m, by the year 2100 
(Meinshausen et al., 2011; Pielke Jr. et al., 2022). Our aims were 
to (1) use multi- species and multi- population post- moult tracking 
data to infer post- moult habitat preference for five taxa of Eudyptes 
penguins from nearly all major breeding sites across the Southern 
Ocean; (2) use two greenhouse gas concentration pathways, RCP4.5 
and RCP8.5, to model future potential redistribution of habitat (at 
the end of the century, 2071– 2100); and (3) quantify the magnitude 
of habitat change per MEASO- defined region (Grant et al., 2021; 
McCormack et al., 2021) for both RCP scenarios for each taxon.

2  |  METHODS

2.1  |  Breeding distributions of study species

Currently, there are two recognized species of rockhopper pen-
guins (IUCN, 2022) but recent genetic studies have found that 
southern rockhopper penguins should be split into two sister taxa, 
southern and eastern rockhopper penguins (Banks et al., 2006; 
Frugone et al., 2021). We therefore separated the rockhopper 
penguins into three taxa (northern rockhopper penguins, south-
ern rockhopper penguins and eastern rockhopper penguins). 
Furthermore, royal penguins are genetically similar to maca-
roni penguins, despite their clear phenotypic differences (Cole 
et al., 2019; Frugone et al., 2019), so we used this opportunity to 
also predict where royal penguins could forage during their post- 
moult migration as currently there are no tracking data for this 
species for this stage of their annual cycle. Therefore, in this study, 
we included the royal penguin as part of the macaroni penguin 
group. All species breed on Subantarctic islands (Figure 1) apart 
from northern rockhopper penguins on Subtropical Amsterdam 
Island, St. Paul Island (Central Indian), Tristan, Nightingale, and 
Inaccessible Islands (Atlantic). Southern rockhoppers are found in 
the southwestern Atlantic Ocean around the southern tip of South 
America, and eastern rockhoppers are found in the southwest 
Indian and Pacific Oceans. Macaroni penguins are mostly restricted 
to oceanic islands across the Subantarctic, with small populations 
on islands off South America and on the Antarctic Peninsula. Royal 
penguins are confined to Macquarie Island. Northern rockhopper 
penguins are listed as Endangered, and sister taxa southern and 
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4  |    GREEN et al.

eastern rockhopper species are listed as Vulnerable (IUCN, 2022). 
Macaroni penguins are classified Vulnerable (IUCN, 2022) and 
royal penguins are Near Threatened (IUCN, 2022). All taxa have 
historically experienced or are still experiencing decline in their 
population numbers (see Table S1 for details).

All statistical analyses were performed using R Statistical 
Software 4.1.0 (R Core Team, 2021).

2.2  |  Tracking data

This study estimated the post- moult movements of penguins 
using light- based geolocation (GLS) tags deployed between 2006 
and 2020. Tracking data were assembled from 471 individual 
penguins: 223 southern rockhopper, 114 northern rockhopper, 
81 eastern rockhopper and 75 macaroni penguins (see Table S2 
for details on tracking years and sample sizes). Data are from 
10 of the 21 major breeding sites including the Falkland Islands 
(Malvinas; United Nations, 2022), Isla de los Estados, Gough and 
Nightingale Islands (Tristan da Cunha), Amsterdam Island, Prince 
Edward Islands, Crozet Islands, Kerguelen Islands, Campbell Island 
and South Georgia (see Table S3 for Data Availability). GLS tags 
are miniaturized archival data tags with long battery lives, which 
make them currently the only suitable method to capture a full 

post- moult migration while minimizing the burden on the animals 
(Bost et al., 2009). Tags were mounted on the birds' legs (during 
the breeding season or at the end of the moult, depending on 
the colony) using purpose- designed bands (e.g. Ratcliffe, Crofts, 
et al., 2014; Ratcliffe, Takahashi, et al., 2014). The tags were re-
covered when the birds returned to their colonies to breed. As 
well as light level measurements, which can be used with local 
time to estimate latitude and longitude twice a day, the devices 
whenever possible also recorded sea surface temperature (SST). 
We analysed 485 full tracks (163, 433 location points in total) 
from 597 raw light files (raw light files that were faulty or with 
partial recordings were not included) using the BAStag and SGAT 
packages in R (S. Wotherspoon et al., 2013b; S. J. Wotherspoon 
et al., 2013a) with an ice mask around Antarctica. Where tags 
collected temperature data, a SST prior was used to constrain 
the birds' location based on Reynolds weekly SST maps (Lisovski 
et al., 2019; Reynolds et al., 2005).

Prior to statistical analyses, these tracks were then processed 
using a hierarchical state- space model (SSM) using the bsam 
package (Jonsen et al., 2020). We did this to estimate locations at 
regular intervals (12 h) as well as provide movement parameters 
(trip duration, turning angles, maximum distances from the col-
ony and travel speeds) used to simulate biologically meaningful 
tracks (see below).

F I G U R E  1  Distribution of breeding sites of the five focal Eudyptes penguin taxa across the Southern Ocean: eastern rockhopper 
penguins, macaroni/royal penguins, northern rockhopper penguins and southern rockhopper penguins.
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    |  5GREEN et al.

