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Abstract. Recent warm atmospheric conditions have dam-
aged the ice shelves of the Antarctic Peninsula through sur-
face melt and hydrofracturing and could potentially initi-
ate future collapse of other Antarctic ice shelves. How-
ever, model projections with similar greenhouse gas scenar-
ios suggest large differences in cumulative 21st-century sur-
face melting. So far it remains unclear whether these differ-
ences are due to variations in warming rates in individual
models or whether local feedback mechanisms of the sur-
face energy budget could also play a notable role. Here we
use the polar-oriented regional climate model MAR (Mod-
ele Atmosphérique Régional) to study the physical mecha-
nisms that would control future surface melt over the Antarc-
tic ice shelves in high-emission scenarios RCP8.5 and SSP5-
8.5. We show that clouds enhance future surface melt by in-
creasing the atmospheric emissivity and longwave radiation
towards the surface. Furthermore, we highlight that differ-
ences in meltwater production for the same climate warming
rate depend on cloud properties and particularly cloud phase.
Clouds containing a larger amount of supercooled liquid wa-
ter lead to stronger melt, subsequently favouring the absorp-
tion of solar radiation due to the snowmelt—albedo feedback.
As liquid-containing clouds are projected to increase the melt
spread associated with a given warming rate, they could be

a major source of uncertainties in projections of the future
Antarctic contribution to sea level rise.

1 Introduction

Clouds are key drivers of the surface energy budget (SEB)
of snow and ice. They can have opposing effects by reflect-
ing solar (shortwave) radiation towards space and by emit-
ting trapped energy through thermal (longwave) radiation to-
wards the surface. The net cloud radiative effect — the balance
between these opposite contributions — is notably determined
by the surface albedo (Bintanja and van den Broeke, 1996;
Hofer et al., 2017) and cloud properties, i.e their tempera-
ture (Stephens, 1984), structure (Barrett et al., 2017; Gilbert
et al., 2020), and water phase (ice or liquid) (Lachlan-Cope,
2010; Van Tricht et al., 2016; Hines et al., 2019; Gilbert et al.,
2020). The absorption and reflection properties of clouds
depend on the cloud optical depth (COD), which is partly
linked to their liquid water content (Stephens, 1984; Zhang
etal., 1996). Liquid-containing clouds, including both liquid-
only and mixed-phase clouds, have a stronger effect on the
COD and therefore on the SEB than ice clouds (Bennartz
et al., 2013; Gorodetskaya et al., 2015; Hofer et al., 2019).
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Clouds currently warm the Antarctic Ice Sheet (AIS) sur-
face (Pavolonis and Key, 2003; Van Den Broeke et al., 2006).
While most of the solar downwelling radiation (SWD) in
summer is reflected by the high-albedo snow surface, clouds
act as another source of incoming energy in the infrared spec-
trum, which can heat and melt snow (Bintanja and van den
Broeke, 1996; Van Den Broeke et al., 2006) similarly to
over bright surfaces of the Greenland Ice Sheet (Van Tricht
et al., 2016). Abundant liquid-containing clouds associated
with warm and moist air advection are responsible for intense
melt events due to enhanced downwelling longwave fluxes
(LWD) (Nicolas et al., 2017; Scott et al., 2019; Wille et al.,
2019; Ghiz et al., 2021). These liquid-containing clouds can
also become a significant source of incoming energy in win-
ter and trigger surface melt even outside of the usual sum-
mer melt season (Kuipers Munneke et al., 2018b; Wille et al.,
2019).

However, quantifying the influence of clouds on the SEB
remains challenging at high latitudes. This is particularly true
over the AIS, where observations are scarce and expensive
to maintain (Bromwich et al., 2012; Boucher et al., 2013).
From a modelling perspective, the higher equilibrium cli-
mate sensitivities in earth system models (ESMs) from the
recent sixth phase of the Coupled Model Intercomparison
Project (CMIP6) than in CMIPS models, the earlier fifth
phase (Zelinka et al., 2020; Wyser et al., 2020; Wang et al.,
2021), partly result from stronger positive cloud feedbacks
over the Southern Ocean. This might explain why CMIP6-
based projections suggest stronger changes over the Antarc-
tic Ice Sheet and especially a higher increase in melt over the
margins (Kittel et al., 2021). Note that both global climate
models and earth system models are broadly referred to as
ESMs hereafter without any distinction between several de-
grees of model sophistication.

