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Abstract. The vertical distribution of ozone in the atmosphere, which features complex spatial and temporal
variability set by a balance of production, loss, and advection, is relevant for both surface air pollution and climate
via its role in radiative forcing. At present, the way in which regions of coherent ozone structure are defined relies
on somewhat arbitrarily drawn boundaries. Here we consider a more general, data-driven method for defining
coherent regimes of ozone structure. We apply an unsupervised classification technique called Gaussian mixture
modeling (GMM), which represents the underlying distribution of ozone profiles as a linear combination of
multi-dimensional Gaussian functions. In doing so, GMM identifies coherent groups or subpopulations of the
ozone profile distribution. As a proof-of-concept study, we apply GMM to ozone profiles from three subsets of
the UKESM1 coupled climate model runs carried out for CMIP6: specifically, the seasonal mean of a historical
subset (2009–2014) and two subsets from two different future climate projections (i.e., SSP1-2.6 and SSP5-
8.5). Despite not being given any spatiotemporal information, GMM identifies several spatially coherent regions
of ozone structure. Using a combination of statistical guidance and post hoc judgment, we select a six-class
representation of global ozone, consisting of two tropical classes and four mid-to-high-latitude classes. The
tropical classes feature a relatively high-altitude tropopause, while the higher-latitude classes feature a lower-
altitude tropopause and low values of tropospheric ozone, as expected based on broad patterns observed in the
atmosphere. Both of the future projections feature lower ozone concentrations at 850 hPa than the historical
benchmark, with signatures of ozone hole recovery. We find that the area occupied by the tropical classes is
expanded in both future projections, which are most prominent during austral summer. Our results suggest that
GMM may be a useful method for identifying coherent ozone regimes, particularly in the context of model
analysis.

1 Introduction

Earth’s atmospheric ozone distribution is a topic of interest
because of its effect on climate and its role in protecting
surface-dwelling organisms from harmful ultraviolet radia-
tion (Newman and Todara, 2003; Monks et al., 2015). The
distribution of ozone varies both vertically and horizontally.
Nearly 90 % of ozone is found in the stratosphere, the layer
of the atmosphere between 10–50 km, while 10 % is found

in the troposphere, the atmospheric layer extending from
the surface to 10 km. Stratospheric ozone protects surface-
dwelling life by reducing the number of high-energy photons
reaching the surface, which would otherwise lead to high
occurrences of skin cancer, cataracts, and impaired immune
systems (Newman and Todara, 2003; Monks et al., 2009).
In contrast, near-surface tropospheric ozone poses a threat to
human health as it is a pollutant (Monks et al., 2015).
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The spatial variation in ozone is driven by complex at-
mospheric processes. Unlike many of the important trace
gas species studied in the atmosphere, ozone is not di-
rectly emitted from natural or anthropogenic sources. In-
stead, atmospheric ozone concentrations are controlled by
chemical, radiative, and dynamical processes that operate
on a range of timescales. Adding further complication is
the fact that these processes vary significantly with altitude.
In the stratosphere, gas-phase photochemical reactions in-
volving oxygen produce ozone (Chapman, 1930), while it
is destroyed through reactions involving chlorine, nitrogen,
hydrogen, and bromine radical species (Bates and Nicolet,
1950; Crutzen, 1970; Johnston, 1971; Molina and Rowland,
1974; Cicerone et al., 1974). In contrast, tropospheric ozone
is produced through photochemical oxidation of ozone pre-
cursors such as carbon monoxide (CO), methane (CH4), and
non-methane volatile organic compounds (NMVOCs) in the
presence of nitrogen oxides (NO and NO2). Similarly, trans-
port processes differ between the stratosphere and tropo-
sphere. Because of these different processes, understanding
patterns in the vertical distribution of ozone remains a chal-
lenge (Monks et al., 2015). These ozone precursors can be
transported far downwind of their source locations (Chamei-
des et al., 1992; Monks et al., 2009).

Not only are there significant differences in the processes
controlling local ozone mixing ratios at different altitudes,
but these processes also respond differently to changes in
atmospheric composition and global climate. Past changes
in anthropogenic emissions, biomass burning, and lightning
have all contributed to increased emissions of ozone precur-
sors and increased tropospheric ozone (Griffiths et al., 2021;
Jaffe and Wigder, 2012; Monks et al., 2015; Laban et al.,
2018). In contrast, emissions of halogenated ozone-depleting
substances (ODSs) at the end of the 20th century led to sig-
nificant decreases in stratospheric ozone concentrations and
the formation of the ozone hole (Keeble et al., 2021). Fu-
ture projections of ozone concentrations are dependent on as-
sumptions made about greenhouse gas, ozone precursor, and
halogenated ODS emissions, and these changes may work
against each other. For example, stratospheric ozone mix-
ing ratios are expected to increase in the coming decades as
ODS levels decline. However, an acceleration of the Brewer–
Dobson circulation (BDC) associated with increasing green-
house gas concentrations may lead to reductions in lower
tropical stratospheric ozone mixing ratios (Eyring et al.,
2013; Meul et al., 2016; Keeble et al., 2017), while increas-
ing the transport of ozone into the midlatitude troposphere.
Because of these complex interactions, understanding future
changes in the vertical distribution of ozone requires simula-
tions performed by complex models (Banerjee et al., 2016;
Meul et al., 2018).

Because of this complexity, chemistry–climate and Earth
system models are often used to explore changes in atmo-
spheric ozone. A key component in this evaluation is the
comparison of ozone derived from different models and/or

from different scenarios in the same model (Griffiths et al.,
2021; Keeble et al., 2021). Often this is done at the global
scale, but if regional comparisons are made, this is often
done by averaging ozone profiles over set latitude ranges.
However, owing to the complex, spatially heterogeneous pro-
cesses controlling the distribution of ozone described above,
this is a poor method for identifying regions with similar
profiles. As climate and ozone mixing ratios change in the
future, the boundaries between ozone profiles with simi-
lar characteristics might be expected to move. This feature
would not be captured by averaging profiles over fixed lati-
tude ranges. In this work, in order to address this limitation
in latitude-based averaging methods, we describe the vertical
ozone structure with an unsupervised classification method
that groups profiles into classes based on their similarity.

Clustering techniques have already been used in ozone
concentration studies for understanding long-term variabil-
ity. Boleti et al. (2020) have applied a multidimensional
clustering technique to understand the long-term trend of
ozone. Diab et al. (2004) used a six-cluster analysis which
resulted in distinct clusters of “background” and “polluted”
with below- and above-ozone mixing ratios from over 100
ozonesonde profiles launched from a subtropical Southern
Hemisphere Additional Ozonesondes (SHADOZ) (Thomp-
son et al., 2003) site, Irene, South Africa. Jensen et al. (2012)
performed a cluster analysis named self-organizing maps
(SOMs) (Kohonen, 2012) on over 900 tropical ozonesonde
profiles. Their findings with four-cluster results were simi-
lar to Diab et al. (2004). Both studies showed that the sea-
sonal influences of biomass burning and convection domi-
nate ozone variability. Stauffer et al. (2016) documented the
influence of meteorological conditions on the shape of the
ozone profile from the troposphere to the lower stratosphere
by applying the SOM clustering technique to ozonesonde
data from specific Northern Hemisphere midlatitude geo-
graphical regions. Later they expanded the study for global
ozonesonde sites to show the variation in ozone profile clus-
ters for various regions and how they vary based on meteo-
rology and chemistry depending on latitude (Stauffer et al.,
2018).

