
RESEARCH ARTICLE

Wintertime overlaps between female

Antarctic fur seals (Arctocephalus gazella) and

the krill fishery at South Georgia, South

Atlantic

Connor C. G. BamfordID
1,2*, Victoria Warwick-Evans1, Iain J. Staniland1,3, Jennifer

A. Jackson1, Philip N. Trathan1

1 British Antarctic Survey, High Cross, Cambridge, United Kingdom, 2 University of Southampton,

Southampton, United Kingdom, 3 International Whaling Commission, The Red House, Impington,

Cambridge, United Kingdom

* conord48@bas.ac.uk

Abstract

The diet of Antarctic fur seals (Arctocephalus gazella) at South Georgia is dominated by Ant-

arctic krill (Euphausia superba). During the breeding season, foraging trips by lactating

female fur seals are constrained by their need to return to land to provision their pups. Post-

breeding, seals disperse in order to feed and recover condition; estimates indicate c.70% of

females remain near to South Georgia, whilst others head west towards the Patagonian

Shelf or south to the ice-edge. The krill fishery at South Georgia operates only during the

winter, providing the potential for fur seal: fishery interaction during these months. Here we

use available winter (May to September) tracking data from Platform Terminal Transmitter

(PTT) tags deployed on female fur seals at Bird Island, South Georgia. We develop habitat

models describing their distribution during the winters of 1999 and 2003 with the aim of visu-

alising and quantifying the degree of spatial overlap between female fur seals and krill har-

vesting in South Georgia waters. We show that spatial distribution of fur seals around South

Georgia is extensive, and that the krill fishery overlaps with small, highly localised areas of

available fur seal habitat. From these findings we discuss the implications for management,

and future work.

Introduction

Antarctic fur seals (Arctocephalus gazella) were heavily exploited by commercial sealing in the

South Atlantic following the initial discovery of their abundance in the Southern Ocean [1].

Populations inhabiting the Sub-Antarctic archipelago of South Georgia (54˚17’S 36˚30’W)

were commercially targeted from 1786 onwards, with the population close to extinction by

1820, and likely extirpated by the end of the 19th Century [2] when the industry shifted its

focus to populations further south [1]. However, since the cessation of commercial sealing [3]

the population of fur seals breeding at South Georgia has grown rapidly. This archipelago now
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supports in excess of 95% of the global population [4], and Antarctic fur seals are now regarded

as one of the most numerous otariid species in the Southern Ocean [5]. Early population

recovery rates were estimated to be as high as 16.8% per year, between the late 1950’s and early

1970’s at South Georgia [6], with rates falling to 11.5% by the late 1970’s [7], and then to 9.8%

per year between the late 1970’s and 1990’s [4] as the population presumably approached car-

rying capacity in this part of its breeding range.

South Georgia is the global epicentre of fur seal breeding [4]; the surrounding productive

polar and sub-polar waters of the Scotia Sea support over 50% of the Antarctic krill (Euphausia
superba) biomass in the Southern Ocean [8], and provide fur seals with access to their primary

dietary staple [4, 9]. Conservative consumption estimates suggest that fur seals breeding on

South Georgia consume c.3.84×106 tonnes of krill each year, with approximately 52% of this

taken by males and 48% by females [10]. Interannual breeding success of fur seals is closely

linked with the abundance of krill, with low prey availability corresponding with low pup sur-

vival rates and production at South Georgia [11, 12].

Recent changes in regional climate dynamics have been linked to recruitment, abundance

and distributional changes of krill [13]. Changing environmental conditions are also thought

to be related to the number of breeding fur seals at Bird Island, located at the western tip of

mainland South Georgia (54˚00’S 38˚03’W, Fig 1). During the breeding season, lactating

female fur seals act as central place foragers, and their ranges are restricted by their need to

return to shore to provision their pups [14]. Consequently fur seals, particularly females, are

more vulnerable to prey fluctuations during this period [15]. At Bird Island, contemporary

counts show a 30% decrease in the number of females between 2003 and 2012 [4, 16]. Since

the early 1980s, there has been an increase in the frequency of positive Southern Annular

Mode events, which is reflected by warmer sea surface temperatures and reduced krill avail-

ability [17]. The phenotypic plasticity of fur seal populations at South Georgia also appear to

have shifted in relation to changing climate dynamics [17]. This, coupled with increasing inter-

annual variation in krill supply, may have adverse impacts on breeding success into the future.

However, it is also worth noting that population trajectories are now monitored at a second

breeding site on South Georgia (i.e. Maiviken; 54˚ 15’S 36˚ 30’W), and these may help deter-

mine whether observations from Bird Island are localised or representative of an island-wide

signal [18]. At present though, the duration of the Maiviken time series is too short for

observed trends to be statistically significant [18].

