
1. Introduction
The biomass and composition of phytoplankton are important indicators of water quality and the biologi-
cal health of rivers (Villegas & de Giner, 1973). Phytoplankton communities are a major source of food for 
primary consumers through organic carbon production, and act as the primary source of oxygen in many 
rivers (Köhler, 1995). However, rivers also suffer if there is excessive phytoplankton growth since it may 
cause oxygen depletion (Hilton et al., 2006), produce harmful toxins (e.g., cyanobacteria), increase water 
treatment costs (P. Whitehead & Hornberger, 1984), and interfere with fishing and other recreational activi-
ties (Paerl & Huisman, 2009). Hence, it is vital to build an understanding of the controls on phytoplankton, 
to predict and prevent harmful growth in rivers, especially under the changing climate and environmental 
conditions (Read et al., 2014).

Phytoplankton growth in rivers is influenced by different environmental controls, and their influence may 
vary depending upon the river characteristics and local conditions (Reynolds, 2000). River phytoplankton 
development is often linked to increase in nutrient concentrations (Dodds, 2006; Minaudo et al., 2018). 
However, a number of recent studies have also highlighted the role of physical factors such as residence 
time (Reynolds, 2000), light availability (Domingues et al., 2011), and temperature (Canale & Vogel, 1974) 
in shaping river phytoplankton populations. These environmental controls generally act in combina-
tion to control phytoplankton blooms in rivers such as the combination of flow and light (Hardenbicker 
et al., 2014), flow, temperature, and nutrients (Larroudé et al., 2013), or flow, temperature, and light (Bal-
bi, 2000; M. Bowes et al., 2016).

Several studies have addressed environmental controls of phytoplankton growth in lowland rivers around 
the world. Lowland rivers are heavily impacted by water abstractions, artificial flow regulation, physical 
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modifications of the channel as well as substantial pollution load discharges from sewage and agricultural 
runoff (M. Hutchins et al., 2018). These slow flowing rivers typically have long residence time, which pro-
vides sufficient time for water quality to be sensitive to in-stream biogeochemical processes and for phy-
toplankton to utilize nutrients and grow (Reynolds, 2000). For example, River Thames (United Kingdom) 
exhibited high phytoplankton biomass only at low flows (Lack, 1971). River Meuse (Belgium) showed a 
combination of physical factors such as flow, temperature, and light as important biomass controls (Ever-
becq et al., 2001). Total phosphorus in the Rideau (Canada) (Basu & Pick, 1997) and grazing in the Moselle 
(France and Germany) (Descy et al., 2003) have also been found to be important biomass controls. However, 
most previous studies examined changes in these multiple control relationships at daily to monthly time 
scales, with higher resolution diurnal dynamics often being overlooked. Phytoplankton biomass in rivers 
have shown to respond to rapid changes in its environmental controls (M. Bowes et al., 2016), and thus, it 
is crucial to understand these shorter scale dynamics to predict phytoplankton growth and bloom timings 
more accurately.

In the River Thames, a regulated lowland river in southern England, substantial efforts have been made to 
understand phytoplankton response through process-based modeling (e.g., Lázár et al., 2016; P. Whitehead 
& Hornberger, 1984; P. G. Whitehead et al., 2015). These studies, however, have shown limited predictive 
ability in modeling large and rapidly developing phytoplankton biomass, suggesting that there is still a need 
to better understand process interactions (M. Bowes et al., 2016). For example, there has been uncertainty 
as to which phytoplankton groups dominate the response. Some studies found green algae to be dominant 
during peaks in the summer (Lack, 1971; Ruse & Love, 1997) yet subsequent studies have found cool water 
diatoms to predominate with peaks instead during spring and autumn seasons (M. Bowes et al., 2016; Read 
et al., 2014). The daily time-step Quality Evaluation and Simulation Tool for River-systems (QUESTOR) 
model (Boorman, 2003a) has been developed to simulate phytoplankton (M. Hutchins et al., 2010) and also 
been extensively applied in the River Thames (M. Hutchins et al., 2016, 2018; Waylett et al., 2013). Howev-
er, consistent with other models, QUESTOR applications have also had only limited success in simulating 
phytoplankton biomass with overestimation in mid-summer (M. Hutchins et al., 2016).

Various process-based river models (e.g., Brown & Barnwell, 1987; Everbecq et al., 2001; Reichert et al., 2001) 
have been applied worldwide to understand phytoplankton dynamics, but these models are rarely tested 
with high-frequency observations to explore shorter scale dynamics. Phytoplankton modeling applications 
are generally limited to weekly to daily time-steps. High-resolution modeling has been challenging because 
of high computational requirements and a lack of high-frequency monitoring data. Even the high-reso-
lution hourly modeling studies done so far (Martin et al., 2013; Minaudo et al., 2018; Suarez et al., 2019; 
Van Griensven & Bauwens, 2005) do not test the simulations with high-frequency observations of all key 
variables (temperature, chlorophyll, and dissolved oxygen [DO]) and only report model testing against dai-
ly (or coarser scale) observations. However, it is now easier to monitor water quality at higher temporal 
resolutions with the development of low-cost, robust water quality sensors (Rode et al., 2016). Models can 
utilize high-frequency datasets to understand phytoplankton growth and its environmental controls at finer 
resolutions, and thus, ensure early warnings of blooms in river systems.