Little is known about how cloud-related uncertainties and
more generally the SEB will influence the future climate
and surface mass balance projections over the Antarctic ice
shelves. Surface melt in Antarctica is currently predomi-
nantly limited to Antarctic ice shelves, especially over the
peninsula (Trusel et al., 2013; Van Wessem et al., 2018;
Agostaetal., 2019). Surface melt can damage the ice shelves,
potentially initiate their collapse (van den Broeke, 2005), and
increase the Antarctic contribution to sea level rise (SLR)
through a speed-up in glacier flow (Scambos et al., 2014)
and associated increase in ice discharge to the ocean. While
melt amounts can be determined from a temperature-based
diagnostic (Trusel et al., 2015), projected melt changes can
vary considerably even at the same rate of warming (Kittel
et al., 2021) and can lead to significant uncertainties in hy-
drofracturing risk (Gilbert and Kittel, 2021).

The aim of this work is to understand the physical drivers
of changes in the SEB that produce large differences in
melt projections over the Antarctic ice shelves. As such, we
force the regional climate model (RCM) “Modele Atmo-
sphérique Régional” (MAR; Gallée and Schayes, 1994) with
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four ESMs from the CMIP5 (ACCESS1.3 and NorESM1-
M) and CMIP6 (CNRM-CM6-1, CESM2) database using
the highest-greenhouse-gas-concentration pathways (respec-
tively RCP8.5 and SSP5-8.5). A description of MAR and
the experiments is given in Sect. 2. Section 3 details the
regional evolution of the SEB and its different components
over the AIS and provides analysis of the physical drivers
behind differences between projections. Finally, our results
are discussed and summarised in Sect. 4.

2  Methods
2.1 The regional atmospheric model MAR

The Modele Atmosphérique Régional (MAR) is a hydro-
static regional climate model specifically developed for polar
areas (Gallée and Schayes, 1994). MAR has often been used
to study the present and future climates of both the Antarc-
tic (Agosta et al., 2019; Kittel et al., 2021) and Greenland
ice sheets (Fettweis et al., 2020; Hofer et al., 2020). In this
study, we used MARv3.11, whose specific adaptation and
set-up for the AIS is given in Agosta et al. (2019) and Kit-
tel et al. (2021). The model has been thoroughly evaluated
over the AIS against near-surface observations from auto-
matic weather stations (Datta et al., 2018; Mottram et al.,
2021; Kittel et al., 2021; Amory et al., 2021; Hofer et al.,
2021), including radiative fluxes (Le Toumelin et al., 2021;
Kittel, 2021; Hofer et al., 2021), surface mass balance (SMB)
measurements (Kittel et al., 2018; Agosta et al., 2019; Donat-
Magnin et al., 2020; Mottram et al., 2021; Kittel et al., 2021),
melt estimates derived from both satellites (Datta et al., 2018;
Donat-Magnin et al., 2020) and weather stations (Kittel et al.,
2021), and satellite cloud cover (Hofer et al., 2021). MAR
underestimates summer SWD by —6.9Wm™2 and LWD
throughout the year by —9.9 Wm™2 (Kittel, 2021).

It is important to note that MAR compares well with re-
cent melt estimates and near-surface temperature observa-
tions (Kittel et al., 2021). This suggests a satisfactory rep-
resentation of the SEB likely due to compensating turbulent
fluxes whose impacts on the future SEB and melt are difficult
to assess. A first comparison with the CloudSat—-CALIPSO
product (described in Van Tricht et al., 2016, and Lenaerts
et al., 2017) suggests that MAR underestimates the liquid
water path (LWP; Fig. S1) but overestimates the ice (taking
into account both ice and snow) water path (IWP; Fig. S2)
around Antarctica, which has also been reported by other
studies over the Arctic (e.g. Mattingly et al., 2020). This un-
derestimation deserves further analyses with a comparison
accounting for the limitations of the satellite product. How-
ever, this bias affects all simulations in an equivalent way,
and its influence is likely removed in comparisons between
different downscalings of ESMs, all produced with the same
model physics. This should not preclude an explanation of
the physical drivers behind the projected spread in melt il-
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lustrated in previous studies using MAR (Gilbert and Kittel,
2021; Kittel et al., 2021) but should be kept in mind when
discussing the plausibility of these projections.