The Government of South Georgia and the South Sandwich Islands (GSGSSI), a UK Over-

seas Territory, aims to ensure that the harvesting of krill within the South Georgia and the

South Sandwich Island Marine Protected Area does not pose a threat to fur seals or other krill

predators [19]. Recognising the risks of negative interactions with seals, other krill-dependent

predators, and the krill fishery particularly during the summer months [19], the GSGSSI has

imposed a series of protective management measures within the South Georgia and South

Sandwich Island Marine Protected Area. These include: (i) a closed krill fishing season from

October to April, so that the krill fishery is restricted to the winter period when most krill

predators are no longer breeding or have seasonally migrated away from the region, and (ii)

coastal protection zones to reduce competition with krill predators, based on the foraging

range of land-based predators– 22.2 km at Shag Rocks (to the west of mainland South Geor-

gia), 22.2 km at Clerke Rocks (to the east of South Georgia), and 30.0 km around South Geor-

gia itself. More broadly, GSGSSI also implements all management measures agreed by the

Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), the

international authority responsible for sustainably managing the Southern Ocean krill fishery

and minimising ecosystem impacts.
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To facilitate fishery management, the CAMLR Convention Area is divided into Manage-

ment Areas (https://www.ccamlr.org/en/organisation/convention-area), with each of these

further divided into Subareas. The focus of this study is the waters surrounding the island

of South Georgia in the South Atlantic (Fig 1), which falls within Subarea 48.3. CCAMLR

conducts ecosystem-based management using eight ecological indicator species, which

includes fur seals. The use of monitoring species is intended to help identify ecosystem-

wide changes. The objective of CCAMLR is to ensure harvesting does not alter ecological

relationships, ensuring that any changes in the marine ecosystem as a result of fishing are

minimised, and potentially reversible over two to three decades. CCAMLR’s krill manage-

ment framework is currently in the process of being re-designed (SC-CAMLR-2019), and

in the interim a precautionary catch limit of 279,000 tonnes per year for CCAMLR Subarea

48.3 has been set.

Fig 1. The Scotia Sea region depicting FAO statistical boundaries for CCAMLR Subareas 48.1, 48.2, 48.3, and 48.4. Model area is highlighted in solid red.

Major fronts in the Antarctic Circumpolar Current are depicted in grey, and from north to south are: the Sub-Antarctic Front (SAF); the Antarctic Polar Front

(APF); the Southern Antarctic Circumpolar Current Front (SACCF); and the Southern Boundary of the Antarctic Circumpolar Current (SBACC). Solid black line

denotes the 1000 m isobath, and is indicative of the ‘shelf-break’. Northwest Georgia Rise (NWGR) is indicated. Bird Island (the tagging site) is indicated in the

magnified panel. Bathymetry data General Bathymetric Chart of the Oceans (GEBCO).

https://doi.org/10.1371/journal.pone.0248071.g001
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Prey consumption by the fur seal population at South Georgia varies seasonally [10], reach-

ing a peak in the winter and a minimum in the summer, when many animals are ashore, fast-

ing for significant periods [10]. Seals require prey to be accessible (i.e. within their dive/depth

tolerance), at a certain density and of a given quality [20] to forage successfully. Consequently,

factors that affect prey density are likely to impact foraging success, and ultimately reproduc-

tive output. Changes in prey density may therefore have important population-level conse-

quences, though females may be more resilient because of their lower per capita consumption

[14]. Given the possibility of increased fishing activity in the Scotia Sea [21], and the predicted

shift in krill dynamics [13], the extent of any anthropogenic impact on fur seal populations

should be evaluated.

Post breeding (c.mid-March/April), female fur seals are no longer constrained to return to

land [22], and they disperse throughout the Scotia Sea and beyond. During this period there is

the potential for interactions with the krill fishery [14, 23]. At South Georgia, this fishery [24]

employs two main trawling techniques; traditional mid-water trawls and, more recently, con-

tinuous trawling, whereby the krill-catch is continuously pumped from the net cod-end to the

ship whilst fishing is underway [25, 26]. Both techniques pose risks of seal: net interactions

when underway; a total of 462 fur seals were caught in commercial krill nets between 2003,

when reporting first began, and 2005. The introduction of mandatory seal exclusion devices

(SEDs) reduced the mortality rate to negligible levels per annum (a single individual in both

2006 and 2007, respectively). However, seals may still be caught in the wings of the net as it col-

lapses just prior to being hauled on board [27]; mortality as a consequence of the krill fishery

could therefore be both direct and indirect. Instances of bycatch by the krill fishery in Subarea

48.3 have been described previously [27], and these highlight the need to understand winter-

time areas of vulnerability for fur seals in the effort to further reduce bycatch mortalities, a

major concern for both CCAMLR and GSGSSI.

Satellite telemetry and associated analytical techniques facilitate investigation into the at-

sea distribution and activities of individuals at broad spatial and temporal scales [28, 29]. How-

ever, the winter-period is generally under-studied, particularly in the high latitudes, where

environmental conditions frequently preclude or restrict predator research. Moreover, limited

tag-battery longevity means that few summer tag deployments extend into the winter. Here,

using habitat models, we investigate the scale of the spatial overlap between female fur seals

tracked from Bird Island during the winter when the South Georgia krill fishery operates (May

to September, inclusively). We compare these predictions to the operational footprint and

catch recorded by the krill fleet between 1999 and 2019, inclusively, in order to assess the

degree of overlap between fur seals and the krill fishery and provide suggestions for the future

trajectory of fur seal research and management at South Georgia.