2.3  |  Simulating tracks to estimate the random 
occurrence likelihood

We used a case– control design for habitat preference modelling of the 
observed tracking data, where environmental characteristics along 
the observed tracks were compared to those along a set of simulated 
tracks (Aarts et al., 2008). This is like a presence- background design 
in general habitat preference modelling. Simulated tracks represent a 
set of locations where an animal would move with no habitat prefer-
ence but with the same movement characteristics (identical dates, 
trip durations, maximum distances from the colony and travel speeds) 
of the observed tracks. They represent a set of background location 
estimates which represent the likelihood of random occurrence and 
that consider the geographic availability of cells to animals (Raymond 
et al., 2015). To do this, we simulated 50 tracks for each observed 
track using movement parameters from the SSM, with the availabil-
ity package in R (Raymond et al., 2015; Reisinger et al., 2018). This 
allowed the habitat preference of the animals to be modelled using 
the environmental characteristics at the locations where the animals 
were observed and those at locations that they occurred randomly. 
The number of simulated tracks were chosen as a balance between 
adequate coverage of the random use of the marine environment and 
limiting the dataset size for computation (Hindell et al., 2020).

Simulated tracks were constrained to an ecologically realistic 
geographic space that is accessible to these taxa of Eudyptes pen-
guins during their winter period. We have prior knowledge of broad- 
scale habitat use (e.g. the birds do not visit tropical or high latitude 
areas) so including these would result in the avoidance of these 
regions dominating the habitat preference response. We therefore 

latitudinally constrained the simulated tracks to be between 30°S 
and the northern extent of the ice edge, defined here as <80% ice 
concentration. This prevented simulated tracks from unrealistically 
extending into tropical waters to the north or into areas which would 
be covered by winter sea ice in the south. Simulated tracks were 
also constrained by a land mask which prevented any tracks being 
located on land.

2.4  |  Environmental data

To characterize the bio- physical conditions associated with uti-
lized (observed) and random (simulated) locations, we used a suite 
of nine environmental covariates (Table 1). Environmental data 
were remotely sensed, or model estimated, and represented vari-
ables known to influence penguin distributions (Péron et al., 2012; 
Thiebot et al., 2013; Whitehead et al., 2016) or likely to influence 
the distribution of the prey (Pinkerton et al., 2020). Environmental 
data from Copernicus Marine Service (www.marine.coper nicus.
eu) were used (Table S4). The environmental data associated with 
the observed and simulated tracks were extracted using the raster 
package (Hijmans et al., 2015) by matching location and date at a 
1° × 1° spatial resolution and daily time scale. Thereafter, to predict 
preferred habitats at a Southern Ocean wide scale in the habitat 
preference model step, mean climate data (climatologies) were com-
piled from the same environmental variables ranging from April to 
September (austral autumn and winter when these taxa of Eudyptes 
penguins migrate) spanning the length of time which the tracks cov-
ered (2006– 2020).

Variable Unit Ecological significance

Sea surface height m Broad scale environmental features, proxy for 
different oceanic frontal zones, water mass 
properties

Sea surface height anomaly m Mesoscale oceanographic features, including 
mesoscale eddies

Bathymetry m Static features, water mass properties

Bathymetry gradient ° Static features, seafloor slope

Sea surface temperature °C Water mass properties, represents areas of 
different prey and prey aggregations

Chlorophyll a concentration mg m−3 Represents primary production, general 
positions of fronts, represents areas in 
certain cases of different prey and prey 
aggregations

Eddy kinetic energy cm2 s−2 Dynamic oceanographic structures, including 
mesoscale eddies, jets, waves, and large- 
scale motions

Mixed layer depth m Influences the depth of thermocline and prey 
fields from the surface: important for air- 
breathing diving predators

Sea ice concentration > 80% % Used to constrain penguin tracks to north of 
the sea ice extent

TA B L E  1  Summary of covariates used 
to model the at- sea distribution of the five 
taxa of Eudyptes penguins in this study
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2.5  |  Habitat preference models

Boosted regression trees (BRT) are a machine learning algorithm 
with a high predictive accuracy and abundant flexibility. In this 
study, we wanted to identify the environmental variables that are 
important to predict where these are for the global populations now 
and in the future. The predictive capability of BRT modelling is more 
robust compared to other models as the technique of boosting to 
combine large numbers of relatively simple tree models adaptively 
optimizes the predictive performance (Elith et al., 2006; Elith & 
Leathwick, 2017). Considering this and the ability of BRT model-
ling to deal with non- linear relationships and correlated and inter-
acting variables (common in ecological studies; Elith et al., 2006, 
2008); we used BRT modelling to model penguin habitat preference 
as a function of their biophysical environment using the gbm pack-
age (Greenwell et al., 2019). BRT modelling was done by species. 
We used a learning rate of 0.01 and chose optimal number of trees 
(minimizing the prediction bias) using a k- fold cross- validation by 
individual (Elith & Leathwick, 2017). Robust estimates of the num-
ber of trees that can be used is important to avoid overfitting as 
the models need a degree of generality to predict successfully into 
unsampled areas (Schonlau, 2005). To increase the model accuracy, 
randomness was included using a bag refraction of 0.5 and tree com-
plexity of 5. A Bernoulli family appropriate to the binary response 
variable (observed (1) vs. simulated (0)) was stipulated. The model 
outputs describe the probability of relative habitat preference. The 
habitat models were evaluated using number of trees, percentage of 
deviance, R2 (the proportion of the variance for a dependent vari-
able that's explained by an independent variable) and CV AUC (cross 
validation for area under the curve). Blocking validations were per-
formed at the colony level (Roberts et al., 2017) to test the predic-
tive performance of the species preferences models on individual 
colonies, with summary statistics exhibited with confusion matrices.