The cloud microphysics module of MAR solves conserva-
tion equations for five water species (cloud droplets, ice crys-
tal, snow particles, rain drops, and specific humidity; Gallée,
1995) and the number of ice crystals (Messager et al., 2004).
The model takes into account the influence of these water
species on cloud radiative properties (Gallée and Gorodet-
skaya, 2010) and energy budget of each atmospheric layer in
the radiative scheme inherited from the ECMWF ERA-40 re-
analyses (Morcrette, 2002). MAR uses a broadband scheme
for the longwave and shortwave radiations that integrates the
values over the entire range of the two spectra. The radiative
scheme uses the ice crystal, water vapour, and cloud droplet
concentrations from each atmospheric layer to determine the
cloud optical properties. The snow particle concentration is
implicitly taken into account by being partially included in
the ice crystal concentration of each layer. The contribution
of snow is expressed as an additional concentration for ice
crystals by assuming that the total ratio of snow and ice crys-
tals is similar to the ratio of their effective radii, i.e only 30 %
of snow is added in the ice crystal concentration input in the
radiative scheme (Gallée and Gorodetskaya, 2010). The ef-
fect of rain droplets on radiation is neglected, especially since
the fall velocity of rain droplets used in MAR (see Emde
and Kahlig, 1989) causes most of them to reach the surface
within one time step of the radiative scheme. For shortwave
radiation, the scheme uses the microphysics properties de-
fined by Slingo (1989) for water clouds and by Fu (1996)
for ice clouds, while water and ice cloud properties for long-
wave radiation are respectively based on parameterisations
detailed in Lindner and Li (2000) and Fu et al. (1998).

2.1.1 Surface energy budget (SEB)

The surface module SISVAT (Soil Ice Snow Vegetation At-
mosphere Transfer; De Ridder and Schayes, 1997; De Rid-
der, 1997; Gallée and Duynkerke, 1997; Gallée et al., 2001;
Lefebre et al., 2003) represents the evolution of snow and
ice layer properties, including their albedo, whose compu-
tation is inherited from CROCUS (Brun et al., 1992). SIS-
VAT also deals with energy and mass exchanges between
the atmosphere and the surface. SISVAT explicitly resolves
the energy budget of 30 layers of snow and ice following
Gallée and Duynkerke (1997). In particular, the surface tem-
perature evolution depends on the net shortwave (SWN), net
longwave (LWN), sensible heat (SHF), and latent heat (LHF)
fluxes, but also on snow melting, liquid water refreezing, and
thermal diffusion into layer(s) immediately below. The ex-
cess in energy is used to warm the snowpack or to melt the
surface snow or ice if the surface temperature has reached
0°C. Liquid water resulting from melt or rain can percolate
vertically and refreeze in the snowpack.
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In this study, we have approximated the SEB (Eq. 1) as
SEB = SWN + LWN + LHF + SHF, (1

with positive fluxes directed towards the surface.

We neglect snow thermal diffusion and liquid water re-
freezing energy as the focus of this study is on the atmo-
spheric factors that contribute to surface melting. The snow
thermal diffusion is also considered to be an order of magni-
tude smaller than other radiative and turbulent fluxes (Van As
et al., 2005). Furthermore, the snow thermal diffusion does
not contribute to surface melting as during melt conditions
the surface layer at 0 °C induces a downward heat flux toward
colder underlying layers. The thin layers of snow at the sur-
face cannot hold much liquid water, in contrast to the deeper
and thicker layers of the snowpack into which liquid water
percolates. Refreezing therefore has a much higher warming
potential in the deeper layers and only weakly contributes
to surface warming. Finally, note that although refreezing
increases with the production of liquid water via rain and
surface melt, the projected increase in runoff indicates a de-
crease in the capacity of the snowpack to absorb liquid water
(Donat-Magnin et al., 2021; Kittel et al., 2021; Gilbert and
Kittel, 2021) and then in the refreezing potential, especially
for larger warming rates. This highlights the predominant ef-
fect of the radiative — mostly SWN and LWN - or turbulent
— mostly LHF and SHF — fluxes and justifies the simplified
SEB equation.

2.1.2 Forcing datasets and experiments

Large-scale conditions are prescribed every 6 h at the MAR
boundaries. The forcing fields include information about air
temperature, specific humidity, zonal and meridional wind
speed components, and at the surface they include informa-
tion about pressure, sea temperature, and sea ice concentra-
tion. MAR is also nudged in the upper atmosphere by large-
scale temperature and wind components to constrain its at-
mospheric circulation (Agosta et al., 2019).

Most of the projections of the Antarctic surface melt have
been based on direct outputs of ESMs (e.g. Seroussi et al.,
2020) from CMIP5 or derived from them using statistical re-
gressions (e.g. Trusel et al., 2015), while more recent cli-
mate models from CMIP6 now project stronger warmings
at both regional (Antarctic) and global scales. Although the
plausibility of (very) high climate sensitivity in the CMIP6
ESMs remains actively debated (Bjordal et al., 2020; Meehl
et al., 2020; Sherwood et al., 2020; Zhu et al., 2020), these
ESMs enable the evaluation of the sensitivity of the AIS to
high temperature increases over the 21st century. We selected
models from both CMIP5 and CMIP6 using the highest emis-
sion scenario (i.e, RCP8.5 for CMIP5 models and SSP5-8.5
for CMIP6). These scenarios are equivalent in terms of radia-
tive forcing (48.5 Wm_z) in 2100 (O’Neill et al., 2016). The
detailed procedure that aims to select models that accurately
represent the present Antarctic climate and maximise pro-
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jected warming diversity can be found in Agosta et al. (2015),
Barthel et al. (2020), and Kittel et al. (2021). In this study,
MAR is forced by two CMIP5 models (ACCESS1.3 and
NorESM-1-M) and two CMIP6 models (CNRM-CM6-1 and
CESM2). These ESMs represent a large range of projected
Antarctic warmings in 2100 qualified from weak (+3.2°C)
to strong (4-8.5°C) compared to the reference climate of
1981-2010. We performed our projections with MAR us-
ing a 35km spatial resolution over 1975-2100, discarding
the first 6 years considered to be spin-up time. The evalua-
tion of these MAR experiments can be found in Kittel et al.
(2021).