Methods

Deployment procedure

Platform terminal transmitters (PTT, Sirtrack, Havelock North, NZ; Kiwisat 101; 245g, 13 x

6.5 x 1.9 cm) were fitted to 14 lactating female fur seals breeding on Bird Island, South Georgia

during the late summer; 8 were deployed in 1999 and 6 in 2003 following procedures described

in [30]. Capture and restraint times were minimised, and were always less than 2 and 25 min-

utes, respectively. No anaesthetics were used. PTTs were attached with epoxy resin to the fur

of each animal along the dorsal region midway between the shoulder blades [14] to maximise

surface exposure and hence signal uplink strength. All animal handling procedures described

here were subject to review and approval by the BAS Animal Welfare and Ethics Review

Board. No unique identifiers were issued for these procedures.
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Telemetry processing

Data outside the winter period when the krill fishery operates (May to September) were

removed, as were invalid location uplinks (ARGOS Quality Z [31]). To aid with state space

model convergence, the remaining data were filtered using the R package ‘argosfilter’ [32] to

remove improbable positions characterised by unrealistic turning angles, distances and speeds

between locations–turning angle thresholds of<15˚ and 25˚ were used for distances >2.5 km

and 5 km, respectively, and all locations were subject to a speed filter of 10 m s-1. The data con-

sidered for modelling here represent non-constrained, post-breeding movement activity by

female fur seals. During this period, animals are free to move throughout their range without

the need to return to land to provision pups. However, whilst free to roam, animals may peri-

odically return to land for rest, although they often rest at-sea. As such, locations which

occurred on land were removed, so that the data processed herein represent only at-sea activ-

ity. Processed tracks were split if the time between successive uplinks exceeded 3 days [33], in

an effort to prevent unrealistic linear interpolations between successive points over unob-

served regions. Data were processed in the R package crawl [34, 35], where the generation of a

random correlated walks in a state-space environment allowed the intervals between the

uplinks to be regularised into a defined time step. Here we selected a 3-hour interval to allow

inter-tag variations in transmission frequency to be standardised whilst maintaining the inher-

ent properties of each individual track. All subsequent geospatial analysis was carried out in

either ESRI’s ArcMap v10.6 (ESRI 2018) or QGIS v.3.10 (QGIS.org, 2021), with data projected

into a custom Lambert Azimuthal Equal Area projection centred on 54.01˚S 36.3˚W. Output

files were plotted and visually checked for projection errors.

Habitat models—Environmental covariates and model selection

To model the relationship between female fur seals and their environment, we used both static

and dynamic environmental covariates. Static covariates were derived from high resolution

(30 arc-second) GEBCO bathymetric data [36]; in addition to depth, these included slope,

standard deviation of the slope, aspect (angle/direction, as if referring to a compass, in which

a surface faces), and distance to reported colony locations [37]. All were calculated using the

spatial analyst toolbox in ArcMap v10.6. Dynamic covariates pertaining to wind stress curl

(ID: erdlasFnWPr_LonPM180, resolution of 1˚x1˚) and sea surface temperature (ID:

erdPH2sstdmday, resolution 0.0417˚x 0.0417˚) were extracted using the R package ‘rerddapX-

tracto’ [38], which links to the ERDDAP data servers at the NOAA/SWFSC Environmental

Research Division. Monthly composites of chlorophyll-a data were obtained at a resolution of

0.25˚x0.25˚ from the E.U. Copernicus Marine Service Information: Global Ocean Biogeo-

chemistry Hindcast (available at: https://resources.marine.copernicus.eu/). Chlorophyll data

were log transformed prior to analysis.

To model both presence (seal locations, given by the output of the models implemented in

the crawl package) and absence (unobserved locations) of fur seals, three independent pseudo-

absence locations were randomly generated for each observed presence point; only data within

the modelled area were considered for analysis. This area was bounded in the north by the

position of the Polar Front [39, 40] and in the south by an average of the maximum winter sea

ice extent (1981–2010) (available from https://nsidc.org/data). Antarctic krill is not the pri-

mary prey resource for seals outside these boundaries, as it does not occur north of the Polar

front in significant [41], so these boundaries restricted our analysis to krill-driven habitat use

patterns. We extracted environmental covariate data for each location (whether observed or

pseudo-absence) for model input.
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Three models were built for the winter period (May to September inclusive, reflecting the

licenced period for the modern krill fishery): for 1999, 2003 combining both years. Collinearity

between covariates was tested using Variance Inflation Factors (VIF), with a threshold of 0.7

[42], in the R package usdm [43]; of the pair, or pairs, of collinear variables that exceeded this

threshold, the variable with the higher of the two scores was removed. In all instances this step

highlighted the collinearity between bathymetric slope and its standard deviation; as such the

standard deviation was removed in all candidate models. The probability of occurrence of fur

seals tracked from Bird Island was modelled using Generalised Additive Models (GAMs) with

a binomial error structure in the R package mgcv [44]. Smooths of each covariate were taken

by fitting cubic regression splines with shrinkage, whilst knots were set to 4 to minimise over-

fitting [44].