The present study was undertaken by modifying an existing water quality model, QUESTOR, to run at 
shorter time steps and testing against high-frequency (hourly) water quality measurements (chlorophyll-a 
[Chl-a], DO, and water temperature) at two locations in the River Thames. The model testing was reinforced 
with testing against daily flow observations and weekly water quality observations at other locations and for 
other determinands. The overall aim of this study was to test the hypothesis that hourly time-step modeling 
can improve prediction of phytoplankton biomass and to demonstrate the utility of the model to study phy-
toplankton dynamics and its controls in lowland rivers. Specific objectives were to:

 (1)  Develop a model to predict hourly variation and transport of in-stream flow, temperature, nutrients, 
DO, and phytoplankton biomass in the lower Thames

 (2)  Identify an accurate model structure that represents dominant phytoplankton groups in the lower 
Thames using a model comparison and sensitivity analysis

 (3)  Illustrate the extent to which low-frequency water quality observations, used as inputs to the model 
in the absence of high-frequency observations, can still provide a basis for satisfactory explanation of 
phytoplankton dynamics in the catchment
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 (4)  Identify favorable environmental conditions for photosynthetic production using the hourly model out-
puts and evaluate association of phytoplankton biomass with multiple environmental controls using 
boosted regression trees (BRT) technique

2. Methods
2.1. Model Theory

QUESTOR is an in-stream, process-based water quality model that allows users to represent rivers as a 
network of reaches. River reaches are modeled as a set of nonlinear reservoirs or well-mixed tanks in series 
(Figure  1). The hourly model is a pseudo 1-D (strictly speaking 0-D) model and assumes fixed channel 
width with rectangular cross section. The model simulates dynamic solute transport within the river net-
work using ordinary differential equations (ODEs) with a mass-balance approach. The numerical solution 
of the ODEs is implemented using an explicit fourth-order Runge-Kutta-Merson differential equation solv-
er (DASCRU). This operates at variable temporal resolution much finer than hourly reporting of results. 
The equations characterize major processes affecting model determinands, but include empirical coeffi-
cients which need to be calibrated (Boorman,  2003b). We modify the Stephanodiscus hantzschii version 
(SH module, Waylett et al., 2013) of daily time-step QUESTOR model to account for hourly variations in 
physico-chemical and biological water quality. The key determinands in the model include flow, water tem-
perature, photosynthetically active radiation (PAR), Chl-a, biochemical oxygen demand (BOD), DO, nitrate 
(NO3), ammonium (NH4+), particulate organic nitrogen (PON), as well as organic and inorganic phospho-
rus in the water column (Figure 2). The equations for the new hourly model version of phytoplankton are 
explained below and the remaining set of equations for other determinands are provided in Text S1. The 
model parameters are listed in Table S3.

The growth of phytoplankton is estimated using a fixed stoichiometry model where the ratios (by weight) 
Chl-a:C:N:P are 1:50:10:1 (M. Hutchins et al., 2010). The new version required modifications in the phyto-
plankton growth rate parameters as described in Equation 1,
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Figure 1. Model structure. (a) represents the schematic of a typical reach in the model, (b) represents the conceptualization of reaches in the model and (c) 
shows the input and output information in the hourly model. (a) and (b) are modified after P. Whitehead et al. (1997). In (b), V represents volume of water in a 
reach, C represents concentration of water quality determinand, Qin and Qout are input and output flows, Cin and Cout are input and output concentrations in a 
reach.

(a)

(b)

(c)
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kpho = photosynthetic rate (mg L−1 h−1); Phy = concentration of Chl-a (mg L−1); f(N) and f(L) = nutrients 
and light limitation factors, each holding values between 0 and 1; Optimum Temp = 14°C and a = 8°C (De-
scy et al., 2003); pho

refk  = maximum phytoplankton growth rate (h−1) at Tref; Tref = 20°C.

Temperature limitation factor (f(T)) is estimated using Equation 2,
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The calculation of nutrient limitation uses Michaelis Menten kinetics (Equation 3),

   
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min ,
N P

N Pf N
N k P k

 (3)

N = nitrate-N plus Ammonium-N (mg L−1); P = inorganic (soluble reactive phosphorus [SRP]) plus organic 
phosphorus (mg L−1); kN (mg N L−1) and kP (mg P L−1) are the half-saturation constants for N and P in phy-
toplankton, respectively.

To account for light limitation, attenuation with depth (γ, m−1) is described by the Beer-Lambert Law 
(Equation 4),

   base SS Phy.SS .PhyL L (4)

γbase = light extinction coefficient in clean water (m−1); SS = concentration of suspended sediment (mg L−1); 
Lss = light attenuation with depth due to suspended sediment (m−1 mg−1 L); Lphy = light attenuation with 
depth due to phytoplankton (m−1 mg−1 L).
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Figure 2. In-stream water quality determinands and processes represented in the model (modified after Eatherall et al., 1998).
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Estimation of photolimitation with respect to phytoplankton-specific optimum intensities (Steele,  1962) 
in the model requires hourly inputs of incoming radiation and a constant value of optimum light intensity 
(Equation 5),

 




  
   
  

1 2 1 2
opt opt2.718 .