In our study, we adopt a Gaussian mixture modeling
(GMM) approach, an automated, robust, and standardized
unsupervised classification technique that has previously
been applied to ocean structure and dynamics (Bishop, 2006;
Maze et al., 2017; Jones et al., 2019; Sonnewald et al., 2019;
Rosso et al., 2020). GMM does not use any latitude or lon-
gitude information to identify similar profiles and cluster
them together, which makes it more general than a latitude-
based averaging method. In Sect. 2, we describe the method
adopted in the study and the dataset used in the study. In
Sect. 3, we present the results of the GMM-based clustering
analysis. Finally, we end with a brief discussion in Sect. 4
and conclusions in Sect. 5.
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2 Methods and data

Our approach is based on GMM, which is a type of unsuper-
vised classification method. We want to model the vertical
ozone structure, i.e., to understand how we can identify dif-
ferent ozone profile types in a dataset. To do so, we analyze
the diversity of vertical ozone profiles by way of identifica-
tion of recurrent patterns throughout the collection of profiles
using unsupervised learning.

2.1 UKESM1 experiment selection

The UK Earth System Model 1 (UKESM1, https://ukesm.
ac.uk/, last access: 22 November 2022) is a coupled cli-
mate model with a well-resolved stratosphere, tropospheric–
stratospheric chemistry, ocean–atmosphere carbon and
aerosol coupling, and terrestrial biogeochemistry (Sellar et
al., 2019). The model has a horizontal resolution of 1.25◦

latitude by 1.875◦ longitude, with 85 vertical levels on
a terrain-following hybrid height coordinate and a model
top at 85 km (∼ 0.004 hPa). UKESM1’s complex physical–
biogeochemical coupling and its realistic representation of
historical ozone structure and trends make it a suitable choice
for our study (Keeble et al., 2021). Using the Pangeo plat-
form, we selected annual mean ozone profile data from three
different UKESM1 experiments (Abernathey et al., 2021).
We chose seasonal means to include seasonal variations in
ozone structure. Changes in ozone precursor emissions have
an effect on future tropospheric ozone concentrations; reduc-
tions in precursor emissions drive ozone decreases in shared
socioeconomic pathways (SSPs) (Griffiths et al., 2021). To
explore the effect of emissions on the class properties, we
used ozone data from three different experiments:

– Historical. This experiment uses seasonal means cover-
ing the years 2009–2014.

– SSP1-2.6. This experiment uses seasonal means cover-
ing the years 2095–2100 (strong emission reductions).

– SSP5-8.5. This experiment uses seasonal means cover-
ing the years 2095–2100 (no emission reductions).

Here each simulation year contains 110 591 seasonal mean
profiles.

In order to create a training dataset for the GMM algo-
rithm, we combined data from all three of the above experi-
ments. Essentially, we trained the GMM in such a way that
it “sees” structures from all three experiments and is thereby
better able to represent the full range of possible structures;
i.e., the training process is not biased towards one particu-
lar experiment. Using the trained GMM, we labeled the full
dataset of ozone profiles from all three experiments. We then
used the fully labeled dataset to look for differences in struc-
ture among the historical, SSP1-2.6, and SSP5-8.5 experi-
ments.

At present, standard implementations of GMM cannot
handle missing values. So in this context, one has to select
a subset of the ozone profiles that feature values on every
selected standard pressure level. We discarded any profiles
with NaN (undefined) values. As such, we only worked with
profiles with values over the entire pressure range from 1 to
850 hPa. This means that much of our analysis takes place
over the ocean and only partially covers land-based areas;
i.e., out of necessity, we omit grid cells with surface pres-
sures lower than 850 hPa due to topography.

2.2 Gaussian mixture modeling

GMM, a machine learning method, uses a probabilistic ap-
proach for describing and classifying data by representing
the underlying data distribution using a linear combination of
multi-dimensional Gaussian functions (McLachlan and Bas-
ford, 1988). By using a sufficient number of Gaussians, any
continuous density field can be approximated to arbitrary ac-
curacy. This allows us to identify and model the typical ver-
tical structure represented in the collection of profiles.

Although GMM has been used in several oceanographic
studies to date (Maze et al., 2017; Jones et al., 2019; Son-
newald et al., 2019, 2020; Houghton and Wilson, 2020;
Rosso et al., 2020; Desbruyères et al., 2021; Boehme and
Rosso, 2021), to our knowledge, our application is novel in
the field of atmospheric chemistry. One unique aspect of this
approach is that we do not use any geographical informa-
tion about the profiles to identify groups of similar profiles.
Specifically, we withhold latitude, longitude, and time in-
formation from the unsupervised classification algorithm; it
only sees the values of the ozone concentration on each stan-
dard pressure level. The motivation behind withholding the
geographical information is that we want the algorithm to
cluster the profiles without spatial information, and the class
structure can still explain most of the information when plot-
ted spatially.

The core foundation of a GMM, as described in Bishop
(2006), is that any probability density function (PDF) can
be described as closely as desired with a model of weighted
sums of Gaussian PDFs:

p(x)=
K∑
k=1

λkN (x|µk,6k), (1)

which is called a mixture of Gaussians. Each Gaussian den-
sity N (x|µk,6k), a multidimensional normal probability
density function (PDF), is called a component of the mix-
ture and has its own mean µk and covariance 6k . Here x is a
single profile taken from the complete array X.

We use an expectation–maximization algorithm (Ap-
pendix B) to find the maximum likelihood solution for the
model, which is effectively “training” the GMM to represent
the underlying structure of the ozone data as represented in
abstract principal component space (Sect. 2.3).
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2.3 Dimension reduction

The abstract “feature space” in which we perform the clus-
tering is relatively multi-dimensional; ozone is defined on
19 standard pressure levels in our dataset. Because GMM
becomes less efficient for multi-dimensional problems, we
apply a dimension reduction scheme to reduce the compu-
tational expense of the training step. A large number of di-
mensions in the problem fundamentally translates into a large
number of parameters to be determined in the Gaussian co-
variance matrices. Here we used principal component analy-
sis (PCA), a dimension reduction method that is often used
to reduce the dimension of large datasets by transforming a
large set of variables into a smaller set that still retains an
acceptable percentage of the variability.