K-fold cross validation was used to evaluate model performance, where K equalled the

number of months in each year’s winter period (data were available May through August in

1999, and May through September in 2003). For each individual period, models were built

using data from one month and evaluated using data from the remaining months of that

period. Model evaluation applied area under the curve (AUC), sensitivity and specificity (cor-

rectly predicted presences and absences, respectively) scores generated in the R package pROC
[45]. Values range from 0.5 to 1.0, where the lower bound indicates predictive performance no

better than random, and 1.0 a perfect model. A forward stepwise approach was applied during

model selection. Each covariate was ranked and the highest selected; the remaining covariates

were added iteratively until the overall model AUC value did not increase. Semi-variograms

produced in the R package gstat [46] revealed that spatial autocorrelation was present to some

extent in the data (< 2km), and thus the cross-validation approach applied here provides a

cautious means of selecting modelled covariates [47], which was unlikely to affected by the spa-

tial autocorrelation. Selected models were then applied to predict the foraging distribution of

fur seals from all colonies on the north coast of South Georgia using the location of breeding

sites detailed in [37].

Spatial overlap processing

The predicted likelihood of occurrence for two threshold levels (>95% and>50% likelihood

of seal occurrence) were used to define the overlap of the fishery with predicted seal occur-

rence for each model, after [48, 49]. Fishery data (metric tonnes, t, caught) for Subarea 48.3 for

the years 1999 to 2019 were provided by CCAMLR. We accounted for known spatio-temporal

location issues associated with records of continuous fishing (i.e. the allocation of a continuous

fishing effort to a single Latitude/Longitude position) [50] by using the start position for each

haul. Fishery data were collated for the winter period (May to September), and summarised

using per unit area (km2) in regions that overlapped with the modelled thresholds. We used

kernel densities of the krill fishing data to illustrate the spatial overlap between the fishery foot-

print and two thresholds of model predictions (>95% likelihood and>50% likelihood) using

the R packages ‘MASS’ within ‘ggplot2’ [51, 52] (Fig 3).

Results

Model selection, performance and evaluation

Telemetry data from 14 individual female fur seals were modelled (mean combined tag dura-

tion 76 ± 52 days [1999: mean tag duration 45 ± 28 days; 2003: mean tag duration 116 ± 49

days]; Table 1). For each year and period, AUC values showed that the variables that best

described the distribution of female fur seals were distance from the colony (CDIST–Table 2).
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The model describing the winter of 1999 showed an increase in AUC values after the addition

of sea surface temperature and depth as covariates. The model for the winter of 2003 showed

that the use of four covariates most accurately described fur seal distribution, whilst the com-

bined year model required five covariates to best describe fur seal distribution. All models

included the covariate distance to colony. For model development, distance to colony was

based on distance to Bird Island. However, for the spatial extrapolation of these models, this

variable was substituted with distance to the colonies reported in [37], to more accurately pre-

dict across the entirety of coastline of South Georgia. The AUC, specificity, and sensitivity val-

ues for all models suggested that all models performed well (>0.8) at predicting seal presences

and absences.

Model response curves

In the 1999 winter model, fur seal distribution was explained by both static and dynamic envi-

ronmental covariates, with the probability of occurrence reduced as distance from the colony

and sea surface temperature increased, a linear decrease in likelihood of occurrence as depth

increased (Fig 2a). The 2003 winter model also showed that the probability of occurrence

broadly decreased as distance from the colony and depth increased, with probability peaking

at c.200 km from the colony, and at c.2000 m. Dynamic covariates for this period indicate that

fur seals preferentially targeted areas where sea surface temperature ranged between 0˚C and

2˚C, and where chlorophyll concentrations were>0.5 mg m-3, (Fig 2b). For the model based

on both years, the likelihood of fur seal occurrence peaked at depths c.2000m and between 0˚C

and 2˚C. The results showed a decreasing trend when both distance from the colony and slope

increased. These data revealed that fur seals were more likely to occur in regions where the

slope is shallower, and where aspect was close to 0˚ (i.e. more northerly facing) (Fig 2b).

Table 1. ARGOS locations for each tagged seal, start date, end date, and durations for fur seals instrumented in 1999 (n = 8) and 2003 (n = 6).