Although extensive, our tracking dataset lacked data for colo-
nies of rockhopper on Macquarie and Auckland Islands and maca-
roni/royal penguins on Heard and McDonald Islands and Macquarie 
Island. To account for these data gaps, we used the habitat pref-
erence models to predict preferred habitat for each of the species 
across their entire ranges, including where no tracking data were 
available (see Table S1 for full list of breeding location used).

2.6  |  Accessibility

The data used to fit the habitat preference models (i.e. the observed 
and simulated tracks) represent habitat only and may include geo-
graphic areas that are not accessible to the animals (e.g. outside their 
foraging range; Aarts et al., 2008; Matthiopoulos, 2003). As pen-
guins return to their breeding colonies at the end of the post- moult 
migration, it was important to consider the accessibility of a location 
(given they cannot just keep swimming endlessly). Habitat prefer-
ence models were therefore constrained using accessibility models 
(models of areas that the birds could feasibly access) to produce 

an index that reflected both the habitat preference of a given cell 
and how accessible that cell is to the birds (Hindell et al., 2020). 
Accessibility was modelled by using observed and simulated tracks 
as a function of the distance of the cell to the deployment colony. 
The number of locations were converted to a binary response (ob-
served and simulated tracks vs. no observed and no simulated loca-
tion). Then binomial models were fitted with a smooth, monotonic 
decreasing constraint as we assumed that accessibility decreases 
the further away from the colony. This additional modelling step was 
used to estimate which areas of geographic space were accessible to 
the birds by upweighting cells that were both preferred habitat and 
accessible and down- weighting cells that were preferred habitat but 
not accessible. These outputs provide an estimate of the probability 
that animals from those colonies would be able to visit a given cell. 
This allows, for any colony, predictions to be made for the accessibil-
ity of each grid cell in the study region as well as its relative habitat 
suitability. An advantage of using separate models for accessibility 
and habitat suitability is that the predictor variables (and the shape 
of the response curves) can be different in the two models (current 
and predicted climate change models), allowing more ecologically 
realistic models (Hindell et al., 2020).

These accessibility models could be unweighted or weighted by 
colony size. The weighted models, which considered population sizes 
of colonies, up- weighted cells in the vicinity of larger colonies and 
down- weighted cells around smaller colonies thus giving an indica-
tion of density. Here, we focussed on unweighted predictions as we 
cannot know what population sizes will be at the end of the century 
(2071– 2100), the period to which our climate change predictions are 
forecast, nor how these will be distributed across available breeding 
locations. However, the predictions based on habitat preference and 
population density based on current environmental conditions and 
population sizes are presented in Figure S3 for comparison.

2.7  |  Mapping

We used our model fits to predict habitat preference for each taxon 
and to allow comparisons across taxa. However, habitat preference 
predictions are not absolute estimates of probability and are there-
fore not directly comparable between species (Beyer et al., 2010). 
To allow for comparison between the five taxa, each prediction map 
was transformed by percentile to give a habitat importance score 
(Raymond et al., 2015). These final maps present areas of important 
habitat and are therefore comparable between species, depicting 
habitat represented on a scale from 0 (not important at all) to 100 
(extremely important).

2.8  |  Redistribution of preferred habitat under 
climate change projections

To model climate change redistributions, we used two pathways of 
atmospheric greenhouse gas concentration: RCP4.5 and RCP8.5, 
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    |  7GREEN et al.

which correspond to medium and high radiative forcing, respectively. 
We used phase five of the World Climate Research Programme's 
Coupled Model Inter- comparison Project (CMIP5; https://www.
wcrp- clima te.org/wgcm- cmip/wgcm- cmip5) output to allow our re-
sults to be directly comparable with predictions made for climate 
change redistributions of other predators in the Southern Ocean by 
Hindell et al. (2020) and Reisinger et al. (2022). Climate data were 
compiled using eight global CMIP5 climate models (ACCESS1.0, 
BCC- CSM1.1, CanESM2, CMCC- CM, EC- EARTH, GISS- E2- H- CC, 
MIROC- ESM, and NorESM- M; henceforth referred to as CMIP5 rep-
resentations) considered to be the most suitable for Southern Ocean 
studies (Cavanagh et al., 2017). These projections provide an indica-
tion of the redistribution of preferred habitat under the assumption 
that colonies will not move, and habitat preferences will not change.

In theory, it is possible to use hindcast CMIP5 data and future 
projections of CMIP5 data and accessibility to predict current pre-
ferred habitat and future projections of habitat preference. However, 
some predictor variables (Table 1) are not available from the CMIP5 
data while others may have different properties due to the different 
temporal and spatial output. To produce biologically meaningful inter-
actions for the current habitat preference models, we used satellite 
derived altimetry and reanalysis data (Table 1). Hindcast CMIP5 data 
are not as accurate as real time data and would produce less reliable 
current habitat preference model predictions. So, to predict future dis-
tributions of preferred habitat, we instead used a k- nearest neighbour 
classifier approach (Figure 2). This matched the five most similar cells 
between the current preferred habitat and current- climate grid, tak-
ing into account environmental variables and accessibility conditions. 
Projected habitat preference redistributions were then calculated by 
finding where those same current- climate grid cells could move to, 
under future projected climate conditions using Euclidean distance. 
If the majority of those five cells were from current- climate grid, the 
future- climate grid cell was classified as “preferred habitat-  like” and 
if not, then “not preferred habitat- like” (Figure 2). This method allows 
comparison of output from multiple CMIP5 representations, each rep-
resenting different suites of biophysical variables. Thereafter, the eight 
redistribution models could be combined into one generalized climate 
change projection per species and per RCP scenario.