As a first prepossessing step, we standardize the ozone val-
ues on each pressure level. Since the ozone values on each
pressure level are standardized independently, “small” varia-
tions in ozone on levels with low variability can have roughly
the same effect as “large” variations in ozone on levels with
high variability. This ensures that the structure seen by GMM
is not just dominated by the pressure levels on which the vari-
ability is high. This prepossessing step also helps to speed up
the algorithm (Jaadi, 2019).

In the last step of PCA, we express each ozone profile as
a linear combination of eigenfunctions using the following
equation for x(z):

x(z)=
d∑
j=1

P(z,j )y(j ), (2)

where z is the pressure level, d is the total number of prin-
cipal components (PCs) (index j ), and P(z,j ) is the trans-
formation matrix between pressure space and PC space. P ∈
RD×d and y ∈ Rd×N with d ≤D. The first row of P con-
tains profiles maximizing the structural variance throughout
the collection of profiles. Thus, if we choose d ≤D, we can
reduce the number of dimensions of the dataset x while pre-
serving most of its structure. This creates a new space where
the N profiles are defined not with D vertical level values
(the x array) but with d values (y array). The transition be-
tween one space to the other is done through the matrix P
containing the definition of the new dimensions in the origi-
nal ones (d vertical profiles of D levels, the eigenvectors of
the covariance matrix xTx) (Fig. A1).

We find that with 10 PCs, this transformation captures
99 % of the variance in the vertical structure, which appropri-
ately reduces the number of dimensions we need to describe
the profile structure from UKESM1, i.e., from 19 pressure
levels to 10 PCs. A reduction to an even smaller number of
PCs is possible at the expense of losing more of the variabil-
ity in the original dataset.

2.4 Selection of the number of classes

We used a random sampling technique to select a subset to
perform a Bayesian information criterion (BIC) method to
find the appropriate K for classes. We refer the readers to
Appendix C for details of the BIC. The reason for random
sampling is to test the sensitivity of our results to the sample
selection process. Under random sampling, each observation
of the dataset subset has an equal opportunity to be chosen
as a part of the sampling process. Note that this sampling is
not related to unbiased spatial sampling.

In our application, for each potential value of K , we
chose 20 different sets of 1000 random samples from the
full dataset of 442 364 profiles. This sampling approach al-
lowed us to estimate the mean and standard deviation (SD)
of BIC at each K . We used the same random seed each time,
so there is no variability associated with the random initial
guesses for the cluster centers. The mean BIC curve appears
to flatten after K = 6, indicating a point of diminishing re-
turns for increasing K (Fig. 1). The overfitting penalty term
starts to dominate for K > 12, indicating an upper bound for
the number of classes.

3 Classification of UKESM ozone profiles

3.1 Classification of ozone profiles from different
experiments

In this section, we analyze the general vertical structure of
ozone data from the UKESM simulations that represent a
chosen historical period (2009–2014) and two future pro-
jection datasets, as mentioned in Sect. 2.1. Our results are
not especially sensitive to the choice of any particular dataset
from the three experiments since we train the GMM using all
the profiles from each period from a variety of atmospheric
ozone states. The classes are sorted by mean latitude for ease
of interpretation.

Proceeding from south to north: classes 1 and 2 are high-
latitude Southern Ocean classes with similar mean profiles
but different variability structures as measured by the stan-
dard deviation curves (Fig. 2). They both feature relatively
low-altitude and gentle tropopauses, as indicated by the slope
of the ozone curves. Class 1 has the lowest ozone value at
850 hPa (Table 1); it has a significant amount of variabil-
ity in the middle stratosphere, which is associated with the
ozone hole (Wargan et al., 2020), which has the largest ef-
fect on class 1, based on its intensification with respect to the
season at high southern latitudes. The mean posterior prob-
ability, which in the context of a given statistical model is a
measure of the algorithm’s confidence in its assignment, is
somewhat lower for class 2 than for class 1, indicating that
there is some ambiguity associated with the assignments into
class 2, which may be somewhat of a boundary or transi-
tion class between the high southern latitudes and the trop-
ics. Note that high posterior probabilities do not necessar-
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Figure 1. BIC score versus the specified number of classes K for UKESM1 data. The solid line is the mean BIC value, and the dashed lines
represent 1 standard deviation on either side of the mean.

ily indicate that the particular GMM is the best fit to the
data, only that the selected GMM is confident in its assign-
ment as measured by the uncertainty. Class 2 is also highly
variable throughout the upper troposphere and tropopause
but not as much as class 1. Notably, all of the high-latitude
Southern Hemispheric classes feature relatively low lower-
tropospheric ozone values with small variability – they are
relatively “clean” in terms of surface ozone pollution (Ta-
ble 1).

Classes 3 and 4 are tropical classes, with higher lower-
tropospheric ozone concentrations and a higher-altitude
tropopause compared with the Southern Hemispheric classes
(Fig. 2). Class 3 and class 4 share similar kinds of struc-
tures from the lower troposphere to the upper stratosphere.
Class 4 features higher lower-tropospheric ozone and higher
variability than class 3. Finally, classes 5 and 6 are North-
ern Hemispheric classes with high lower-tropospheric ozone
concentrations and large variability from the tropopause to
the stratosphere. The higher lower-tropospheric values result
from greater surface pollutants in classes 4, 5, and 6, includ-
ing the associated ozone precursor emissions, which tend to
be concentrated in the Northern Hemisphere due to anthro-
pogenic emissions (Monks et al., 2009, 2015).

Progressing from south to north, we see that the altitude
of the maximum ozone concentration generally increases in
height from the high-latitude Southern Hemisphere to the
tropics and then decreases in height from the tropics to the
high-latitude Northern Hemisphere (Fig. 2). This structure is
consistent with observations and is enforced by the merid-
ional Brewer–Dobson circulation (Butchart, 2014), which is
associated with upwelling in the tropics and downwelling
in the extratropics, somewhat favoring the Southern Hemi-
sphere (Butchart, 2014; Li and Thompson, 2013; Newman
and Todara, 2003; Weber et al., 2011). The imprint of this
circulation pattern is a low-altitude tropopause at the poles
and a higher-altitude tropopause at the Equator.

3.1.1 Classification of ozone profiles from historical
experiment

The vertical ozone structure change pattern is complex fol-
lowing seasonal variation. To examine how the spatial pat-
tern of the classes changes with seasons, global mean ozone
concentrations are plotted according to seasonal categoriza-
tion. The label map indicates the geographic distribution of
the classes during 2009–2014 (Fig. 3). Notably, although the
GMM algorithm was not given any latitude or longitude in-
formation, it was nevertheless able to identify spatially co-
herent groups. The tropical classes are largely organized into
roughly zonal bands in each season, with some exceptions
(e.g., June–August), where the Southern Hemispheric and
tropical classes shift to the northernmost position (Fig. 3c).