Deployment year ID Number of ARGOS locations Start date End date Tag duration (days)

1999 W5727_9377 282 01/05/1999 06/07/1999 66

W5757_6074 415 01/05/1999 22/06/1999 52

W5767_9375 181 01/05/1999 18/06/1999 48

W5773_9374 158 02/05/1999 22/05/1999 20

W5793_6076 78 01/05/1999 04/08/1999 95

W5797_6072 95 01/05/1999 19/06/1999 49

W5801_9373 97 01/05/1999 13/05/1999 12

W5811_9301 169 01/05/1999 22/05/1999 21

mean 45

sd 28

2003 W6478_1527 143 28/05/2003 15/06/2003 18

W6479_30205 913 01/05/2003 30/09/2003 152

W6876_30204 99 19/05/2003 26/09/2003 130

W6879_30206 1023 06/05/2003 12/09/2003 129

W6880_30203 254 08/05/2003 30/09/2003 145

W6881_30201 480 01/05/2003 31/08/2003 122

mean 116

sd 49

combined mean 76

combined sd 52

https://doi.org/10.1371/journal.pone.0248071.t001
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Spatial predictions and fishery overlap

The spatial footprint shows that over the period 1999 to 2019 the krill fishery primarily oper-

ated on the northern shelf break of South Georgia, specifically to the north-east of Cumberland

Bay, 54˚13 S 36˚26 W (Fig 3a–3c). This distribution falls within the predicted distribution of

female fur seals in all modelled time periods. However, the footprint of the fishery rarely over-

lapped with the higher, >95% likelihood, threshold of fur seal occurrence–in all instances the

fishery primarily overlapped with the lower,>50% likelihood, threshold. Between 1999 and

2019, the krill fishery caught between 85–97% of their catch within regions modelled to have a

>50% likelihood of female fur seals being present (Table 3). In years contemporaneous to the

modelled tracking data (Fig 3d–3f), the krill fishery only operated in the vicinity of South

Georgia during 2003 (in 1999 effort was further south), resulting in an extraction of between

83–95% of their catch within modelled areas corresponding to a>50% likelihood of a seal

being present. The fishery did not overlap with the higher threshold regions in that year. These

results show that the spatial distribution of the krill fishery is highly focussed, occupying only a

fraction of the modelled area (Fig 3). Fishery activity, per unit area, was focussed on between

8–24% of predicted fur seal distribution (Table 3). Data presented here suggest that vessels

Table 2. Covariates included in the GAMs and model performance metrics; Area Under the Curve (AUC), specificity (correctly predicted absence locations); sensi-

tivity (correctly predicted presence locations).

Model Covariates AUC Specificity Sensitivity

1999 CDIST 0.860 0.868 0.775

DEPTH 0.782 0.893 0.665

CHL 0.764 0.915 0.653

CURL 0.756 0.861 0.647

SST 0.678 0.561 0.783

SLOPE 0.591 0.552 0.644

ASPECT 0.565 0.607 0.547

CDIST + SST + DEPTH 0.877 0.849 0.819

2003 CDIST 0.764 0.633 0.816

DEPTH 0.731 0.721 0.724

CHL 0.706 0.671 0.755

CURL 0.682 0.740 0.709

SST 0.627 0.396 0.905

SLOPE 0.585 0.645 0.525

ASPECT 0.551 0.636 0.490

CDIST + DEPTH + CHL + SST 0.822 0.719 0.825

All CDIST 0.773 0.631 0.809

DEPTH 0.748 0.791 0.654

CHL 0.708 0.695 0.715

CURL 0.681 0.616 0.808

SST 0.586 0.429 0.834

SLOPE 0.571 0.685 0.467

ASPECT 0.553 0.714 0.408

CDIST + DEPTH + SST + ASPECT + SLOPE 0.806 0.677 0.791

Covariate abbreviations as follows: Distance from colony (CDIST); chlorophyll concentration (CHL) and sea surface temperature (SST). Bold face indicates the

covariates and their AUC, specificity and sensitivity values for the best fitting model for each period. Further details of each stage of cross-validation, and individual

variable contributions are available in the S1-S3 Tables in S1 File.

https://doi.org/10.1371/journal.pone.0248071.t002
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Fig 2. Covariate response curves for the three modelled periods: From top to bottom the plots correspond to the covariates included in the (a) 1999 winter

model (red), (b) the 2003 winter model (black), and (c) the all data model (blue). Grey shading indicates ± 2 standard error bounds for models covariates. Plot

produced in R package ‘visReg’ [53].

https://doi.org/10.1371/journal.pone.0248071.g002
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operate in areas of known krill abundance, targeting similar areas year-on-year, where they

extract the majority of their catch. In all periods considered, the krill fishery took the majority

of its catch from Subarea 48.3 within the vicinity of South Georgia, and within regions pre-

dicted to have a>50% likelihood of fur seals being present. However, it is clear that fur seal

distribution extends into regions far beyond the footprint of the krill fishery (Fig 4). The winter

of 1999 was characterised by a dispersal of fur seals into the wider South Georgia region,

beyond the shelf-break, in a uniform pattern around the island (Fig 4a). In contrast, in 2003,

seals appeared to display a much stronger affinity towards the shelf, and to the north/north-

western aspects of South Georgia (Fig 4b). In the combined model (Fig 4c), the spatial distribu-

tion of fur seals clearly showed a strong preference for the shelf-region of South Georgia; these

Fig 3. Percentiles of the predicted at-sea distribution of female Antarctic fur seals, where dark grey indicates>95% likelihood of a seal being present, and light

grey indicates>50% likelihood. CCAMLR krill catch data summarised by blue kernels. The top row depicts krill catch data from the entire period 1999 to 2019

compared to the modelled fur seal thresholds, whilst the second row depicts total krill catch from the year of the model. Black line corresponds to the 1000m

bathymetric contour and is indicative of the South Georgia shelf-break.

https://doi.org/10.1371/journal.pone.0248071.g003
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areas of preference extend to the west along the 1,000m contour, over the North-West Georgia

Rise, and also offshore to the north-east of South Georgia.