R L L R L Lds se
L Lf L e e

d
 (5)

d  =  water column depth (m); Rs  =  radiation at the surface not reflected (W m−2) (i.e., raw data × L3); 
L1 = fraction of incoming radiation that is visible light; L2 = fraction of visible light used for phytoplankton; 
L3 = fraction of light reaching water surface that is not reflected; Lopt = optimum light intensity for phyto-
plankton (W m−2).

Respiration calculation requires estimates of respiration fraction and maximum phytoplankton growth rate 
(Equation 6),

   refres res pho
ref refPhy. . . T Tk k k (6)

kres = phytoplankton respiration rate (mg L−1 h−1); res
refk  = reference respiration fraction for phytoplankton 

(as fraction of pho
refk );   = Arrhenius factor for temperature dependencies (=1.08); T = temperature (°C); 

Tref = 20°C.

The death of the autotrophs is a combination of grazing and nonpredatory mortality. In QUESTOR, death 
rate is estimated from algal growth limitation due to unsuitable nutrient and light conditions and the cali-
bration of the death rate constant compensates for the death from grazing (Equation 7),

          
refdeath death pho

ref refPhy. . . 1 . . T Tk k k f N f L (7)

kdeath = phytoplankton death rate (mg L-1 h-1); death
refk  = reference death fraction for phytoplankton (as fraction 

of pho
refk ).

2.2. Study Area

The Thames catchment is situated in southern England with an area of 9,948 km2 at the tidal limit 
(Waylett et al., 2013). The catchment has a population of around 15 million people with its uplands 
characterized by arable and pasture, and the lowland areas covered mainly by urban land uses (M. 
Hutchins et al., 2018). Mean annual precipitation and mean daily temperature in the catchment are 
700  mm and 11°C, respectively (Crossman et  al.,  2013). The catchment receives around 40% of its 
water supply from groundwater sources, which are mainly characterized by Oolitic Limestone and 
Cretaceous Chalk aquifers (Crossman et al., 2013). The River Thames is a heavily regulated river with 
45 locks and weirs along its course. Catchment rivers that have extensive lock systems or are connect-
ed to canals are characterized by higher phytoplankton biomass compared to the unconnected rivers 
because of longer residence times (M. Bowes et al., 2012). In general, high phytoplankton biomass is 
observed in the middle and lower reaches of the catchment and phytoplankton blooms mainly occur 
during March to July (M. Bowes et al., 2012). This study focuses on a 62 km long stretch in the catch-
ment from Caversham to Runnymede (Figure 3). The river stretch receives inputs from major tributar-
ies such as Kennet, Lodden, and Wye rivers, and Sewage Treatment Works (STW) effluents. In-stream 
flows are regulated by 14 locks and weirs along the stretch, sometimes resulting in long residence times 
from reduced flow velocities.

2.3. Data Source and Model Application

The River Thames is one of the most intensively studied and monitored rivers in the United Kingdom (M. 
J. Bowes et al., 2018). The model development here makes use of a combination of weekly to hourly scale 
existing flow and water quality data of 2 years 2013–2014. Gauged daily flow data were obtained from 
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the NRFA (NERC, National River Flow Archive, http://www.ceh.ac.uk/data/nrfa/) and were interpolated 
to hourly time-steps for this application. Nutrient data at multiple sites along the Thames and its major 
tributaries, sampled at weekly intervals, were obtained from the UK Centre for Ecology & Hydrology's 
(UKCEH) Thames Initiative research platform (M. J. Bowes et al., 2018). Hourly water temperature, DO 
and Chl-a concentrations at Caversham, Taplow and Windsor sites (Figure 3) were generated by the Envi-
ronment Agency's (EA) National Water Quality Instrumentation Service, using YSI6600 sensors, calibrat-
ed every 3 weeks. The quality control procedure for the data collection is provided by Waylett et al. (2013). 
Chl-a concentration provides a proxy for phytoplankton concentration (M. Bowes et al., 2012). For chlo-
rophyll observations, aside from the hourly frequency sensor data, the model uses UKCEH's standard 
laboratory methanol extraction-based weekly chlorophyll observations at Sonning Bridge and Runnymede 
sites (Figure 3).

The model uses single hourly radiation time-series for the whole catchment obtained from the British 
Atmospheric Data Centre (MIDAS Landsat data) (http://archive.ceda.ac.uk/) for Little Rissington near 
the River Windrush in Gloucestershire (NGR 4299 2107). The hourly radiation time-series was modified 
to account for canopy shading from riparian trees using a fraction of potential solar radiation reaching the 
river surface as recommended by Waylett et al. (2013). Data to define tributary and sewage inputs were de-
rived from the online UKCEH (doi: https://doi.org/10.5285/e4c300b1-8bc3-4df2-b23a-e72e67eef2fd) and 
EA (http://environment.data.gov.uk/water-quality/view/landing) datasets. Weir height and type within 
the river stretch were adapted from the previous model application in the River Thames (P. Whitehead & 
Hornberger, 1984). Flow-velocity relationships were derived using a set of three linearized velocity equa-
tions that reflect the river hydromorphology and the lock operations in the river (Waylett et al., 2013; P. 
Whitehead & Hornberger, 1984).