We used a maximum of eight environmental variables per CMIP5 
representation (Table S6), depending on the suite of variables avail-
able for that representation (i.e. not every CMIP5 representation 
contained all eight variables). Variables were normalized to range 
0– 1 prior to further analyses. As the resulting environmental vari-
ables showed high correlation, we used a principal components anal-
ysis to reduce the number of inter- correlated predictor variables in 
the data set. The lowest number of principal components required to 
explain at least 95% of the variance was used.

To assess projected change in habitat area (reduction or increase) 
per species at a regional scale, we divided the Southern Ocean into 
the 5 regions using the MEASOshapes package (Brasier et al., 2019) 
into the Atlantic, Central Indian, East Indian, West Pacific and East 
Pacific (see Figure S5). We calculated the percentage change be-
tween the area of current habitat and the area of predicted habitat 

for the future (2071– 2100) for each of the eight CMIP5 representa-
tions to account for the variability between them. We then plotted 
the degree of change per CMIP5 representation for each penguin 
species and each region where the species exists to compare the dif-
ferences in habitat change between scenarios RCP4.5 and RCP8.5.

3  |  RESULTS

3.1  |  Current habitat preference

Model performance (AUC) ranged from 0.805 ± 0.005 to 
0.934 ± 0.002 with a percentage of deviance explained 58.5% to 
78.8% (Table 2). While predictor variable importance differed across 
the species, sea surface temperature (importance range of 11.8– 
80.4%, mean = 32.5%) and sea surface height (importance range of 
17.1– 25.5%, mean = 21.5%) were the most consistent predictors of 
habitat preference (Figure 3). Summary statistics from the blocking 
validations (Table S5) indicate lower predictive capacity for some 
species. The models performed best for Macaroni penguins and 
least well for northern rockhopper penguins reinforcing the need to 
interpret our predictions with caution.

Important areas for eastern rockhopper penguins were characterized 
by waters between 1000– 2000 m and 2800– 3800 m deep (Figure S2), 
sea surface height levels between 0.4 and 0.6 m and sea surface tem-
perature between 6 and 10°C (Figure 3). The single most important pre-
dictor of distribution for macaroni/royal penguins, contributing ~80% to 
the habitat model, was sea surface temperature. Macaroni/royal pen-
guins showed the highest prevalence between sea surface temperature 
between 3– 4.5°C (range of 2– 6°C; Figure 3). The second most import-
ant predictor of suitable habitat for macaroni penguins was depth, that 
is, the preferential use of waters 3000– 5000 m deep (Figure S2).

The two predictors that contributed ~50% to the model when pre-
dicting northern rockhopper penguin important habitat were sea sur-
face temperature between 10 and 12°C and sea surface height between 
0.15 and 0.25 m (Figure 3). The third most important predictor of suit-
able habitat for northern rockhopper penguins was sea surface height 
anomaly with a preference for positive anomalies. Important areas for 
southern rockhopper penguins generally were characterized by sea sur-
face height of over 0.1 m, waters where mixed layer depth was between 
0– 50 m depth and between 250 and 300 m depth (Figure S2) and sea 
surface temperature that ranged from 6.5– 9°C (Figure 3).

Apparent spatial segregation in preferred habitats was noticeable 
between the five penguin taxa (Figure 4). Important eastern rockhop-
per penguin habitat occurred in regions encompassing the Australasian 
Subantarctic Islands and southern Indian Ocean, as well as the Kerguelen, 
Crozet and the Prince Edward Island groups. The areas highlighted were 
largely restricted to the Subantarctic Frontal Zone. Important habitat 
for macaroni/royal penguins highlighted a circumpolar distribution, 
largely within the Antarctic Polar Frontal Zone as well as the Southern 
Antarctic Circumpolar Frontal Zone. Preferred habitat for northern rock-
hopper penguins occurred north of the Subtropical Front and within 
the Subantarctic Frontal Zone. Important southern rockhopper penguin 
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8  |    GREEN et al.

habitat was predicted along the coastline of Patagonia and Chile and 
into the Pacific Ocean, west of Chile (Figure 4). For this species, two 
distinct regions were predicted to be important: the South American 

continental shelf, used by birds from the Falkland Islands (Malvinas), 
and open ocean waters of the south- east Pacific, used by birds from 
Beauchene and Staten Island/Isla de los Estados.

F I G U R E  2  Methodology of the process used to make future predictions of the redistribution of preferred habitat under future climate 
change scenarios (adapted from Hindell et al., 2020).
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    |  9GREEN et al.

3.2  |  Climate change redistributions

Broadly, for all species and across both scenarios (RCP4.5 and 
RCP8.5), preferred habitat was predicted to move poleward, with 
habitat being lost in the northern limits of the species' ranges 
and gained in the southern area of their ranges (Figure 5). For all 
rockhopper species, our results predicted a greater average loss 

of habitat for scenario RCP8.5 than scenario RCP4.5 (Figure 5). 
Overall, there was a projected net loss of preferred habitat for all 
three rockhopper species (Figure 6). Preferred habitat for eastern 
rockhoppers showed a mean areal reduction of −1.7% for RCP4.5 
or by −4.2% under RCP8.5 (Figure 6). Northern and southern rock-
hopper penguins were projected to undergo similar losses of pre-
ferred habitat area under RCP4.5 (−6.9% and −6.8%, respectively). 