Discussion

Here we present an analysis of the spatial overlap between female Antarctic fur seals and the

winter krill fishery that operates around South Georgia, in CCAMLR Subarea 48.3. Using PTT

data from 14 individuals we model, for the first time, the winter distribution of post-breeding

female fur seals and discuss implications for management. Over recent years, the krill fishery

has operated around the northern shelf-break of South Georgia [18, 24], which when exam-

ined alongside the predictions from our models, shows that there is a substantial overlap

between likely fur seal distribution and the footprint of the fishery. Understanding spatial

interactions between two such potentially competing entities can inform mitigation strategies,

helping to develop a more sustainable use of the system into the future. This is crucial in pro-

viding baseline understanding about fur seal habitat use in the winter, and is particularly rele-

vant if the pressure from the fishery increases [54, 55].

Interannual fur seal habitat

Within the modelled area, female fur seals showed close affinity to the shallower waters of the

South Georgia shelf and shelf break, and were predominately found within 500 km of the coast

throughout the winter period. While some female seals do migrate to other areas, such as to

the Patagonian Shelf or to the ice edge [22, 23], here we have on the c.70% of the population

that remain south of the Polar Front [56] to feed, primarily on krill, during the winter. We

Table 3. Spatial overlap of the krill fishery and model predictions of the likelihood of occurrence of female fur seals during the winter months (May to September,

inclusively) at two threshold levels;>95% likelihood, and>50% likelihood of occurrence.

Model

year

Model prediction

threshold

Model area

(km2)

(a) Overlap with fishery catch recorded concurrent to tracking data

Fishery footprint

(km2)

Total catch

(t)

Fishery footprint as a proportion

of modelled area (%)

As a proportion of total annual catch in

subarea 48.3 (%)

1999 50th 148920.18 - - - -

95th 3092.04 - - - -

2003 50th 55889.86 2,965.52 54,937.10 24.22 83.04

95th 738.91 - - - -

all 50th 85452.69 3,164.82 62,574.96 23.36 94.58

95th 735.06 - - - -

Model

year

Model prediction

threshold

Model area

(km2)

(b) Overlap with all fishery catch recorded between 1999 and 2019

Fishery footprint

(km2)

Total catch

(t)

Fishery footprint as a proportion

of modelled area (%)

As a proportion of total catch (1999 to

2019) in subarea 48.3 (%)

1999 50th 148920.18 11,219.15 696,861.86 7.53 84.93

95th 3092.04 - - - -

2003 50th 55889.86 12,242.64 720,703.05 21.90 87.84

95th 738.91 73.79 108.40 9.99 0.01

all 50th 85452.69 13,546.50 794,767.52 15.85 96.86

95th 735.06 91.71 796.22 12.48 0.10

(a) Describes these overlaps for the catches landed in the year contemporaneous to the model predictions.
(b) Describes the overlaps between the modelled thresholds and all catches taken within the predicted area between 1999 to 2019. Dashes indicate that there was no

overlap between predicted fur seal distribution and the krill fishery. Note there was no active krill fishery during the winter of 1999. Total krill catch in subarea 48.3

between 1999 and 2019 was 820,511 tonnes, and in 2003 was 66,159 tonnes.

https://doi.org/10.1371/journal.pone.0248071.t003
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Fig 4. Spatial predictions of the GAM models for (a) winter of 1999 (May to August); (b) winter of 2003 (May to

September); and (c) combined winter of both years (May to September). Red line denotes the boundary of the modelled

area, bounded by the Polar Front to the north and the average position of the maximum winter ice extent between 1981–2010

to the south. Black line denotes the 1,000m bathymetric contour, which indicates the shelf-break of South Georgia. Blank cells

indicate areas where there were gaps in the remotely sensed covariate data, and thus no prediction in these areas.

https://doi.org/10.1371/journal.pone.0248071.g004
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observed a variation in the spatial distributions of seals between years. In the winter of 1999,

fur seals were associated with the shelf of South Georgia, but also dispersed into offshore

regions. In 2003, fur seal distribution was more contracted than in 1999, with regions beyond

the shelf-break being less used, and shelf-regions dominating the predictions. The combined

model indicated that the aspect of the bathymetric slope played a role in influencing fur seal

distribution, which probably reflects the known north-coast preference of fur seals at South

Georgia [37], alongside a spatial bias stemming from tag deployment from a single, north-

coast site. Areas of higher likelihood of occurrence were broadly consistent throughout the

each model, with an association with the Northwest Georgia Rise (NGR, 52.75˚S 37.32˚W, Fig

1) being clearly present in both the 2003 and combined models (and to a lesser extent in 1999).