Figure 2 shows that, from the tropopause to the strato-
sphere, the high-latitude and polar classes feature a rela-
tively large standard deviation, especially in the lower and
middle stratosphere, suggesting that these classes consist
of a wide variety of profiles. These high-latitude classes
are more sensitive to seasonal change than tropical classes.
For example, from Fig. 3, class 1 (with the largest stan-
dard deviation at stratosphere) extends up to 40◦ S dur-
ing December–February (DJF), recedes southward during
March–May (MAM), and starts migrating northward again
during June–August (JJA). It reaches its northernmost posi-
tion again in September–November (SON). The stratospheric
ozone (14.33± 5.07 mPa) suggests that, depending on the
strength Antarctic ozone hole, this value varies with the sea-
son, and during SON the region covered by class 1 contains
the lowest amount of stratospheric ozone (Table D4). On the
other hand, class 2 starts shifting northward during MAM
and reaches its northernmost position during JJA. Since the
southern polar vortex is much stronger, it prevents the mixing
of classes 1 and 2 during the southern fall and winter seasons.
The tropical classes are less variable, except for DJF and JJA.
The tropical classes shift to the southernmost position during
the former and expand up to around 50◦ N during the latter.
Class 3 expands most northward during MAM. The widening
trends based on seasonality imply that the tropical broaden-
ing in the Southern Hemisphere is mainly due to the Antarc-
tic ozone hole, which causes the largest radiative cooling ef-
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Figure 2. Ozone concentration statistics of UK Earth System model data for the whole dataset, separated by class, as a function of pressure,
sorted by latitude. Shown are the mean (solid lines) and the mean plus or minus 1 standard deviation (dashed line) for all profiles in
the indicated class. Also shown are the number of profiles in each class and the class mean values for longitude, latitude, and posterior
probability.

fect in the lower stratosphere during DJF (Palmeiro et al.,
2014). Increasing black carbon and tropospheric ozone are
considered major forcings for Northern Hemisphere tropical
class widening on a longer timescale during JJA (Allen et al.,
2012). However, these two forcings together have the largest
warming effect in the Northern Hemisphere extratropics (Hu
et al., 2018). Studies showed that the shallow branch (located
in the lowermost stratosphere with upwelling in the tropics
and downwelling in the subtropics) of tropical upwelling is

much stronger toward the summer hemisphere during DJF
than JJA (Palmeiro et al., 2014). The deep branch with up-
welling in the upper stratosphere in the tropics and down-
welling in the middle and high latitudes also show a similar
seasonal cycle with downwelling extended to the polar lati-
tudes in the stratosphere (Seviour et al., 2012; Palmeiro et al.,
2014). The differentiation between the two branches is based
on different forcing, planetary-scale wave forcing acts on the
shallow branch, and in the deep branch the upwelling is asso-
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Table 1. Ozone concentration statistics at 850 hPa for the historical, SSP126, and SSP585 experiments (shown in mPa) (from Fig. 2 but for
each experiment).

Class Hist (mean) (SD) SSP1-2.6 (mean) (SD) SSP5-8.5 (mean) (SD)

1 0.990 0.890 0.900 0.790 1.040 0.880
2 2.150 0.380 1.980 0.330 2.160 0.450
3 2.990 0.950 2.210 0.700 2.560 1.080
4 3.360 1.290 2.620 0.920 3.190 1.330
5 3.190 0.440 2.310 0.260 3 0.440
6 2.940 0.780 2.250 0.610 3.290 0.850

Figure 3. Map of profiles color coded with the class they have been attributed to for model historical data (seasonal mean profiles covering
2009–2014 at each model grid cell) at 850 hPa.

ciated with greenhouse gas increases (Palmeiro et al., 2014).
However, the investigation of seasonal change in tropical up-
welling in shallow and deep branches is beyond the scope of
this study.

The northern high-latitude classes are characterized by fre-
quent variability. Spatially, Class 5 is a dominant northern
subpolar and polar class during DJF and MAM. For the re-
mainder of the year, class 5, with a very high amount of
stratospheric ozone concentration (Fig. 2), is absent, and
class 6 dominates the entire region (Fig. 3c and d). This
tendency suggests to us that Arctic high-altitude ozone is
stronger during Northern Hemispheric winter and spring and
weaker for the rest of the year (Appendix D).

The high lower-tropospheric ozone concentration in
classes 4 and 5 (Table 1) highlights anthropogenic emissions
over those regions and the bulk of biomass burning and wild-
fire, which occurs primarily near the Arctic Circle, in Africa,
and in some parts of North America (Laban et al., 2018; Jaffe
and Wigder, 2012). In the last few decades, wildfires and
biomass burning have gained much attention as they have
been recognized as the second-largest source of ozone pre-
cursor emissions (Monks et al., 2015). Boreal forest fires are
a known source of high surface ozone over North America
(Jaffe and Wigder, 2012). Biomass burning in Africa pro-
duces a significant amount of ozone precursor. Arctic boreal
fire and biomass burning are sources of high ozone precur-
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sors over the northern extratropical and temperate zone (La-
ban et al., 2018; Monks et al., 2015; Jaffe and Wigder, 2012).

Classes at the northern high latitudes (i.e., class 5) have
more stratospheric ozone than those at southern high lat-
itudes (i.e., classes 1 and 2), and this class peaks during
DJF and MAM (Tables D1 and D2). This indicates that in
our study the Northern Hemisphere ozone hole is not es-
pecially predominant during these months in the seasonal
mean. However, Dunn et al. (2022) showed that there are
some particular years when the polar ozone hole can hap-
pen in Northern Hemisphere spring. Larger amplitudes of
upward-propagating planetary waves like Rossby waves can
propagate from troposphere to stratosphere with eastward
wind, where these waves can perturb stratospheric circu-
lation and reduce the speed of polar night jet (Lee, 2021;
Oehrlein et al., 2020; Waugh et al., 2017). In the Northern
Hemisphere, the continent and mountain range layouts ac-
celerate this wave activity more than in the Southern Hemi-
sphere (Lee, 2021; Waugh et al., 2017). Consequently, the
Arctic stratospheric vortex is much weaker and more variable
than its Antarctic counterpart, which features larger mean-
ders in the meridional extent. It is for this reason that, unlike
the Antarctic, a large ozone hole does not form in the Arctic
stratosphere each winter. As the Arctic temperature is higher
than the Antarctic, a strong Antarctic vortex allows for the
formation of polar stratospheric clouds that catalyze ozone
depletion (Waugh et al., 2017; Lee, 2021; Newman and To-
dara, 2003). This allows redistribution of stratospheric ozone
and pulls ozone from the tropics in the Northern Hemisphere
(Lee, 2021; Newman and Todara, 2003). The strong polar
vortex at the South Pole prevents the region from having high
stratospheric ozone (Newman and Todara, 2003), especially
during the Antarctic spring season.