The reference (present) period for computing the anoma-
lies (hereafter referred to as changes) in this study is taken
as the summer (December—January—February, DJF) average
from 1981 to 2010 for MAR over ice shelves (melt, SEB
components, cloud amount and properties, surface albedo).
In the same way, we define the ESM warming as the mean
changes in the summer (DJF) near-surface temperatures over
the Antarctic region, i.e 90-60° S (near-surface warming)
compared to 1981-2010. Since more than 80 % of the local
annual melt still occurs in summer by 2100 (except over the
peninsula, where it is more than 50 %), we only discuss the
summer changes.

3 Results
3.1 Contributions to summer melt increase

Our four simulations project an increase in cumulative sum-
mer melt over the ice shelves that strongly differs depend-
ing on the forcing ESM during the 21st century (Fig. 1). We
find a factor of ~3.9 between the lowest and highest cu-
mulative melt changes over the 21st century, despite equiva-
lent radiative forcing from greenhouse gases. MAR driven
by NorESM1-M simulates a cumulative melt increase of
~ 7600 Gt during the 21st century (i.e the lowest melt in-
crease), while the increase reaches ~ 30 150 Gt when MAR
is driven by CNRM-CM6-1 (i.e the highest melt projection).
This spread in projected melt (despite an equivalent concen-
tration pathway) is as large as differences in multimodel es-
timates of Antarctic ice shelf surface melt between low- and
high-concentration pathways by 2100 (Trusel et al., 2015;
Kittel et al., 2021).

Similarly, our MAR experiments project different melt in-
creases over each region depending on the forcing ESM. Be-
tween the lowest and the highest increases, we found a factor
of ~ 2.5 over the Antarctic Peninsula (AP) (Fig. 1f); ~4.4
over the ice shelves of the East Antarctic Ice Sheet (EAIS)
(Fig. 1k); and a factor of ~5 over the ice shelves of the
West Antarctic Ice Sheet (WAIS), where we also included
Ross and Ronne-Filchner ice shelves (Fig. 1p). While the
NorESM1-M and the ACCESS1.3 experiments project dif-
ferent increases over each region, the CNRM-CM6-1 and
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CESM2 experiments mostly differ over the WAIS. There is
indeed a factor of ~ 1.6 between these two projections over
the WAIS despite a similar ESM warming. The WAIS (with
Ross and Ronne-Filchner) appears to be a region of major
uncertainties as the differences in that specific sector domi-
nate the Antarctic signal. Before discussing the SEB drivers
leading to large differences in surface melt increase over the
WAIS, we first analyse the two other sectors (EAIS and AP)
because the changes in the SEB (and associated processes)
are different in each region.

Over the AP, all flux changes are projected to positively
contribute to the melt increases. MAR projects a similar pos-
itive contribution of radiative fluxes (LWN and SWN) for
each experiment except when forced by CESM2, where the
increase in SWN is stronger than in LWN. The relatively
lower increase in LWN in this experiment results from the
competitive effect of more opaque clouds (higher optical
depth) but significantly decreased cloud cover over the AP
(Fig. S3). These changes in cloud cover also contribute to
decreased snow precipitation (Kittel et al., 2021). The combi-
nation of increased melt and reduced snowfall leads to a large
decrease in the albedo (Fig. S4), explaining the higher con-
tribution of SWN in the CESM2 experiment (Fig. 1p). It is
interesting to note that the positive contribution of both sen-
sible and latent turbulent fluxes is specific to the ice shelves
of the AP. Recent studies (Kuipers Munneke et al., 2012; van
Wessem et al., 2014; Kuipers Munneke et al., 2018a; Datta
et al., 2019) have suggested that warm air advection (notably
during foehn events) is an important source of energy over
the peninsula, producing strong melt over the present cli-
mate. MAR simulations project a strong local warming due
to warmer and moister air advection inducing higher precipi-
tation (Kittel et al., 2021) but also larger melt rates. Since the
snow- and ice-covered surface cannot warm higher than the
melting temperature, warmer air advection also increases the
thermal inversion near the surface and then increases SHF.