To establish confidence in the model calibration, testing of phytoplankton response during bloom peri-
ods is crucial. Often only one bloom period occurs each year. The hourly model was calibrated using the 
observed data of the year 2013, which encompassed one large prolonged bloom and one medium-sized 
bloom, and the model setup was validated using the observed data of the year 2014, which covered two 
distinct medium-sized blooms. The whole study stretch was divided into 23 reaches (Table S1), account-
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Figure 3. River Thames catchment with monitoring locations. Site 5 = Caversham; Site 7 = Runnymede. (modified 
after M. Bowes et al., 2016).
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ing for the influence of tributaries, weir locations, abstractions and sewage treatment works. The hourly 
model used data at the top of the modeled river stretch (here Caversham) and at the influences as inputs 
(Figures  1 and 3). Model calibration was carried out using observations at four sites (Sonning Bridge, 
Taplow, Windsor, and Runnymede) in the stretch. The calibration was performed using a sequential proce-
dure determinand by determinand, by modifying process-rate parameters, working downstream from site 
to site. The order of this one by one parameter calibration and the list of sources and sinks of the variables 
affected by each processes are explained in detail elsewhere (Waylett et al., 2013). The model performance 
is judged using a combination of Nash and Sutcliffe Efficiency (NSE) and percentage error in mean (PBI-
AS) statistics (Text S1).

2.4. Sensitivity Analysis

Previous studies have reported dominance of diatom populations in spring and autumn seasons and 
green algal groups in summer periods (Lack, 1971; Read et al., 2014; Ruse & Love, 1997). The differ-
ence in the timings of dominance can be attributed to their different temperature requirements for 
growth. Green algae have a higher optimum growth temperature that results in their abundance in 
summer due to higher temperatures compared to spring/autumn. We tested the hourly model with 
three algal group representations, namely, Stephanodiscus hantzschii (SH), Green algae (GA) (includ-
ing chlorophytes and cryptophytes) and small centric diatoms (SCD) (up to 15 µm diameter), differ-
entiated based on their temperature preferences. The three models, SH, GA, and SCD, use optimum 
temperatures of 14°C, 24.5°C, and 21°C and a values of 8°C, 14°C, and 12°C, respectively in Equation 1 
that have been optimized for another lowland river (Descy et al., 2003). All three models were calibrat-
ed for growth, death and respiration rate parameters and were compared with observations to derive 
the best model that represent phytoplankton populations in the River Thames. We also investigate the 
temperature constraints on Thames phytoplankton by assessing the goodness of fit of model outputs 
under a range of assumptions of optimum temperature for growth ranging from 10°C to 26°C with an 
increment of 2°C.

To evaluate the model sensitivity to change in the temporal resolution of the input data, we test the hourly 
model setup with low-frequency water quality inputs. Our model has a requirement of hourly time-step 
input data, which may not be easier to fulfil at times and require recourse to extensive interpolation of 
sparse data values. Data regarding radiation and hydrology are often available from routine monitoring, 
but high-frequency water quality information is still difficult to gather. The model setup here uses daily 
flow data, and hourly water temperature, DO, and chlorophyll data as inputs at Caversham. We filtered 
weekly data points (Monday, 11 a.m.) from these high-frequency datasets, and interpolated the weekly spot 
samples’ time-series to hourly time-steps to use as inputs in the hourly model. This way we assess model's 
applicability both to generate past conditions pre-2000 in the Thames before high-frequency monitoring 
was established and in other catchments where only low-frequency flow and water quality monitoring is 
practiced.

2.5. Statistical Analysis

We use BRT, a machine learning technique, to evaluate the associations between chlorophyll and mul-
tiple environmental variables. BRT can handle continuous, collinear variables, support nonlinear varia-
bles with missing data and help identify interactions between explanatory variables (Elith et al., 2008). 
Recently, it has been widely used to link biological water quality with multiple environmental variables 
simulated from process-based models (Feld et al., 2016; Rankinen et al., 2019). Here, we use the sim-
ulated/calculated environmental variables (flow, water temperature, nitrate, SRP, and PAR) from the 
hourly model and link them with continuous chlorophyll observations during 2013–2014 at Windsor. 
We use R packages gbm (Ridgeway, 2020) and dismo (Hijmans et al., 2017) to run BRT analysis. We 
also use pair-wise boxplots at Windsor site to identify favorable environmental conditions within which 
phytoplankton blooms develop. Hourly model outputs of controlling variables were divided in 10 equal 
quantile groups, and were plotted against chlorophyll simulations to derive environmental bounds of 
phytoplankton growth.
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3. Results
We present the model results in four main parts: (1) the hourly model performance in simulating environ-
mental controls and phytoplankton biomass, (2) temperature preferences of the dominant phytoplankton 
species in the model, (3) model testing with lower temporal resolution of input data, and (4) identification 
of environmental controls and their influence on phytoplankton biomass.