3.2 Classification of ozone profiles in the future climate
projections SSP1-2.6 and SSP5-8.5

We examine the distribution and structure of ozone in two
chosen future climate projections, namely SSP1-2.6 and
SSP5-8.5. SSP1-2.6 is a scenario with strong emission re-
ductions, and SSP5-8.5 is a scenario with increased emis-
sions. We chose these two experiments as end-members rep-
resenting two drastically different future projections. In the
SSP1-2.6 case, with reduced emissions of ozone precursors,
the total lower-tropospheric ozone concentration gets smaller
(Table 1). In the SSP5-8.5 case, with increased emissions
of ozone precursors, the total lower-tropospheric ozone con-
centration is slightly increased or approximately steady (Ta-
ble 1).

Classes 1 and 6, in particular, which are affected by the
ozone hole because of their geographical location, display
a variation in stratospheric ozone (Appendix D) between
2009–2014 and 2095–2100 in both cases in each season, but
SON dominates the increase in stratospheric ozone for the
Southern Hemisphere (Table D4), which is a signature of the

closing of the ozone hole (Keeble et al., 2021). The maxi-
mum concentration is located around 30 hPa in the historical
case, which is above the region of maximum ozone depletion.
The recovery of the ozone hole also shifts the level of max-
imum ozone concentration to lower altitudes (higher pres-
sures, i.e., from 30 to 70 hPa) for the Southern Hemisphere
in future projections of the austral spring season (Table D4).
In the following subsections, we investigate differences in the
spatial structure of the two future emissions experiments.

3.2.1 Geographical distribution of ozone profiles in
SSP1-2.6

Here we examine the spatial pattern of ozone profiles in
SSP1-2.6 in each season over the period 2095–2100. As
with the historical experiment, class 1 has the lowest 850 hPa
ozone (Table 1), which is consistent with the reduction in
surface ozone precursors in this experiment. The maximum
value of stratospheric ozone increases under this scenario,
which is a signature of the recovery of the ozone hole (Kee-
ble et al., 2021).

Moving northwards, class 2 appears to have a similar
structure to its historical counterpart, with higher strato-
spheric ozone and considerable variability in the upper tropo-
sphere to the middle atmosphere (Fig. 2). It is a midlatitude
Southern Hemispheric class occupying roughly the same to-
tal surface area as it did in the historical experiment (Figs. 3
and 4). Unlike the historical case, the area occupied by class
3 has decreased during DJF, and in other seasons this class
also shifts northward and southward as in the historical case
(Fig. 4). This suggests strong emissions play a vital role for
class 3. Notably, the relative position of class 2 sits next to
class 6 during DJF and SON, indicating that these two classes
may be difficult to unambiguously differentiate over these
seasons because of their similar structure. The geographic
distributions of classes 5 and 6 are similar to their historical
counterpart, except with reduced lower-tropospheric ozone
concentrations consistent with continued ozone precursor
emissions reductions (Table 1) and increased stratospheric
ozone during DJF and MAM (Tables D1 and D2). The tro-
pospheric ozone decrease is more significant in the Northern
Hemisphere than in other scenarios, helping to mitigate cli-
mate change and air quality impacts (Table 1) (Keeble et al.,
2021).

3.2.2 Geographical distribution of ozone profiles in
SSP5-8.5

Here, we examine the structure of atmospheric ozone in the
2095–2100 period of the SSP5-8.5 experiment. In this ex-
periment, ozone mixing ratios are generally higher through-
out much of the troposphere and upper stratosphere. In the
troposphere, the drivers of this increase are complex. Un-
der the assumptions of the SSP5-8.5 scenario, global mean
emissions of nitrogen oxides (NOx) and carbon monoxide
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Figure 4. The same as Fig. 3 but for the SSP 1.2-6 label map covering the years 2095–2100.

(CO) are lower in 2095 than in the present day, while global
mean emissions of methane (CH4) are higher (Gidden et al.,
2019). However, changes in ozone precursor emissions (in-
cluding biogenic volatile organic compound (BVOC) emis-
sions caused by increasing tropospheric temperature) alone
do not drive tropospheric ozone changes. The availability
of tropospheric water vapor and stratosphere-to-troposphere
transport of ozone together drive increases in tropospheric
ozone concentrations (Griffiths et al., 2021; Turnock et al.,
2020; Zanis et al., 2022). In the stratosphere, this increase is
simpler to understand. Upper-stratospheric ozone increases
under all SSPs as ozone-depleting substances decrease but
increases more in scenarios that assume larger increases in
greenhouse gas emissions due to the resulting CO2-induced
cooling of the stratosphere and the impacts this has on gas-
phase chemistry (Haigh and Pyle, 1982; Jonsson et al., 2004).

Proceeding from south to north, we see that classes 1
and 2 are similar to their historical counterparts during
DJF and MAM, covering a similar proportion of area, al-
beit with increased stratospheric ozone at the pressure level
with maximum concentration during JJA and SON that de-
creases during both DJF and MAM unlike SSP 1-2.6 and
the historical case (Appendix D). Future ozone depletion de-
crease will lead to ozone concentration increases through-
out the atmosphere, and the high-latitude upper stratosphere

of both hemispheres will have the largest changes (Griffiths
et al., 2021). However, an increasing amount of greenhouse
gas emission will yield a more complex pattern of ozone
changes, which will lead to a possible strengthening of the
Brewer–Dobson circulation and an increase in net strato-
spheric influx and high tropospheric ozone in the Southern
Hemisphere class as the result of circulation changes (Young
et al., 2013; Monks et al., 2015; Butchart, 2014; Griffiths et
al., 2021; Lu et al., 2019).

The tropical classes (i.e., 3 and 4) are similar to those
seen in the historical case, except for JJA. During JJA, class
3 is more sparse in the Southern Hemisphere. Interestingly
class 5 starts showing up in the southern polar region during
JJA (Fig. 5). This experiment is associated with an enhanced
amount of ozone mixing ratio, which causes the polar vortex
to weaken. As a result, during Southern Hemisphere winter,
a huge amount of stratospheric ozone sits next to class 1.
Finally, class 6 remains a large-scale Northern Hemispheric
polar class during JJA and SON, although class 6 has in-
creased lower-tropospheric ozone concentrations relative to
SSP1-2.6, in part due to continued precursor emissions. In
response to tropospheric warming driven by greenhouse gas
in SSP5-8.5, the subtropical tropospheric jets intensify, while
the contribution of gravity waves increases in the middle
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stratosphere (Palmeiro et al., 2014). As a result, stratospheric
ozone increases in high-latitude classes (Table D).

The oceans are major sinks of tropospheric ozone at the
surface, and there are few direct sources of ozone precursors
present over the ocean (Archibald et al., 2020a, b). Advec-
tion of emission-driven ozone production over the land or an
increase in ozone transport from the stratosphere is respon-
sible for ozone increase for the profiles that are covering the
ocean (e.g., class 3, which covers the majority of the oceanic
region in the tropics) (Archibald et al., 2020a, b).