Species
Number 
of trees

Percentage of 
deviance explained R2 CV AUC

Eastern rockhopper 
penguin

3500 71.9 0.534 0.805 ± 0.005

Macaroni/royal 
penguins

3200 78.8 0.778 0.934 ± 0.002

Northern rockhopper 
penguin

2000 67.3 0.562 0.87 ± 0.001

Southern rockhopper 
penguin

2800 58.5 0.482 0.822 ± 0.006

TA B L E  2  Statistics of model 
performance: Model performance  
statistics for eastern rockhopper  
(E. filholi), macaroni (E. chrysolophus)/royal 
(E. schlegeli) penguins, northern rockhopper 
(E. moseleyi), and southern rockhopper 
(E. chrysocome) with number of trees, 
percentage of deviance explained, R2 (the 
proportion of the variance for a dependent 
variable that's explained by an independent 
variable) and CV AUC (cross validation for 
area under the curve)

F I G U R E  3  Habitat model response curves for sea surface height and sea surface temperature for the five focal Eudyptes penguin taxa: 
eastern rockhopper (E. filholi), macaroni (E. chrysolophus)/royal (E. schlegeli) penguins, northern rockhopper (E. moseleyi), and southern 
rockhopper (E. chrysocome). Positive predicted probability of preference suggests higher preference for those ranges of that environmental 
variable and negative predicted probability of preference suggests the animals actively do not select those ranges of the environmental 
variables. The higher the positive predicted probability of preference is, the more those ranges of the environmental variable are actively 
selected. Orange gridlines are for references: Horizontal lines are 0.0; vertical lines for sea surface heights are STF = 0.5 m (Subtropical 
Front), SAF = 0.128 (Subantarctic Front), PF = −0.634 (Polar Front) and SACCF = −1.09 (Subantarctic Circumpolar Current Front); and sea 
surface temperature is the 5°C point. Definitions for the front locations according to sea surface heights taken from Orsi et al. (1995) and 
Venables et al. (2012).
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10  |    GREEN et al.

However, this predicted loss intensified under RCP8.5: −12.7% 
and −9.9% for northern and southern rockhopper penguins, re-
spectively. In contrast to the three rockhopper species, our find-
ings suggested an extension in macaroni/royal penguin preferred 
habitat, showing respective gains of 8.7% and 4.4% under RCP4.5 
and RCP8.5.

Regionally, preferred habitat was projected to decrease for east-
ern rockhopper penguins in the East Indian (−4.2% and −12.5% for 
RCP4.5 and RCP8.5 scenarios respectively) and West Pacific re-
gions (−1.1% and −9.9%) but with little change in the Central Indian 
(+0.03% and +1.5%). In contrast, regional macaroni/royal penguins 
preferred habitat showed projected increases in the Atlantic (+19.9% 
and +9.6%), East Pacific (+3.8%), East Indian (+9.9% and +8.5%) and 
West Pacific (+20.9% and +25.2%), with the only reductions occur-
ring in the Central Indian region (−2.8% and −6.6%) and East Pacific 
under RCP8.5 (−1.6%). Northern rockhopper penguins were pro-
jected to experience a decrease in preferred habitat across their full 
range: Atlantic region (−7.3% and −14.2%), Central Indian (−5.4% and 
−6.9%) and East Indian (−12.7% and −38.1%). Our results also indi-
cated that preferred habitat for southern rockhoppers may decline 
in the East Pacific (−8.3% to −16.1%) but with a notable increase in 
the Atlantic region (+7.6% and +27.4% under RCP4.5 and RCP8.5 
respectively).

Areas of notable preferred habitat change (increase or decrease 
>20%) were an increase in area for macaroni/royal penguins in 
the Atlantic and southern rockhopper penguins in the East Pacific 
(decrease) and the Atlantic regions (increase). Our results indicate 
that warming in the Atlantic region could increase preferred habitat 

for macaroni penguins at suitable breeding sites including Bouvet, 
South Georgia, South Orkney, South Sandwich, South Shetland, 
and the Antarctic Peninsula. Other regional changes of interest 
(>10%) were a decline in habitat for eastern rockhopper penguins 
in the East Indian and West Pacific region (populations that exist 
on the Australasian Subantarctic Islands), an increase for macaroni/
royal penguins in the East Indian (reflecting the royal population at 
Macquarie Island) and decline in habitat for northern rockhopper 
penguins in the Atlantic region and southern rockhoppers habitat 
in the East Pacific.

4  |  DISCUSSION

Here, we identified preferred habitat during the post- moult migra-
tion of five Eudyptes penguin taxa from a large tracking dataset 
from 21 populations across almost all major breeding locations and 
projected how their extent and distribution could change under 
the RCP4.5 and RCP8.5 climate scenarios. The five taxa of penguin 
may experience a general poleward redistribution of their preferred 
habitat, but with contrasting effects in the (i) change in total area of 
preferred habitat under climate change (ii) according to geographic 
region and (iii) the species (macaroni/royal vs. rockhopper popula-
tions). Our results indicated that the less severe RCP4.5 would lead 
to less overall habitat loss by the end of the century than the more 
severe RCP8.5 scenario. These findings are in agreement with other 
studies on climate change- induced redistributions that show current 
habitat preferences of marine animals shifting poleward (Clairbaux 
et al., 2021; Hindell et al., 2020; Quillfeldt et al., 2010), but at 
rates differing across regions and among populations (Reisinger 
et al., 2022).