The melt increase over the EAIS is projected to be dom-
inated by the increase in radiative fluxes and especially
SWN. The NorESM1-M experiment excepted, all experi-
ments project a stronger increase in SWN than LWN with
a factor of between ~ 1.7 and ~ 3.7. The large increase in
SWN results from the decrease in albedo (Fig. S4) due to
melt (and associated melt—albedo feedback) and not a reduc-
tion in high-albedo snowfall that is projected to increase over
the ice shelves of this sector (Kittel et al., 2021). The melt—
albedo feedback also explains the low contribution of SWN
relative to LWN in the NorESM1-M experiment as melt is
likely too weak to actually trigger it, taking into account the
increase in fresh snow.

The WALIS sector including the Ross and Ronne-Filchner
ice shelves drives the Antarctic-scale differences in pro-
jected melt. Following all MAR projections, the radiative
fluxes explain the increase in melt, while turbulent fluxes
have a negative contribution. However, only LWN is pro-
jected to strongly increase and explains uncertainties in melt.
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Figure 1. Cumulative surface melt (Gt) and SEB changes (Wmfz) over the Antarctic ice shelves. The first row (a—e) shows the cumulative
integrated surface melt and averaged SEB components over the whole Antarctic ice shelves, while the second row (f, g, h, i, j) is for the
Antarctic Peninsula; the third row for the East Antarctic sector (k, 1, m, n, 0); and the fourth row (p, q, 1, s, t) for the West Antarctic sector,
including Ross and Ronne—Filchner ice shelves. The second to the fifth columns represent the cumulative changes for each SEB component
(green: net shortwave; orange: net longwave; purple: sensible heat; blue: latent heat) for each MAR simulation (the second row: forced by
ACCESS]1.3; the third row: CESM2; the fourth row: CNRM-CM6-1; the fifth row: NorESM1-M).
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Figure 2. Mean summer melt changes (gigatonnes per 3 months)
projected by MAR forced by ACCESS1.3 (purple), CESM2
(green), CNRM-CM6-1 (orange), and NorESM1-M (blue) for all
the Antarctic ice shelves (a), the ice shelves of the East Antarctic
sector (b), the West Antarctic sector (c), and the Antarctic Penin-
sula (d) compared to mean summer ESM near-surface temperature
(°C) over 90-60° S.

The SWN contributions of MAR forced by CNRM-CM6-1
and CESM2 (and to a lesser extent ACCESS1.3) are almost
equivalent, whereas the CNRM-CM6-1 experiment projects
a much larger (around twice as large) increase in LWN than
all the other simulations. MAR projects an increase in cloud
cover (Fig. S3), enhancing LWN, but this is not sufficient to
explain the projected differences (see below). It is important
to note that results in this sector are mostly driven by the Ross
and Ronne-Filchner ice shelves due to their surface areas.
The differences in projected melt and SEB in 2100 are
partly linked to the ESM warming sensitivity. The latter is
commonly expressed by the equilibrium climate sensitivity
(ECS; see Supplement in Zelinka et al., 2020, for CMIP5 and
CMIP6 models). As suggested by their ECS, MAR forced by
NorESM1-M (ECS of 2.8) and ACCESS1.3 (ECS of 3.55)
projects a lower future surface melt than the two other exper-
iments. Nonetheless, ECS does not wholly explain the dif-
ferences between the CESM2 (ECS of 5.15) and CNRM-
CM6-1 (ECS of 4.9) experiments as the latter projects a
larger surface melt increase. This could be explained by the
greater regional warming over the Antarctic region simu-
lated by CNRM-CM6-1 (4-8.5°C vs 7.7°C for CESM2 in
2100 compared to 1981-2010). However, MAR forced by
CNRM-CM6-1 still simulates a larger melt increase for the
same warming rate than the other experiments (Fig. 2a). This
highlights that other local physical mechanisms have to be
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involved in addition to ESM warming rates to explain the
spread in future surface melt. Figure 2 further reveals that the
WALIS exhibits the highest spread in surface melt for a given
warming rate, confirming that the main uncertainties in fu-
ture Antarctic surface melt result from this region. We there-
fore analyse the factors behind LWN and more precisely be-
hind LWD differences over the WAIS, focusing especially on
the CNRM-CM6-1 and CESM2 experiments while keeping
in mind their (relatively) close ECS and regional Antarctic
warmings.