Affinity to the NGR may be due to productivity; this region is commonly associated with

increased chlorophyll concentrations [57, 58], which in part may be due to the formation and

retention of cyclonic water masses, known as Taylor columns above this bathymetric feature

[59]. Distance to colony was significant in all models, with this association possibly reflecting a

carry-over of learned behaviour from the summer, where seals develop knowledge of prey dis-

tribution close to their breeding beaches prior to dispersing more widely.

The climate of the Scotia Sea is highly variable [60], and linked to the cycles of both the El-

Niño Southern Oscillation (ENSO) and the Southern Annular Mode [61], which strongly

influence interannual krill population dynamics [62]. ENSO has been shown to propagate into

the South Atlantic along a 4–5 year lag cycle [63], whist Southern Annular Mode events have

been linked to localised changes in conditions at South Georgia [11], and with fluctuations in

fur seal populations [16]. These climatological processes, whilst not investigated directly here,

may well have influenced the observed interannual differences between 1999 and 2003. How-

ever, we cannot exclude that such differences may also have arisen from variations in sample

size and individual habitat preference. Examination of patterns of individual, or interannual

habitat usage, through further longer-term winter-tag deployments, would be a valuable ave-

nue for future research, and would address a significant gap in our understanding of this sys-

tem during the winter.

Model performance and caveats

Performance of all models was good, with AUC, sensitivity and specificity values all falling

within commonly accepted bounds. Model predictions of the spatial extent of habitat utilisa-

tion by fur seals are consistent with observations from previous studies [22, 23, 64–66],

although the spatial scales of these works vary. Our models are based on 14 tracked female

seals, which inevitably leads to individual variability in the data, a common issue in such

pooled-data modelling exercises. Generalised Additive Mixed Models (GAMMs) offer the abil-

ity to account for individual variability within their structure [44]. However, such a framework

can prove to be prohibitively computationally demanding and can be difficult to apply to small

samples [67], notably the case here for tracks that were divided into several subsets due to gaps

in transmission. Consequently, this approach was not followed and standard GAMs were

applied. Tag deployment from a single location may also have caused a spatial bias in the pro-

portion of winter overlap between the seals and the fishery, with these models built on data

reflecting localised conditions at the west end of South Georgia. Therefore, the models may

accurately translate to conditions elsewhere around the island. However, it should be noted

that the majority of the population is concentrated in the west of the island [37]. When

extrapolated, these models may not fully encompass the true extent of fur seal distribution at

the eastern end of the island, particularly given the known differences in foraging behaviour

between east and west [66]. As a result, and considering also our sample size representing
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approximately ~0.0009% of the population, the overlaps with the krill fishery presented here

are highly conservative, with the true extent likely to be considerably higher.

Fishery overlap

Visualisation of the CCAMLR catch data clearly illustrate that the operational footprint of the

fishery is focussed on the northern shelf, and shelf-break of South Georgia (Fig 3), with the

exception of 1999, when no fishing took place [also see 18]. Our models show that the krill

fishery occupied a much smaller footprint compared to the total habitat available to female fur

seals during the winter months. Overlaps accounted for c.7.5% of the predicted space utilised

by seals (at a predicted likelihood threshold of 50%) during years when they are more dis-

persed (Fig 4a–winter 1999), and up to c.21.9% when seals are coastally distributed (Fig 4b–

winter 2003), when compared to all fishery data 1999–2019. Overlap was higher in years when

comparisons were made to concurrent fishery data (Table 3a). The degrees of overlaps were

probably influenced by interannual variation in fur seal distribution, with the probable interac-

tion between seals and the fishery being much higher if both the fishery and seals were to

occur in only shelf regions.

Between 1999 and 2019, the krill fishery was operationally constrained to shelf regions,

whereas seals ranged further offshore. Regions to the north-west, near to the Northwest Geor-

gia Rise, were especially targeted by seals. In contrast, the fishery repeatedly targeted easterly

regions where higher densities of krill have been recorded and caught [68]. These targeted

regions closely align to areas where seafloor topography and current regimes are thought to

drive aggregations of higher krill biomass [60, 69]. The concentration of fishing effort in shelf

regions will result in greater overlap between seals and the fishery in years where fur seals

themselves are more coastally distributed. This could lead to localised resource depletion,

which likely will have negative consequences for both seals and the fishery through both the

removal of krill biomass as well as possible disruption of krill swarms, making seal foraging

more energetically costly.

Over the two years that data were available, fur seals displayed differing foraging strategies.