4 Discussion

The distribution of ozone in the atmosphere is relevant for
both climate and human health. Recently, researchers have
employed a number of approaches for identifying different
“profile types” in both observational and numerical model
data, going beyond a basic latitudinal-averaging framework
for comparison. These methods complement each other and
add to existing expertise-driven classification approaches.
Here we aimed to add to the atmospheric analysis toolbox
using unsupervised classification, which is a type of ma-
chine learning that identifies patterns and structures in unla-
beled datasets. We based our profile classification scheme on
Gaussian mixture modeling (GMM), which attempts to rep-
resent the ozone profiles as represented in an abstract princi-
pal component space using a linear combination of Gaussian
functions. We applied GMM to a collection of seasonal mean
ozone profiles taken from a set of UKESM1 simulations.
Specifically, we used GMM to classify profiles from a histor-
ical experiment and two future climate experiments, namely
SSP1-2.6 and SSP5-8.5. We used GMM as a “hypothesis
generation tool”, generating ideas for further exploration and
analysis (Kaiser et al., 2022). Note that the detailed explo-
ration of this hypothesis is beyond the scope of this technical
note; further analysis of the ideas presented here would be
a welcome addition to the literature. The spatial extent and
seasonal variability within the classes reflect the integrated
effect of a number of different processes and timescales, so
they should be interpreted within that context. Nevertheless,
GMM was indeed able to identify spatially coherent profile
types and track their variability over time, highlighting the
ability of GMM to identify and follow structures.

Even though the GMM algorithm was not supplied with
the latitudes or longitudes of the profiles, the classes never-
theless vary structurally with latitude, as expected. For exam-
ple, we find two tropical classes (classes 3 and 4) with ele-
vated tropopause heights and two polar classes (classes 1 and
6) with lower tropopause heights, broadly consistent with the
imprint of the Brewer–Dobson circulation.

The spatial distributions of the classes generally vary with
the season. In the historical UKESM1 experiment, we see
that the tropical classes (classes 3 and 4) shift in mean lati-
tude towards the summer pole, i.e., southwards in DJF and

northwards in JJA. The subpolar and polar classes in the
Northern Hemisphere (classes 5 and 6) vary drastically, with
class 5 disappearing entirely in summer and autumn. This
may reflect larger variability in the profile structure seen in
autumn and winter. In the Southern Hemisphere, the south-
ernmost class (class 1) usually covers Antarctica, except in
the autumn and winter (MAM, JJA) when class 2 covers a
larger area. We see similar patterns in SSP1-2.6 and SSP5-
8.5, with the notable exception of the appearance of class 5,
ostensibly a Northern Hemispheric class, in the wintertime
Southern Hemisphere of SSP5-8.5. This result highlights that
the classes are not inextricably tied to a particular latitude
band: they may appear wherever similar structures exist. The
appearance of class 5 here suggests a shift in ozone distribu-
tion large enough that it disrupts the classification scheme,
highlighting an area for further study.

Our results for SSP1-2.6 are broadly consistent with the
tropical broadening hypothesis in that the spatial extent of the
tropical classes (classes 3 and 4) increases between the his-
torical case and SSP1-2.6 across all seasons. We also saw in-
creases under SSP5-8.5, with the possible exception of SON.
In the projections of future climate considered here, both
hemispheric high latitudes show large variations in strato-
spheric ozone. These changes in the ozone concentration for
high-latitude classes (i.e., classes 1 and 6) in future projec-
tions show the potential changes due to changes in precursor
emissions and changes in ozone advection. Southern Hemi-
spheric tropospheric ozone levels are generally low for all
three cases considered here. There are larger fluctuations in
the lower troposphere at high latitudes of the Northern Hemi-
sphere (class 6), which could be related to differences in pre-
cursor transport and chemistry from lower latitudes.

This study focuses on model analysis. When working with
model data, we typically have access to fairly uniform spa-
tial and temporal ozone coverage, at least in parts of the at-
mosphere with a full range of pressures from 850 to 1 hPa.
This coverage allows us to train our mixture model in a way
that is relatively unbiased with respect to location and time.
The trained mixture model is thus able to identify coher-
ent regimes with similar patterns of vertical variability in a
way that is more general than drawing somewhat arbitrary
latitude–longitude boxes. Because we can train the mixture
model using data from a variety of times and experiments,
it is possible to train a GMM that can, in principle, repre-
sent the full range of data structures found within a selected
ensemble and track how those structures evolve over time.
Although we did not attempt to do so here, it should be pos-
sible to use GMM for inter-model comparison, allowing for
the structures and differences in structures to be derived di-
rectly from model data.

Although our study focused on model analysis, it is pos-
sible to apply GMM to observed ozone profiles as well. At
present, ozone observations are biased towards a few specific
locations where long-term monitoring has taken place. Train-
ing a GMM on this data would necessarily bias the classes
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Figure 5. The same as Fig. 3 but for the SSP5.8-5 label map covering the years 2095–2100.

Table 2. Relative area coverage by tropical classes (3+ 4) as com-
bined regions during each season (shown as percentages).

Season Historical SSP1-2.6 SSP5-8.5

DJF 64.80 66.90 66.30
MAM 65.50 66.00 66.70
JJA 65.70 67.60 65.60
SON 65.00 67.60 62.60

towards particular locations and times, making direct com-
parisons between models and observations difficult. One pos-
sible solution would be to train a GMM on model data and
then apply it to observations, although any systematic biases
would have to be treated carefully during the data cleaning
and prepossessing steps. In terms of working towards a more
optimized ozone observing system, it may be useful to use
GMM and similar classification methods to identify which
regions feature coherent variability.

5 Conclusions

In this study, we applied Gaussian mixture modeling
(GMM), an unsupervised classification method, to ozone
profiles from the UKESM1 coupled climate model in order to

robustly and objectively identify coherent sets of ozone pro-
file types. Our motive was to investigate the ozone structure
using a limited number of classes. We used principal compo-
nent analysis (PCA) to reduce the computational complex-
ity of the problem, increasing the computational efficiency
at the expense of only 1 % of the variability in the dataset.
We used a statistical approach (i.e., BIC) and post hoc ex-
pert judgment to inform our choice of the number of classes,
settling on a six-class representation of the ozone profiles.
This six-class system included two tropical classes and four
mid-latitude to high-latitude classes. Although the GMM al-
gorithm was not given any spatiotemporal information, we
found that it was able to identify a set of spatially coher-
ent regions of ozone structure. We trained the GMM using
data from all three model cases in order to expose it to the
full range of profile types in our classification problem. We
compared lower troposphere and maximum ozone concentra-
tions for three model cases and their spatial extents. Higher
concentrations of stratospheric ozone in classes 1 and 6 in
both of the future projection cases indicate a seasonal de-
crease in ozone depletion and possible ozone hole recov-
ery, which results in a decrease in tropopause height based
on seasons (Appendix D). The modeled lower-tropospheric
ozone is higher in the Northern Hemisphere and relatively
low in the Southern Hemisphere (Table 1). Notably, the spa-
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tial area occupied by the tropical classes increased in both fu-
ture projections based on seasonality relative to the historical
benchmark, consistent with the tropical broadening hypoth-
esis, i.e., the expected expansion of tropical upwelling (Ta-
ble 2). GMM can be applied to identify data-derived regions
of coherent ozone structure and may therefore be useful for
model–model comparisons or model–data comparisons.