3.2 Factors behind the differences in LWD over the
West Antarctic ice shelves

The projected LWD increases in each experiment are mainly
due to higher atmospheric temperature, larger greenhouse
gas concentrations including water vapour, and optically
thicker clouds. We perform our MAR projections using
RCP8.5 for CMIPS5 forcings and SSP5-8.5 for CMIP6 forc-
ings. Despite differences in specific anthropogenic green-
house gas concentrations, these two scenarios result in the
same radiative forcing in 2100 (+8.5 Wm~2). We therefore
analyse the contribution of the remaining factors — atmo-
spheric temperature, water vapour, and cloud properties.

3.2.1 Changes in atmospheric temperature and water
vapour

For a similar warming rate, the differences in projected at-
mospheric temperatures and water vapour content only ac-
count for small differences in LWD. The increase in tem-
perature of the atmosphere related to the sensitivity of the
ESM forcing determines the absolute increases and differ-
ences in LWD (Fig. 3a). This is notably highlighted by the
differences between MAR forced by NorESM1-M and the
other experiments. However, temperature alone is not suf-
ficient to explain the large LWD differences for the same
warming rate (Fig. 3a). Approximating the atmosphere as
a longwave-opaque and black body (see Sect. S4), we esti-
mated the maximal potential contribution of the atmospheric
temperature in summer over the present (1981-2010) and the
end of the 21st century (2071-2100) in Table S1. For in-
stance, we found that the future atmospheric temperature in
MAR forced by CESM2 and CNRM-CM6-1 could not ex-
plain more than 31 % of modelled future LWD differences
(2.2 over to 7.1 Wm™2) over the ice shelves of the WAIS sec-
tor. Higher atmospheric water vapour content favours higher
LWD, but all MAR experiments project similar increases
in water vapour for the same warming rate following the
Clausius—Clapeyron relation (Fig. 3b).

The absolute increases and differences in LWD are linked
with the temperature of the atmosphere. The warming sen-
sitivity of each ESM (as indicated by their ECS) influences
the atmospheric temperature and water vapour content for
a given future time period, explaining melt changes that
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are projected to be weak (NorESM1-M), intermediate (AC-
CESS1.3), or strong (CNRM-CM6-1 and CESM2) by 2100.
Accordingly, the predominant factor contributing to melt dif-
ferences is the warming projected by each ESM, highlighting
the importance of multi-model projections for a better assess-
ment of uncertainties. However, comparing our results for
the same rate of warming (see above the respective ECS of
CNRM-CM6-1 and CESM2 or their Antarctic warming) sug-
gests that other physical processes are at play, such as cloud
feedbacks, for explaining the large potential melt differences
projected for the same rate of warming.

3.2.2 Changes in cloud properties

The contribution of clouds to LWD mainly depends on their
own longwave emissivity. The latter can be modified by the
COD, strongly affected by cloud phase. Furthermore, a larger
cloud cover (CC) also favours larger LWD values even for
unchanged physical properties such as cloud opacity and
thickness. As an illustration the MAR experiments project
a larger cloud cover over the Ross and Ronne—Filchner ice
shelves and also more opaque clouds and consequently a de-
crease in SWD.

The mean summer CC and COD are projected to increase
over the WAIS during the 21st century (Fig. 4). While MAR
driven by ACCESS1.3, NorESM1-M, and CESM2 has sim-
ilar CC increases (between ~ 3 % and ~ 4 %), the CNRM-
CMB6-1 experiment (i.e. with the strongest surface melt) re-
veals the largest cloud cover increase, with 9 % more fre-
quent clouds during the austral summer. This is more than
a factor of 2 compared to the other projections. Similarly,
COD increases with a factor of ~5 between the small-
est (NorESM1-M) and the largest (CNRM-CM®6-1) changes
(Fig. 4). While higher temperatures lead to larger COD in-
creases, Fig. 3c demonstrates that the future changes are not
only a direct consequence of atmospheric warming. For in-
stance, MAR driven by CNRM-CM6-1 simulates stronger
changes in COD than other experiments for equivalent near-
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surface warming rates over the ice shelves. This again high-
lights the amplifying role of clouds as the main driver of sur-
face melt for a given warming rate.

The relations expressed in Fig. 5 suggest that the sensitiv-
ity of the LWD increase would progressively stop for (very)
large increases in COD. As these values are not reached be-
fore 2100 in our simulations, the future LWD increase is sup-
posed to remain sensitive to cloud optical properties during
the whole 21st century, including for high warming rates as
projected by CNRM-CM6-1 and CESM2.