4.1  |  Current habitat preferences

Post- moult habitat preferences for all species largely coincided 
with the distribution of dominant frontal zones, particularly within 
open ocean habitat south of the Subtropical Front (STF; Figure 4). 
For rockhopper penguins, foraging was generally located within 
the Subantarctic/Antarctic inter- frontal zone, whereas macaroni/
royal penguins tended to prefer the Polar frontal zone. Latitudinal 
separation in the use of different inter- frontal zones by penguin spe-
cies may reflect differences in prey preference but is also seen by 
the breeding locations of macaroni/royal penguins, which generally 
breed at higher latitudes (Figure 1). Resource partitioning mecha-
nisms in areas where species overlap may include vertical spatial 
partitioning and temporal partitioning such as allochrony (Green 
et al., 2022; Ratcliffe, Crofts, et al., 2014; Thiebot et al., 2013; 
Whitehead et al., 2016) to reduce competition.

These findings support previous work documenting strong pref-
erences for frontal zones by marine predators (Bost et al., 2009; 
Green et al., 2022; Thiebot et al., 2013). Fronts act as biogeographic 
barriers defining the distributions of species (Atkinson et al., 2012; 

F I G U R E  4  Relative habitat preferences, showing top 10 
percentile, for five taxa of Eudyptes species: eastern rockhopper 
(E. filholi), macaroni (E. chrysolophus)/royal (E. schlegeli) penguins, 
northern rockhopper (E. moseleyi) and southern rockhopper (E. 
chrysocome) with the mean generalized major oceanographic frontal 
zone locations as defined by Orsi et al., 1995 (Southern Antarctic 
Circumpolar Frontal Zone = SACCFZ, Antarctic Polar Frontal 
Zone = PFZ, Subantarctic Frontal Zone = SAFZ, Subtropical Frontal 
Zone = STZ; using the Orsi Fronts). The purple layer is above the 
other colour layers.
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    |  11GREEN et al.

F I G U R E  5  Changes in habitat preference for five taxa of Eudyptes penguin under climate change predicted conditions. The figures 
represent polar projections of current important habitat for: eastern rockhopper (E. filholi), macaroni (E. chrysolophus)/royal (E. schlegeli) 
penguins, northern rockhopper (E. moseleyi), and southern rockhopper (E. chrysocome), and predicted habitat changes under Representative 
Concentration Pathway RCP4.5 (which assumes global temperatures increasing by 1.1– 2.6°C and a mean sea level rise of 0.47 m, by the 
year 2100) and RCP8.5 (which assumes global temperatures increasing by 3.0– 12.6°C and a mean sea level rise of 0.62 m, by the year 2100 
(Sabine, 2014), which correspond to medium and high radiative forcing, respectively. RCP4.5 and RCP8.5 scenarios depict: Habitat that could 
remain important (blue), habitat that could be potentially gained (green) and habitat that could be lost (orange).

 13652486, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16500 by B

ritish A
ntarctic Survey, W

iley O
nline L

ibrary on [11/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12  |    GREEN et al.

Pakhomov et al., 1996), and influencing the distribution of prey. For 
example, seabird assemblages in the Southern Ocean, including the 
Eudyptes guild, have previously been associated with specific frontal 
zones, due to the inferred distribution of prey structured by oceano-
graphic fronts (Bost et al., 2009; Thiebot et al., 2012, 2013; Thiebot, 
Lescroël, et al., 2011). The regions that are important for these taxa 
of Eudyptes penguins occur largely between the south Antarctic 
Circumpolar Current Front and the STF and are consistent with 
the distribution of high concentrations of zooplankton (Pinkerton 
et al., 2020) including euphausiids which are the dominant prey for 
Eudyptes penguins (Cherel et al., 2007; Rey et al., 2005).

Subantarctic waters (predominantly used by rockhopper species) 
are generally dominated by smaller euphausiids such as Euphasia val-
lentini, whereas larger species such as E. superba (Antarctic krill), E. 
frigida and E. triacantha occupy waters south of the Polar Front (Endo 
et al., 2008), highlighting that these two frontal zones are character-
ized by different prey size assemblages. The distribution of euphau-
siids is particularly important for rockhopper species that typically 
occupy a lower trophic level (Dehnhard et al., 2011). In contrast, 
macaroni penguins generally consume larger, higher trophic level 
prey items than rockhoppers including a higher proportion of myc-
tophid mesopelagic fishes (Cherel et al., 2007; Cooper et al., 1990).

F I G U R E  6  Percentage change in habitat area per region (using the Marine Ecosystem Assessment for the Southern Ocean defined 
regions) for the eight different climate representation (ACCESS1.0, BCC- CSM1.1, CanESM2, CMCC- CM, EC- EARTH, GISS- E2- H- CC, 
MIROC- ESM, and NorESM- M: grey points) for eastern rockhopper penguins (ERHP), macaroni/royal penguins (MRP), northern rockhopper 
penguins (NRHP) and southern rockhopper penguins (SRHP) under Representative Concentration Pathways RCP4.5 (red) and RCP8.5 
(blue) scenarios. Percentage change for the eight climate change representations is shown by the dots. The boxes indicate the 25th– 75th 
percentiles.
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    |  13GREEN et al.