Appendix A: Principal component analysis (PCA)

The principal component analysis shown in Fig. A1 is
adopted for dimensionality reduction in this work. The figure
shows the eigenfunctions. These eigenfunctions came from
the eigenvalues, and the corresponding eigenvectors of the
covariance matrix are used to find the directions along which
the variability is the largest.

Figure A1. Principal components (PCs) showing the percent variance statistically explained by each PC (in parentheses).
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Appendix B: GMM details

For details of the GMM classification algorithm, we refer
the readers to Bishop (2006). The classification algorithm is
adopted from Bishop (2006) and Maze et al. (2017).

B1 Probability density function of profiles

The key ingredient of GMM is a multidimensional normal
probability density function (PDF) with mean µ and covari-
ance 6:

N (x|µ,6)=
1√

(2π )D|6|1/2

× exp
(
−

1
2

(x−µ)T6−1(x−µ)
)
. (B1)

In this study, x ∈ RD×1 is a profile of the X ∈ RD×N collec-
tion, µk is a D-dimensional mean vector where µk ∈ RD×1,
6 ∈ RD×D is a covariance matrix, and |6| is the determi-
nant.

In other words, the array X is the dataset we want to
analyze; it is made up of N vertical profiles (as columns)
of D pressure levels (as rows). The functional dependence
of the Gaussian on the x is through the quadratic form,
12
= (x−µ)T6−1(x−µ), which appears in the exponent

in Eq. (B1). We consider a superposition of K Gaussian
densities of the form, where the quantity 1 is called the
“Mahalanobis distance” from µ to x, which reduces to the
Euclidean distance when 6 is the identity matrix (Bishop,
2006).

The joint distribution will be p(z)p(x|z), and the marginal
distribution of x is

p(x)=
∑
z

p(x,z)=
∑
z

p(z)p(x|z). (B2)

Here,
∑
zp(x,z) is the probability distribution for the ob-

servations x1, . . .,xN . Thus, for every observed data point
xn, there is a corresponding latent variable zn.

GMM represents the PDF as a weighted sum of K Gaus-
sian classes as in Eq. (1). If we integrate Eq. (B1) with re-
spect to x and note that both p(x) and Gaussian components
are normalized, we obtain

K∑
k=1

λk = 1. (B3)

We call the parameters λk mixing coefficients. The require-
ment p(x)≥ 0 together with N (x|µk,6k)≥ 0 implies λk ≥
0 for all k.

Combining these conditions, we can write 0≤ λk ≤ 1. The
latent variable z is a K-dimensional binary random variable,
having a 1-of-K representation in which a particular element
zk = 1 and the rest are equal to 0. Therefore, zk ∈ {0,1} and∑
kzk = 1, and there areK possible states for the vector z ac-

cording to which element is nonzero. The joint distribution is

p(x,z) in terms of a marginal distribution p(z) and a condi-
tional distribution p(x|z). The marginal distribution over z is
specified in terms of the mixing coefficients λk , such that

p(zk = 1)= λk.

Because z uses a 1-of-K representation, Eq. (1) can be writ-
ten in the following form:

p(z)=
K∏
k=1

λ
zk
k . (B4)

The conditional distribution of x given a particular value for
z is a Gaussian

p(x|zk = 1)=N (x|µk,6k), (B5)

which can be written in the following form:

p(x|z)=
K∏
k=1

N (x|µk,6k)
zk . (B6)

The joint distribution will be p(z)p(x|z), and the marginal
distribution of x is

p(x)=
∑
z

p(x,z)=
∑
z

p(z)p(x|z)

=

K∑
k=1

λkN (x|µk,6k)

=

K∑
k=1

p(zk = 1)p(x|zk = 1)

=

K∑
k=1

λkpk(x) . (B7)

This equation is also called “mixture distribution”.
Here, p(x) stands for the observed PDF, and

∑
zp(x,z) is

the probability distribution for the observations x1, . . .,xN .
Thus, for every observed data point xn, there is a correspond-
ing latent variable zn.

Gaussian mixture modeling boils down to an optimiza-
tion problem that can be tackled by maximizing the likeli-
hood of observed profiles. This optimization is referred to
as a “model training”. It is solved with the expectation–
maximization (EM) method. The conditional probability of
z given x plays an important role in the EM algorithm.
γ (zk) represents p(zk = 1|x), whose value can be found us-
ing Bayes’ theorem,

P (A|B)=
P (B|A)P (A)

P (B)
.

Therefore,

γ (zk)≡ p(zk = 1|x)=
p(zk = 1)p(x|zk = 1)∑K
k=1p(zk = 1)p(x|zk = 1)

=
λkN (x|µk,6k)∑K
k=1λkN (x|µk,6k)

. (B8)
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Here, λk is the prior probability of zk = 1 and the quan-
tity γ (zk) as the corresponding posterior probability once we
have observed x. The posterior probability for each compo-
nent in GMM from which the dataset was generated is called
the “responsibility”. Responsibilities sum to 1. This helps us
predict which Gaussian is responsible for which data point.

Since the latent variables are never observed, and the cor-
rect values are not known in advance, EM is useful to figure
out what z represents without someone to specify it before-
hand.

The EM method aims to iteratively improve the results
based on some initial assumptions regarding the mean, stan-
dard deviation, and latent values. Every single iteration con-
sists of the following two steps: the expectation (E) step and
the maximization (M) step.

In the E step, it uses current values for the parameters to
evaluate the posterior probabilities or responsibilities given
by Eq. (B8). We then use these probabilities in the M step to
re-estimate the means, covariances, and mixing coefficients.

EM for Gaussian mixtures

1. Initialize the parameters and evaluate the initial values
for log-likelihood. Parameters are as follows: meansµk ,
covariances 6k , and mixing coefficients λk .

2. In the E step, evaluate the responsibilities using the cur-
rent parameter values:

γ (zik)=
λkN (xi |µk,6k)∑K
k=1λkN (xi |µk,6k)

.

3. In the M step, re-estimate the parameters using the cur-
rent responsibilities:

– µnew
k =

1
Nk

∑N
i=1γ (zik)xi ,

– 6new
k =

1
Nk

∑N
i=1γ (zik)

(
xi −µ

new
k

)(
xi −µ

new
k

)T,

– λnew
k =

Nk
N

,

where Nk =
∑N
k γ (zik).