3.2.3 Changes in cloud particle phase and mass

MAR projects an increase in cloud particle contents and
changes in phase distributions over the ice shelves that dif-
fer between the simulations, resulting in different cloud op-
tical properties (Figs. 6, 7). While all the experiments start
with similar IWP values (defined as the total ice and snow
content in the whole atmospheric column), the increase is
of different magnitude in each experiment, with an almost
4-fold increase between the lowest (7.3 gm™2 in NorESM -
M) and the highest (26.8 gm™2 in CESM2) changes. Simi-
larly all experiments simulate an increase in LWP over the
West Antarctic ice shelves in the future, but large differences
persist between the changes. MAR driven by CNRM-CM6-1
projects a stronger increase in LWP (8 gm™2), 8 times larger
than the increase in the NorESM1-M experiment (1 gm™?2)
over 2071-2100.

The different increases in LWP control the spread in pro-
jected LWD for the same warming rate. This results from
the strong dependence of cloud emissivity on liquid water
content (Stephens, 1984; Bennartz et al., 2013). While the
CESM2 experiment suggests slightly larger changes in IWP
than the CNRM-CM6-1 experiment, the latter projects more
liquid-containing clouds (higher LWP), resulting in more
opaque clouds (higher COD and then higher LWD) for the
same warming rate. The CNRM-CM6-1 experiment tends to
project larger increases in LWP over all the ice shelves than
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(blue) compared to the present summer climate (1981-2010) over
the ice shelves of the west Antarctic sector. Values are averaged us-
ing a 10-year rolling mean.

the other experiments for similar warming rates. However,
the difference compared to the other experiments is only as
large as over the WAIS as revealed by Fig. 7. This analysis
highlights the strong influence of the cloud water phase for
explaining melt differences projected for the same warming
rate over the WAIS, a region we previously identified to con-
trol the future melt uncertainties.
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The projected cloud phase differences are explained by
the preferential increase in either water and rain droplets
or ice and snow particles at the same warming rate. Over
2071-2100, the vertically averaged atmospheric changes in
both humidity and temperature projected by MAR driven by
CESM2 and CNRM-CM6-1 are similar over the ice shelves
of the WAIS (Table S2). This enables a direct compari-
son, removing the influence of global warming on potential
differences. At the lateral boundaries, the CESM2 experi-
ment reveals a stronger increase in specific humidity above
2000 ma.s.1. than MAR forced by CNRM-CM6-1 (Fig. 8a).
The pattern is opposite below 2000 ma.s.l., where the fu-
ture CNRM-CM6-1 atmosphere is characterised by stronger
low-level humidity advection. Supplement maps (Figs. S5
and S6) illustrate that these discrepancies are relatively spa-
tially uniform along the boundaries of MAR. However, our
results suggest stronger differences over the WAIS and both
the Ross and Filchner—Ronne ice shelves. High- and mid-
level humidity advection favours the formation of snow par-
ticles in the CESM2 experiment (Fig. 8b), while low-level
humidity advection, where the temperature is higher, leads
to the formation of more water droplets in the CNRM-CM6-
1 experiment (Fig. 8c). Favouring the formation of either
snow (and ice) particles or water droplets when saturation
is reached results in differences in IWP and LWP that fur-
ther induce changes in LWD over the WAIS sector. The pref-
erential future increase in low-level water droplets in the
CNRM-CM6-1 experiment finally induces a stronger surface
melt over the ice shelves than the CESM2 experiment despite
a similar regional warming rate. Furthermore, the preferen-
tial increase in either cloud water droplets or snow particles
also explains why MAR driven by CNRM-CM6-1 simulates
more liquid precipitation than when driven by CESM2 and
conversely for solid precipitation (see Fig. 7 in Kittel et al.,
2021).