Overall, the importance of frontal zones in controlling bioge-
ography could have considerable implications for prey accessibil-
ity for penguins under climate- mediated change. Habitat use by 
migrating penguins is determined by swimming speed capabilities, 
currents that assist/hinder movements as well as the profitabil-
ity of oceanic feeding areas (Bon et al., 2015; Della Penna, 2016). 
Biophysical conditions in the Southern Ocean are changing rap-
idly (Constable et al., 2014), and whereas cues used by forag-
ing penguins will likely to remain unchanged in the short term 
(according to generation times of macaroni penguin 8– 15 years 
and rockhopper species 6– 10 years), the biophysical features of 
the ocean and associated locations and availability of their prey 
may not. Currently, sea surface temperature is changing with the 
implication that preferred prey species may be pushed farther 
south or deeper into the water column to follow the cooler wa-
ters (Constable et al., 2014; Freer et al., 2019; Veytia et al., 2020). 
Results outlined in this study suggest that similar shifts in the dis-
tribution of suitable winter foraging habitat could occur for these 
taxa of Eudyptes penguins as well.

4.2  |  Potential consequences of habitat 
redistribution for penguin post- moult 
foraging ecology

Regionally, interactions of different climate forcings will act on the 
chemistry and biology of primary and secondary production, with 
implications for regional food web structure (Sydeman et al., 2015; 
Trathan et al., 2007). Populations of marine predators from a par-
ticular species that breed in different regions may occupy different 
niches depending on the regionally dominant food web. The block-
ing cross- validations suggest that this is the case for the eastern 
and northern rockhopper species due to the low transferability of 
models between certain populations/species (Torres et al., 2015). 
Habitat preferences differ between colonies as there are likely dif-
ferent prey types available, each with their own habitat preferences. 
Because of this, marine predator responses to climate- driven change 
could differ across populations based on variation in prey compo-
sition. For example, macaroni penguins consume Antarctic krill as 
their main prey at South Georgia in the Atlantic (Waluda et al., 2012), 
while their diet in the Central Indian Ocean is dominated by the 
crustaceans Euphausia vallentini, Thyssanoesa vicina and Themisto 
gaudichaudii, followed by myctophid fish and cephalopods (Cherel 
et al., 2007; Crawford et al., 2003). At Macquarie Island in the East 
Indian (MEASO- defined region), myctophid fish Krefftichthys an-
derssoni dominate the diet of royal penguins, followed by Euphausia 
vallentini (Hull, 1999). These studies show that some species may be 
able to respond flexibly to changes in the availability of preferred 
prey. Therefore, while our models predict large- scale redistribu-
tions of Eudyptes habitat, they do not consider the potential for the 
penguins to shift their diet towards novel prey items that may be-
come numerically dominant (e.g. gentoo penguins Pygoscelis papua; 
Carpenter- Kling et al., 2017).

While our study measured preferred habitat, it did not consider 
the full available habitat for each species. As such, while we have cal-
culated change in preferred habitat extent, the species may still have 
access to other habitats within their physiological and morphological 
constraints within reach of their colonies, both currently and in the 
future (Pütz et al., 2021). Differences in diet and foraging strategies 
(e.g. increase in diving depth) within a species as well as individual 
specialization may buffer populations against changes in habitat 
(such as southern elephant seals Mirounga leonina from Macquarie 
Island: Hindell et al., 2017). For example, changes in regional habitat 
distributions could have contrasting effects on different southern 
rockhopper penguin populations. Reductions in preferred habitat 
in the East Pacific for southern rockhopper penguin may negatively 
affect populations that forage in these regions, such as those breed-
ing on Staten Island/Isla de los Estados (Argentina) and Isla Noir 
(Chile; Oehler et al., 2018). Whereas populations breeding on the 
Falkland Islands (Malvinas) and smaller populations breeding along 
the Patagonian coast, which constitute about 40% of the popula-
tion, could experience a large increase in preferred habitat. Southern 
rockhopper penguins from islands in the Atlantic region show a range 
of foraging strategies. Some colonies forage along the continental 
shelf and others forage in pelagic waters (Pütz et al., 2006; Ratcliffe, 
Crofts, et al., 2014; Thiebot et al., 2015). Both these areas (pelagic 
and shelf) coincide with the areas of increased preferred habitat.

Many studies that have investigated how penguin species could 
respond to a changing climate have focussed on Antarctic breed-
ing, ice- obligate species (however see, Cristofari et al., 2018; Péron 
et al., 2012). Like Antarctic penguins, changes for Eudyptes penguins 
relate to trophic mediated changes cascading from climate forcing. 
Antarctic penguins have adapted to sea ice conditions (Forcada 
et al., 2006) and are influenced by the availability of Antarctic krill 
and the effects of krill harvesting in Antarctic waters. In contrast, 
Eudyptes penguins are not ice dependent, have a more generalist 
diet and consume prey species that are generally not commercially 
valuable. All five taxa of Eudyptes in this study perform post- moult 
migration round trips of ~10,000 km and cover a large area during 
the 4– 6 months they are at sea. Given their generalist diet and ability 
to travel large distances, it could be expected that Eudyptes would 
be better equipped to adjust to environmentally driven changes in 
the distribution of suitable habitat. However, while regions used 
by these penguins are vast, key foraging areas used by wide rang-
ing oceanic predators may represent only a small spatial subset 
of their overall range (Schofield et al., 2010). Areas important for 
foraging penguins are likely linked to the timing of the annual cycle 
(Moore et al., 1999), and the spatio- temporal distribution of marine 
productivity and prey. For example, habitats used by penguins for 
hyperphagia prior to breeding and moulting are probably dispropor-
tionately important and are likely to be relatively close to breeding 
sites (Thiebot, Authier, et al., 2014; Thiebot, Cherel, et al., 2014). 
Changes in the extent and distribution of such habitats progressively 
away from their breeding colonies could reduce capacity for attain-
ing sufficient condition to survive these energetically costly periods 
(Dehnhard et al., 2013).