3.1. Model Calibration and Validation

3.1.1. Flow and Water Temperature Prediction

The Thames catchment is characterized by high winter flows that decrease in early spring and remain 
very low during summer and autumn. The hourly model successfully captures this seasonality in flow at 
Windsor (Figure 4). The overall flow simulation indicates an underestimation of flow volume at Windsor 
with a percentage mean error (PBIAS) of −9.88 and −11.58 for the calibration and validation periods, 
respectively (Table 1). In spite of the underestimation, the model satisfactorily simulates flow variation at 
Windsor with very good NSE values of 0.96 and 0.95 for calibration and validation periods, respectively.

Water temperature in the model is controlled mainly by heat gain or loss from radiation, canopy shading, 
and the temperature of flow volumes entering the main channel. The average hourly temperature variation 
shows a clear cycle throughout the year, with daily minimum temperature observed in the early morning 
hours (6:00–8:00) and daily maximum temperature observed in the late afternoon (16:00–17:00). We also 
compared the temperature simulations with hourly observations at Taplow and Windsor (Figure 4), and 
with weekly observations at Sonning Bridge and Runnymede sites (Table 1). This comparison shows that 
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Figure 4. Modeled and observed hourly flow, water temperature (Temp), DO, and chlorophyll concentrations (Chl-a) 
at Taplow and Windsor for calibration and validation runs. Note that observed flow data were not available at Taplow. 
DO, dissolved oxygen.
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the temperature model performs in strong agreement with the observations throughout the study stretch, 
with NSE ≥ 0.98 and mean errors within ±4% at all calibration sites (Table 1).

3.1.2. Water Chemistry and DO Prediction

The phosphorus model successfully captures the seasonal trend and magnitude of SRP concentrations 
with NSE > 0.7 at Sonning Bridge and Runnymede (Figure 5). Mean error for SRP modeling is around 16% 
at Runnymede, whereas Sonning Bridge shows lower errors (3%–6%). The nitrogen model shows relatively 
poorer fits for nitrate with NSE values ranging from −0.07 to 0.46. As opposed to the SRP model, the nitrate 
model performs better at Runnymede (NSE = 0.31, 0.46) compared to Sonning Bridge (NSE = 0.21, −0.07) 
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Period Determinand

Sonning bridge Taplow Windsor Runnymede

NSE (−)
PBIAS 

(%) NSE (−)
PBIAS 

(%)
NSE 
(−)

PBIAS 
(%)

NSE 
(−)

PBIAS 
(%)

Calib (2013) Flow 0.96 −9.88

Temp 0.99 −2.14 0.98 3.80 0.98 3.52 0.99 1.58

DO 0.52 12.22 0.49 −4.47 0.46 −0.93

Chl-a 0.81 −19.9 0.87 26.16 0.80 12.71 0.73 −34.64

Nitrate 0.21 −4.17 0.31 1.74

SRP 0.77 2.92 0.75 16.24

Valid (2014) Flow 0.95 −11.58

Temp 0.98 −3.87 0.98 3.61 0.99 2.35 0.99 −0.9

DO 0.25 14.99 0.43 −5.11 0.58 −4.29

Chl-a 0.78 −20.06 −0.19 60.93 0.20 76.73 0.77 −16.58

Nitrate −0.07 −5.97 0.46 1.55

SRP 0.80 5.47 0.71 16.11

Abbreviations: DO, dissolved oxygen; NSE, Nash and Sutcliffe Efficiency; PBIAS, percentage error in mean; SRP, 
soluble reactive phosphorus.
Notes. Calib and valid represents calibration and validation periods, respectively. Chl-a and Temp represents chlorophyll 
and water temperature, respectively. NSE stands for Nash-Sutcliffe Efficiency and PBIAS represents percentage error in 
mean.

Table 1 
Model Performance Statistics for Calibration (2013) and Validation Periods (2014)

Figure 5. Hourly modeled and observed SRP and nitrate concentrations at Sonning Bridge and Runnymede for 
calibration and validation runs. SRP, soluble reactive phosphorus.
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for calibration and validation periods. Sonning Bridge shows an overall underestimation (up to 6%), and 
Runnymede shows an overall overestimation (up to 2%) of nitrate concentrations.

DO concentrations in the catchment begin increasing in spring, but drops to minimum levels in mid-sum-
mer. We observe a high diurnal variability in DO, and this coincides with increased photosynthesis and 
respiration during phytoplankton blooms, both successfully captured by the model (Figure 4). The mag-
nitude of DO concentrations, during the bloom period, is overestimated. During the rest of the year, 
DO concentrations are generally underestimated. The calibration run shows satisfactory DO fits with 
NSE > 0.45 at all calibration sites (Table 1). The validation run also shows satisfactory fits at Taplow and 
Windsor (NSE > 0.43). Model performance at Sonning Bridge, however, drops slightly in the validation 
run (NSE  =  0.25). The model satisfactorily captures the seasonal behavior of DO concentrations at all 
calibration sites (Figure 4, Table 1).