3.3 Enhanced shortwave absorption and influence on
surface albedo

The ground surface is projected to absorb more shortwave
despite decreased SWD over all ice shelves. The SWD
changes are determined by changes in cloud cover and prop-
erties. The MAR experiments project more opaque clouds
and an increase in CC everywhere on the ice shelves. The
noticeable exception is the AP, where CC is projected to de-
crease, especially in the CESM2 experiment. However, the
COD effect dominates over the CC changes, still leading to
a decrease in SWD even on the AP. The excess energy at the
surface warms and melts snow. This in turn promotes snow
grain metamorphism that, combined with refreezing of liquid
meltwater, lowers the albedo and ultimately favours SWD
absorption. This effect dominates over the decrease in SWD
caused by the more numerous and also more opaque clouds,
leading to an increase in SWN.
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Figure 6. Changes in mean summer IWP (g m~2) as projected by
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We compared the albedo decrease in MAR simulations to
the forcing temperatures in the ESM. Figure 9 reveals that
MAR forced by CNRM-CM6-1 projects a stronger albedo
decrease over the WAIS sector associated with large warming
rates compared to MAR forced by CESM2. This results from
the discrepancies in cloud properties discussed above, lead-
ing to different melt rates and associated changes in albedo.
While more liquid precipitation in some MAR experiments
could contribute to a further decrease in the surface albedo,
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as projected by MAR forced by ACCES1.3 (purple), CESM2
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a sensitivity experiment in MAR forced by CNRM-CM6-1
where rainfall amounts were set to O reveals no difference
with the original MAR CNRM-CM6-1 experiment. This is
explained by the larger increase in melt compared to rain and
then the predominant effect of the melt increase on the albedo
decrease. This suggests that differences in liquid precipita-
tion due to clouds do not further strengthen melt differences,
at least for the precipitation rates projected by our different
MAR experiments.
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Finally, our projections also illustrate the competitive ef-
fects of clouds on solar radiation absorbed by the surface
as they reduce the surface albedo through enhanced LWD
and melt but also reduce incoming energy by filtering SWD.
Their influence on absorbed SWD mainly depends on the
surface albedo but also on the rate at which SWD is projected
to decrease due to an increase in CC and/or COD (Bintanja
and van den Broeke, 1996). In warmer climates in which the
albedo is projected to decrease, clouds could be more reflec-
tive than the ice-covered surface as summer surface albedo
is projected to decrease. These warmer conditions could re-
verse the summer cloud radiative effect, reducing melt, sim-
ilarly to over the dark ablation zone of the Greenland Ice
Sheet (Hofer et al., 2017; Wang et al., 2019), suggesting a
growing importance of surface albedo in determining the fu-
ture cloud radiative effect but also more generally SEB and
melt changes over the AIS.

4 Discussion and conclusion

We investigate in this study the physical drivers of summer
melt differences over the Antarctic ice shelves by 2100 be-
tween four dynamical downscalings of CMIP5 and CMIP6
ESMs with the polar-oriented regional atmospheric model
MAR under the highest-greenhouse-gas-concentration path-
ways (RCP8.5 and SSP5-8.5). Our results highlight the im-
portant role of clouds in amending future surface melt over
the Antarctic ice shelves. The main differences in melt be-
tween our simulations arise from differences in LWN and
SWN radiative fluxes. Among these fluxes, LWN is the
most influential. Furthermore, we highlight the importance
of cloud water content and phase to explain the differences
in projected melt for a given warming. More liquid-water-
containing clouds induce a stronger increase in LWD that
enhances meltwater production but also favours SWD ab-
sorption due to the melt—albedo feedback, further increasing

The Cryosphere, 16, 2655-2669, 2022

melt. Finally, we find that this preferential increase in water
droplets results from a stronger increase in low-level humid-
ity advection rather than high- and mid-level advection that
tends to favour the formation of snow and ice particles.

While it is common to assess the Antarctic contribution
to SLR associated with specific warming rates (e.g. Pattyn
et al., 2018), liquid-containing clouds could lead to large un-
certainties even for the same warming rate. For instance, the
larger melt rate projected in the CNRM-CM6-1 experiment
could lead to more areas susceptible to hydrofracturing com-
pared to the CESM2 experiment despite a similar warming
rate. In 2100, MAR driven by CNRM-CM6-1 projects that
around 99 % (76 % over 2071-2100) of the Antarctic ice
shelves could be vulnerable to surface-melt-driven disinte-
gration (Gilbert and Kittel, 2021). Without the buttressing
effect of these ice shelves, the Antarctic glaciers accelerate,
increasing their discharge into the ocean and raising global
sea level (Sun et al., 2016). This suggests that clouds are pro-
jected to have a strong effect on determining the Antarctic
contribution to SLR.

While MAR projections reveal significant melt differences
using different ESM forcings, we emphasise here that none
of these projections is more plausible than any other and that
the purpose of this study is, in contrast, to highlight the phys-
ical factors that can lead to large uncertainties in Antarctic
melt projections. The warming projected by the ESM forc-
ing is the main factor controlling absolute melt differences,
but we suggest that clouds and their phase as simulated in
MAR are important factors contributing to the spread in melt
and by extension surface mass balance projections of the
AIS for the same warming rate. Recent studies with MAR
(Le Toumelin et al., 2021; Hofer et al., 2021) have revealed
significant changes in LWD due to drifting snow, a pro-
cess not modelled in our study, suggesting that drifting snow
could further contribute to the spread in melt projections.
Furthermore, MAR seems to underestimate the present sum-
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mer LWP compared with CloudSat—-CALIPSO estimates.
Our study highlights the sensitivity of the future surface melt
to liquid-containing clouds, whose representation is con-
sidered a challenge for climate models in Antarctica (Lis-
towski and Lachlan-Cope, 2017; Vignon et al., 2021). Future
work should improve the cloud representation (including in
MAR), potentially leading to revised melt projections over
the Antarctic ice shelves.
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