4. Evaluate the log likelihood using the following equa-
tion:

lnp(X|λ,µ,6)=
N∑
i=1

ln

{
K∑
k=1

λkN (xi |µk,6k)

}
,

and check the result for convergence of either the pa-
rameters or the log-likelihood. If the convergence crite-
rion is not satisfied, return to step 2.

Appendix C: Selecting the number of classes

The main free-input parameter to the model training proce-
dure is the number of mixture components K . Determining

the most appropriate number of components automatically is
a difficult problem that often contains a degree of subjectiv-
ity, requiring domain expertise. Here we use a combination
of statistical guidance and expert judgment to select the num-
ber of classes.

For statistical guidance, we use the Bayesian information
criterion (BIC). The BIC is an empirical approach to model
probability computed as follows:

BIC(K)=−2`(K)+Nf (K) log(n), (C1)

where `(K) is the log-likelihood of the trained model withK
classes and n is the number of profiles used in the BIC test.
The log-likelihood function is as follows:

`= lnp(X|λ,µ,6)=
N∑
i=1

ln

{
K∑
k=1

λkN (xi |µk,6k)

}

=

N∑
i=1

ln
K∑
k=1

(λkp(xi)) . (C2)

The log-likelihood of the dataset, assuming independent ob-
servations, is as follows:

`(θ )=
N∑
i=1

logp(xi;θ ), (C3)

where it is explicit that the log-likelihood is a function of the
set of parameters θ and that p(xi;θ ) is the probability given
in Eq. (C2) for the dataset instance xi using the parameter
θ . Nf is the sum of the component weights to be estimated,
Gaussian means, and covariance matrix elements in the D-
dimensional data space (where our new dimension is d after
PCA):

Nf (k)= (K − 1)+Kd +
Kd(d − 1)

2
. (C4)

The BIC is empirical; the first term on the right-hand side in
Eq. (C1) decreases as the likelihood of the statistical model
increases, while the second term on the right-hand side is
a penalty term that increases with K and thus discourages
overfitting (Maze et al., 2017). The “ideal” value for K , in
terms of this statistical metric, would be one that minimizes
BIC, i.e., where the likelihood of the model has been max-
imized without overfitting. One may also find that the BIC
curve “plateaus”, indicating that the model has reached max-
imum likelihood; i.e., further increases in the statistical com-
plexity of the model no longer noticeably improve the likeli-
hood. Empirical approaches like BIC are often used in statis-
tics, especially when constraining the parameters is difficult
or subjective. They can give us a rough estimate of what data
collection might look like if we were able to survey the entire
population (Maze et al., 2017).

Here, θ = {λ,µ,6} is the set of parameters that minimize
the misfit between the PDF of the dataset that is going to
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be used for calculation and the PDF of the original dataset.
To train a GMM, i.e., to maximize `(θ ) with regard to θ so
that our BIC can be lowest, we need a dataset x and a given
number of components K (Maze et al., 2017).

Appendix D: Maximum ozone concentration

Here we provide detailed information about the maximum
ozone concentration based on seasons.

Table D1. Pressure level (lev) of the maximum value of class mean ozone concentration during DJF. The mean and standard deviation values
of the class statistics are also shown (in mPa).

Class Hist (lev) (mPa) (mean) (SD) SSP1-2.6 (lev) (mPa) (mean) (SD) SSP5-8.5 (lev) (mPa) (mean) (SD)

1 50 13.600 1.200 50 15.600 1.200 100 14.600 1.100
2 30 13.800 0.600 50 16 3.900 30 14 1
3 20 14.400 0.900 20 14.700 0.600 20 13.800 0.700
4 30 13.700 1.700 30 14.300 2.600 20 13.800 3.100
5 50 17.800 4 50 20 4.500 70 21.100 4
6 70 17.700 1.100 70 20.700 1.300 70 22 3.400

Table D2. The same as Table D1 but for MAM.

Class Hist (lev) (mPa) (mean) (SD) SSP1-2.6 (lev) (mPa) (mean) (SD) SSP5-8.5 (lev) (mPa) (mean) (SD)

1 50 15.300 0.600 70 16.800 0.700 50 16.500 0.600
2 50 14 2 50 15.100 2.400 50 15.400 2.300
3 20 15.100 0.800 20 15.400 0.600 20 14.300 1
4 30 14.100 2.100 30 14.600 3 30 14.400 3.600
5 50 16.900 2 70 21.500 3.900 70 23.900 3.200
6 50 16.200 1.900 70 20.800 4 70 21 4.900

Table D3. The same as Table D1 but for JJA.

Class Hist (lev) (mPa) (mean) (SD) SSP1-2.6 (lev) (mPa) (mean) (SD) SSP5-8.5 (lev) (mPa) (mean) (SD)

1 70 17 1.100 70 18.800 1.400 70 19.300 1.100
2 50 15.800 3 50 18.800 3.800 50 17.900 5.200
3 20 15.400 1 20 15.500 0.800 20 14.900 1.300
4 30 14.300 2.100 30 14.800 2.600 20 14.300 2.900
5 0 0 0 30 16.400 2.100 50 22.600 1.900
6 50 14 1.500 70 15.700 2.300 50 15.400 2.500

Table D4. The same as Table D1 but for SON.

Class Hist (lev) (mPa) (mean) (SD) SSP1-2.6 (lev) (mPa) (mean) (SD) SSP5-8.5 (lev) (mPa) (mean) (SD)

1 30 9.600 3.300 70 18.300 3.200 70 21.200 3.400
2 50 16 1.700 70 16.600 2.500 30 16.600 3.900
3 20 15.300 1 20 15.500 0.800 20 15.300 1.100
4 30 14.300 1.600 30 14.900 2.400 30 14.300 1.800
5 0 0 0 0 0 0 0 0 0
6 50 13.900 2 50 14.700 2.500 50 15.500 2.500
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Code and data availability. Data from UKESM1 are part of
the CMIP6 data suite, which is freely available from a num-
ber of sources. For this study, we used the Pangeo platform
(https://pangeo.io/, last access: 22 November 2022) for rapid
data access and averaging. The DOIs used are as follows:
https://doi.org/10.22033/ESGF/CMIP6.6113, Tang et al., 2019;
https://doi.org/10.22033/ESGF/CMIP6.6333, Good et al., 2019a;
https://doi.org/10.22033/ESGF/CMIP6.6405, Good et al., 2019b.
We used a “preprocessing” script from Julian Busecke (https:
//github.com/jbusecke/cmip6_preprocessing, last access: 21 Jan-
uary 2023; DOI: https://doi.org/10.5281/zenodo.7519179, Busecke
et al., 2023). All scripts used to process the data and pro-
duce the figures for this paper are available online via Zenodo
(https://doi.org/10.5281/zenodo.7662179, Fahrin and Jones, 2023).
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