In 1999 animals were more dispersed, whilst in 2003 animals showed greater affinity for the

shelf-break. Both dispersal scenarios highlight that fur seals from South Georgia are able to

range widely over much of the South Georgia and Subarea 48.3 region. Therefore, in doing so,

seals directly overlap with where the krill fishery primarily operates. The majority of the krill

catch is taken once the vessels arrive on the fishing grounds, early in the season, and as a result

overlap with seals in coastal waters occurs when the seals are in a state of post-breeding recov-

ery. Further development of krill fishery management in these waters should therefore con-

sider the post-breeding needs of female seals and their need to recover body condition. This

should include consideration of movement of krill, and krill flux, into and out of the South

Georgia system, as this is not well understood. Current understanding indicates that ocean

currents move krill from the Antarctic Peninsula northwards to South Georgia [70], and then

along the northern coast, where localised flows circulate water on the shelf and lead to reten-

tion [71]. This translates into higher krill density on-shelf, and at the shelf-break, compared to

off-shelf regions [60]. Surface currents around South Georgia are complex, and variable

through the year [71]. In the summer, they are predominately westerly, potentially moving

krill from the eastern end of the island west along the north coast. However, later in the season

the intensity of the westerly current diminishes and an easterly current arises at the north-west

end of the island [71]. Typically, summer krill biomass decreases towards the western end of

the island [60, 72], which means that the highly localised operation of the fishery midway

along the north coast could, in poor-krill years, lead to reductions in available krill biomass,
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potentially impacting krill predators foraging in the western areas in subsequent months. A re-

distribution of the effort and intensity of the fishery over a wider area should minimise any

such effect. The western end of South Georgia hosts the majority of the fur seal population,

which leads to greater predator-induced depletion of krill in this region [72]. However, we sug-

gest that the impact of any alterations to the operation of the fishery, or its spatial intensity, be

examined before implementation. This would be particularly important for periods where krill

availability was low. The fur seal population at South Georgia consumes significant quantities

of krill, having recovered from historical exploitation [10]. At present the population con-

sumes more than an order of magnitude more krill than the fishery harvests, and prevention

of bycatch is well managed. To prevent future impacts, which may occur if the fishery expands,

further work to ensure continued effective ecosystem-based management should be planned

now; this should include research into krill dynamics, distribution and abundance at South

Georgia and the development of coherent long-term, multi-site monitoring and tagging pro-

grams, year round.

The GSGSSI have recently updated the management of the South Georgia krill fishery,

restricting the season to May through September (previously restriction was between October

and March) [73]. As pups and post-breeding mothers appear to remain close to their colony in

the first few weeks post-weaning (c.mid-March/April), before moving further afield as the win-

ter progresses, additional changes in the temporal distribution of fishing should be considered

carefully as so not to put undue pressure on these animals. While the reduction in the fishing

period is overall anticipated to be positive for post-breeding fur seals, a winter focus of the fish-

ery means that female fur seals are more dispersed at the point when the fishing begins, and

therefore are more likely to overlap with areas of fishing activity. This would increase the likeli-

hood of interactions occurring, however, more tagging efforts are required to confirm this.

Areas for future consideration

Understanding the spatial distributions of predators in relation to possible sources of conflict

with human activities allows important regions to be identified and appropriate management

and conservation actions to be taken. However, to improve the overall effort in line with both

objectives, functional overlaps need to be considered, rather than simply considering spatial

overlaps. There is therefore a need to determine whether the operation of the krill fishery alters

the efficiency of predator foraging (negatively or positively), and thus determine any effect on

population trajectories. In order to achieve this, future efforts need to address several key gaps

in current understanding about predator-prey dynamics: (i) An up-to-date fur seal population

assessment is required–the most recent published estimate was carried out nearly three

decades ago, and reflects a year where breeding success was poor [37], so almost certainly does

not reflect the current population; (ii) Further work to develop our understanding of the level

of overwinter residency of fur seals at South Georgia is needed. Previous studies have shown

that whilst many female seals remain at South Georgia, others range over the wider Scotia Sea

and beyond [14, 22, 23, 56]. Developing a greater understanding of the proportion of animals

which remain versus those which leave South Georgia through an extended year-round multi-

site monitoring and tagging program will help to quantify the possible overlap with the krill

fishery and establish the level of predator-induced krill removal; (iii) Quantifying the standing

stock, and flux of krill into South Georgia waters throughout both the summer and winter sea-

sons remains key to understanding krill-predator-fishery competition. Predator consumption

estimates [10] suggest that a high rate of influx is required to sustain the krill supply above the

standing stock of 1.5x106 tonnes [74]; (iv) There is a need to develop an understanding of

whether or not predators actively target specific swarm densities of krill, whether age-class
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influences prey-selection, and how these strategies compare to those targeted by the fishery

[68]. In addition, there would be merit in examining the effect of the fishery on krill swarm

structure, and to identify whether predators are attracted to or avoid regions with an altered

krill structure; (v) Finally, future research should move towards establishing a network of mul-

tiple multi-year study sites which would lead to more informed island-wide recommendations

capable of detecting interannual and long-term variability into the future.
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