 13652486, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16500 by B

ritish A
ntarctic Survey, W

iley O
nline L

ibrary on [11/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14  |    GREEN et al.

Adjusting to the predicted changes could be also possible for 
penguins through the establishment of new colonies at sites closer 
to suitable overwintering habitat. However, data on natal dispersal 
of juvenile penguins in relation to climate change is currently lacking, 
and as adults show a high level of philopatry, they have a low emi-
gration rate (Cristofari et al., 2015; Orgeret et al., 2022). Therefore, 
it is unlikely that changes in preferred habitat in the Southern Ocean 
would lead to the redistribution of adult birds by emigration, but 
rather a decrease in populations at sites that become unfavourable 
and growth of populations at sites that become more favourable. 
Where established colonies already exist on islands in the Atlantic 
and on the Antarctic Peninsula, the increase of preferred habitat to 
this region could lead to the increase in macaroni penguin popula-
tions (as it has for gentoo penguins; Forcada et al., 2006).

4.3  |  Uncertainties in projected future habitat 
distributions

Our results highlight sea surface temperature and sea surface height 
as being the most important predictors of foraging distributions for 
these species. Together, these variables may reflect broad water 
masses indicative of preferred prey fields. However, it is possible 
that these variables simply reflect the broad geographic space in-
dicative of post- moult migration, rather than key characteristics of 
their foraging habitat. This could have implications when consider-
ing how foraging habitat could change in future. In considering the 
circumpolar average, the Polar Front was reported to have already 
shifted by 60 km south since 1992 and was expected to continue to 
do so (Kim & Orsi, 2014; Sokolov & Rintoul, 2009). More recent work 
has led to the consensus that climate change models do not show 
a systematic shift in front locations (Chapman et al., 2020; Meijers 
et al., 2019), but that there is observed poleward warming of the 
frontal zones (Chapman et al., 2020). The suite of CMIP5 models 
chosen here all showed strong agreement towards a southward re-
distribution of penguin habitat. As sea surface temperature may in-
deed be the most important indicator of penguin foraging, as shown 
in our study as well (Cristofari et al., 2018; Le Bohec et al., 2008; 
Morrison et al., 2015; Pütz et al., 2018; Rey et al., 2007), the implica-
tions for poleward warming of the frontal zones may be significant 
enough to have negative effects on widely dispersive penguins. Sea 
surface temperature affects the locations of foraging for penguins 
and even short- term poleward shifts of isotherms have resulted in 
decreases in survival rates and breeding success for penguins (as-
sociated with increased energy expenditure when foraging for food; 
Le Bohec et al., 2008; Trucchi et al., 2019).

Some areas of notable preferred habitat change were found that 
would be on the extreme edges of species ranges and unlikely to 
be used by the penguins. These were the notable decrease in pre-
ferred habitat for northern rockhopper penguins in the East Indian 
and southern rockhopper penguins in the West Pacific and increase 
for macaroni penguins in the West Pacific. Also, at least in the case 
of the rockhopper species, these areas are relatively small (see 

Figure S6). Thus, these specific changes, though they seem large in 
intensity, would likely have only minimal effects to the species.

4.4  |  Implications and conclusions

While this study does not measure the effects of changing extent 
of preferred habitat on population numbers, our results, at least in 
some regions, do seem to coincide with some population trends. 
Vagrant macaroni penguins have been seen increasingly further 
south on ice free islands off the Antarctic peninsula (Golubev, 2016; 
Gorman et al., 2010), a region predicted in our results to have an 
increase in preferred habitat for this species. Similarly, populations 
that have experienced severe declines are in regions predicted 
by this study to undergo reductions in preferred habitat (such as 
eastern rockhopper penguins from the New Zealand Subantarctic 
Islands and northern rockhopper penguins in the Atlantic, both of 
which have experienced <94% declines since 1940s; Cunningham 
& Moors, 1994; Cuthbert et al., 2009). Notably, while our models 
predict an increase in preferred habitat for populations from the 
Falklands, this is not reflected in population trends as long- term de-
clines have taken place from the 1930s to the early 2000s (Baylis 
et al., 2013; Pütz et al., 2003).

Our models predict that in some cases, shifts south in preferred 
habitat may occur by the end of the century, forcing some popu-
lations to possibly travel farther and spend more energy and time 
searching and foraging for food. Our habitat predictions only include 
habitats that are accessible to the penguins currently (according to 
the calculated distances they may feasibly travel from their colo-
nies). Therefore, the increased habitat in the south of the penguins' 
ranges is within reach but may be at the upper limit of their energet-
ics to reach.

Ongoing changes in preferred habitat across the Southern Ocean 
have the potential to result in large scale redistributions of populations 
like those that took place during the Last Glacial Maximum (c. 19.5– 
16 kya) after a significant climate warming (Cole et al., 2019) and the 
resultant overall decline in marine productivity (Vianna et al., 2020). 
Implications of our results could be that by the end of the century, 
some populations of the taxa of Eudyptes penguin in this study may 
decrease to a stable norm of lower numbers and some small existing 
colonies may start to increase (i.e. the relative importance of colony 
sites may alter). Our results reiterate previous work showing that re-
sponses to environmental change vary across species and between 
regions. Thus, we emphasize the need for species- specific and region- 
specific management and conservation against a backdrop of a rap-
idly altering marine environment. Finally, our results support those 
of Gervais et al. (2021), who argued that management needs to be 
adapted concurrently with changing conditions and should not wait 
for climate change impact research to justify action.
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