3.1.3. Phytoplankton Prediction

Phytoplankton observations during the calibration period (2013) shows much higher levels of peak blooms 
(up to 0.2 mg L−1) compared to the validation period (2014) with less than half the magnitude (up to 0.1 mg 
L−1) of the 2013 blooms. Peak levels in the calibration period are underestimated, but are overestimated for 
the validation period (Figure 4). Phytoplankton model shows a good performance for the calibration run with 
NSE > 0.7 at all sites (Table 1). Mean errors, however, are relatively high (−35%–26%) for the calibration run. 
The calibration run indicates an overall underestimation at Sonning Bridge and Runnymede, and an overesti-
mation at Taplow and Windsor. For the validation run, the model performs well (NSE > 0.7, PBIAS up to 20%) 
at Sonning Bridge and Runnymede, but with relatively poorer fits at Windsor (NSE = 0.20, PBIAS = 77%) and 
Taplow (NSE = −0.19, PBIAS = 61%). On average during the growing season, daily minimum and maximum 
phytoplankton levels are modeled around 6:00 h and 17:00–18:00 h, respectively (Figure 6a). Modeled diurnal 
variability of phytoplankton agrees well with the observations, but the model underestimates biomass magni-
tude. The model predicts an increase in the bloom size and diurnal amplitude from upstream to downstream 
(Figure 6b). Observations also show an increase in the bloom size from Taplow to Windsor, but show reduc-
tion in the diurnal amplitude. Overall, the model identifies the timing of multiple blooms and collapses during 
the growing season and successfully models phytoplankton dynamics along the river stretch.
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Figure 6. Spatial and temporal variation of phytoplankton biomass. (a) represents average diurnal phytoplankton 
variation in the model during growing period (April–July) at all calibration sites and (b) shows modeled (green 
markers) and observed (red markers) spatial variation in 90th percentile chlorophyll concentration with its average 
diurnal amplitude during growing period.

(a) (b)
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3.2. Optimum Temperature Representation for Phytoplankton Growth

All three models, SH, GA, and SCD, simulate high biomass during April–September as shown in Figure 7a, 
which is when we mainly see the differences in performance among the models. Although all three models 
perform well (NSE > 0.6) at Windsor during this period, SH captures the high concentrations most accurately, 
which is crucial for water quality management. Moreover, GA and SCD models overestimate biomass from 
mid-July to mid-September as opposed to the SH model that performs the best to capture low concentrations 
as well. High optimum growth temperatures in GA (24.5°C, a = 14°C) and SCD (21°C, a = 12°C) models 
prompt the algal growth after July with increasing water temperature (Figure  7a). Growth rate in the SH 
model, on the other hand, starts decreasing after an optimum temperature of 14°C (a = 8°C), which agrees 
well with the observations. Sensitivity analysis with the SH model shows better performance (Figure 7c) at 
low optimum temperatures (10°C–16°C) to simulate phytoplankton blooms during May–June (Figure 7b). At 
higher temperatures (>16°C), there is an overestimation of biomass after July. Lower temperatures (<12°C), 
on the other hand, underestimate the blooms at the start of July. The best model fit (NSE = 0.77) is obtained 
for T14 scenario at an optimum temperature of 14°C (Figure 7c).

3.3. Model Sensitivity

The distribution of the simulated chlorophyll concentrations in the weekly input run do not change signifi-
cantly from that of the hourly input run (Figure 8). Model performance declines only marginally with weekly 
inputs (Table 2) and the model captures the phytoplankton blooms. However, the weekly input run still shows 
a bigger lag in simulating timings of the development and collapse of blooms compared to the hourly input 
run (Figure 8). The weekly input run also simulates higher phytoplankton growth during September and Oc-
tober months, than the hourly input run, when no blooms are seen in the observed data. In spite of this, the 
NSE statistics for the weekly input run remain above 0.6 at all sites for the calibration period (Table 2). Even for 
the validation period, the weekly input run shows NSE > 0.7 at Sonning Bridge and Runnymede. Statistically, 
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Figure 7. Temperature preferences of phytoplankton populations. (a) shows a comparison of modeled and observed 
chlorophyll concentrations for the April–September, 2013 period for SH, GA, and SCD models at Windsor. (b) 
represents a comparison of model performance for a range of optimum temperatures from 10°C to 26°C with an 
increment of 2°C at Windsor. T10 to T26 represent different optimum temperature scenarios for phytoplankton growth. 
Red lines represent missing data periods. (c) shows goodness of fit statistics (NSE) for all temperature scenarios from 
T10 to T26 at Windsor. GA, Green algae; SCD, small centric diatoms; SH, Stephanodiscus hantzschii.



Water Resources Research

model performance at Taplow and Windsor is poor in both the runs for the validation period, although timings 
of blooms are represented well.

Importantly the weekly input run still uses hourly radiation time-series; both runs use single radiation time-se-
ries for the entire river stretch. We also tested the model with low-frequency radiation inputs, but it led to a 
significant and much larger drop in the model performance with NSE values changing from 0.87 (Taplow), 0.8 
(Windsor), and 0.73 (Runnymede) to −2.57 (Taplow), −1.51 (Windsor), and 0.24 (Runnymede) with weekly 
radiation inputs. Even the daily scale radiation inputs affected the model performance heavily with NSE val-
ues of −2.46 (Taplow), −1.60 (Windsor), and 0.10 (Runnymede). This explains the key role of radiation inputs 
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Figure 8. Comparison of modeled and observed chlorophyll concentrations for hourly and weekly input runs at 
Sonning Bridge (a) and Windsor (b). Inset figures represent quantile-quantile plots of model performances at Sonning 
Bridge and Windsor.

Period Model

Sonning bridge Taplow Windsor Runnymede

NSE (−) PBIAS (%) NSE (−) PBIAS (%) NSE (−) PBIAS (%) NSE (−) PBIAS (%)

Calib (2013) Hourly 0.81 −19.9 0.87 26.16 0.8 12.71 0.73 −34.64

Weekly 0.83 −12.78 0.76 38.32 0.73 23.46 0.64 −29.63

Valid (2014) Hourly 0.78 −20.06 −0.19 60.93 0.20 76.73 0.77 −16.58

Weekly 0.83 −5.85 −0.82 90.62 −0.19 104.81 0.70 −3.72

Abbreviations: NSE, Nash and Sutcliffe Efficiency; PBIAS, percentage error in mean.
Notes. Calib and valid represents calibration and validation periods, respectively. NSE stands for Nash-Sutcliffe 
Efficiency and PBIAS represents percentage error in mean.

Table 2 
Comparison of Phytoplankton Model Performance for Hourly and Weekly Input Runs for Calibration and Validation 
Periods
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in modeling phytoplankton dynamics. Therefore, we conclude that the hourly model can successfully repro-
duce phytoplankton dynamics with low-frequency flow and water quality input data in the lower Thames, and 
the only input necessary at high-resolution in the model is radiation.

3.4. Physico-Chemical Controls on Phytoplankton Growth

A multiple stressor analysis using BRT technique shows maximum association of SRP (58%) with chlorophyll 
followed by water temperature (21.6%), flow (11.6%), nitrate (7.8%), and PAR (1.1%) (Figure S4). The reduction 
in nutrients (SRP and nitrate) with high chlorophyll levels suggests that nutrient levels during the growing sea-
son are influenced by phytoplankton growth rather than the other way around. It is not always clear which the 
dependent variable is since nutrients and chlorophyll relationships are intertwined, and hence, SRP and nitrate 
were removed from the list of predictors. A BRT model excluding the nutrient predictors highlights flow (55%) 
as the most influencing control followed by water temperature (38%) and PAR (7%). PAR does not represent a 
strong relationship with biomass variation in the BRT model (Figure 9c). Phytoplankton biomass increases with 
increase in flow and temperature until a certain limit of these controls is reached, and then shows a reversal of 
response with continued increase in the controls (Figure 9a and 9b). These relationships are also supported by 
pair-wise boxplots (Figures 9d–9e), which we use to identify the environmental bounds of flow and temperature 

within which phytoplankton blooms develop. High phytoplankton popula-
tions >0.03 mg L−1 develop with increase in temperature (11–18°C), but are 
not sustained at higher temperatures. Similarly, blooms only develop at low 
to mid flows between 30 and 63 m3 s−1 at Windsor. This suggests that there 
is an optimum window of these controls where phytoplankton can bloom, 
and that outside this window, growth is not as strong.

Seasonal variation in growth-limiting controls of phytoplankton was as-
sessed using the hourly model outputs. Table 3 represents how light, tem-
perature and nutrient limitations co-vary seasonally in the model. Note 
that higher values in Table 3 indicate fewer limitations on phytoplankton 
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Figure 9. Multiple environmental controls of phytoplankton growth. (a–c) represents partial dependence plots for 
the modeled flow, water temperature and PAR with normalized fitted values of observed chlorophyll concentrations at 
Windsor in the BRT model. (d–e) represents boxplots of modeled hourly flow and water temperature against modeled 
hourly chlorophyll concentrations at Windsor. The hinges represent 10th and 90th percentile, and the line within 
the box represents median chlorophyll concentration. BRT, boosted regression trees; PAR, photosynthetically active 
radiation.

Season Light Nitrogen Phosphorus Temperature

Spring 0.258 0.984 0.903 0.786

Summer 0.308 0.984 0.946 0.639

Autumn 0.130 0.986 0.954 0.850

Winter 0.097 0.984 0.924 0.431

Table 3 
Seasonal Average of Limiting Factors for Phytoplankton Growth at 
Windsor Site as Calculated in the Hourly Model
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growth. The hourly model shows light and temperature as key controls that limit phytoplankton growth 
throughout the year. Seasonal light factor varies from 0.1 to 0.31, and temperature factor varies from 0.43 
to 0.85. Nitrogen does not limit phytoplankton growth with its limiting coefficient always being >0.98. 
Average seasonal phosphorus coefficient is also higher than 0.9 in all seasons, and remain >0.8 during the 
entire monitoring period (except for a few days in May, 2013). Chemical controls do not show limitations on 
phytoplankton growth, but physical controls show a significant influence.

4. Discussion
The hourly model presented here successfully simulates phytoplankton biomass along with other key de-
terminands including flow, water temperature, nutrients and DO along the lower Thames. High-frequency 
observations within the catchment are utilized as model inputs as well as to support calibration of in-stream 
process-rate parameters that influence river water quality. Moreover, a model with low-frequency flow and 
water quality inputs is also able to characterize phytoplankton dynamics in the catchment, but still requires 
high-resolution light information. The model representation with dominant species as Stephanodiscus 
hantzschii best explains the phytoplankton variability in the catchment, which is also applicable for many 
lowland rivers worldwide. Lower River Thames shows significant association of chlorophyll concentrations 
with residence time, water temperature and light intensity. In the following sections, we discuss the model 
results from the lower Thames application and review model applicability as a phytoplankton prediction 
and management tool for lowland rivers.

4.1. Hourly Model Performance

4.1.1. Modeling Environmental Controls

The hourly model successfully simulates the physico-chemical and biological water quality variation across 
the 62 km length of the River Thames. The model performance is evaluated according to the guidelines pro-
vided by Moriasi et al. (2007). Flow simulations in the model make use of data of tributary inputs, abstrac-
tion volumes and sewage releases, giving very good fits (NSE > 0.9) for flows. Minor differences between the 
model and observations might be due to several reasons. Differences in the flow volume estimation (PBI-
AS = −9.88, −11.58) could be because QUESTOR does not include a hydrological component to account 
for rainfall-runoff processes. Flow simulations highly rely on the calibration of flow routing parameters 
and a correct representation of water inputs and outputs in the river. The flow routing parameters, adapted 
from previous studies in the River Thames (Waylett et al., 2013; P. Whitehead & Hornberger, 1984), are well 
calibrated for this river. Errors might be attributable to additional influences not currently represented in 
the model, but these cannot be identified with the available information. Groundwater discharge into the 
floodplain/river might be important, but the overestimation of low flows suggests it is less likely. Addition-
ally, sewer overflows from STWs in urban areas close to the river are not specifically represented, which if 
included, could boost simulated high flows. Nevertheless, the overall model performance for flow is very 
good, and the model is able to capture the seasonal variability and flow magnitude.

For nutrients, the model performs better in simulating SRP (NSE > 0.7) compared to nitrate (NSE < 0.5). 
Despite the good NSE fits for SRP concentrations, there is a slight overestimation (Figure S2). Due to this, 
phosphorus mineralization process was switched-off for the entire stretch (Table S4) as there was already 
a sufficient pool of inorganic phosphorus simulated from upstream transport, tributary and sewage works 
inputs. For nitrate simulations, the model simulates a rapid increase in nitrification rate downstream, with 
the process rate becoming more than twice the upstream rate after merging of a heavily nutrient-enriched 
tributary, the River Wye (M. Bowes et al., 2012). The overestimation of the extreme low (<5 percentile) and 
high (>99 percentile) nitrate concentrations (Figure S2) might be because the nitrogen sources from incom-
ing tributaries are not well characterized. Currently, the model uses low-resolution time-series of tributary 
nutrient inputs, and the nitrate fits may improve with higher resolution data inputs.

Diurnal variability in DO concentrations increases with biomass during growing season because of the in-
crease in the autotrophic production and respiration. However, during this period, the magnitude of DO is 
overestimated in spite of the good simulation of phytoplankton blooms. This may happen if one or more of 
the other processes influencing DO variation such as reaeration, benthic oxygen demand, BOD decay, and so 
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on are not accurately represented in the model. However, measurements of these processes are often scarce 
or absent in rivers and it is difficult to pin-point the processes influencing DO fits in the lower Thames due 
to lack of data availability. Nevertheless, the model does not show large errors in DO estimates and repre-
sent only a minor underestimation at Taplow (PBIAS = −4.47, −5.11) and Windsor (PBIAS = −0.93, −4.29) 
during both years. The overall seasonality of DO concentrations is also satisfactorily (NSE > 0.45) captured 
by the hourly model.

4.1.2. Modeling Phytoplankton Biomass

To reproduce phytoplankton dynamics, the model uses high-frequency sensor measurements, which also 
support the calibration of phytoplankton growth, death and respiration rate constants. Phytoplankton pro-
cess rates in rivers around the world have been observed within ranges of 0.06–3 d−1 (growth) and 0.06–
0.17  d−1 (death) (Bowie et  al.,  1985; Everbecq et  al.,  2001; Reichert et  al.,  2001), whereas for the River 
Thames, studies have reported 0.2–1.35 d−1 for growth rate and 0.05–0.23 d−1 for death rate (M. Hutchins 
et al., 2016; Waylett et al., 2013; P. G. Whitehead et al., 2015). The maximum growth rate calibrated for our 
model for the lower Thames is higher (2.28 day−1), and the death and respiration fractions are 0.1 (Table S4). 
The death constant in the model accounts for grazing and nonpredatory mortality. Although phytoplankton 
mortality is a complex process and grazing rates in the river may vary spatially and temporally, the lack of 
grazing abundance data requires the model to be simple in its representation of mortality to avoid an over-
parameterized model. The growth, respiration and death constants mainly control the timing and magni-
tude of phytoplankton blooms, which the model is able to capture broadly.

We observe high photosynthetic production and respiration during April–July, when the environmental 
conditions accommodate high phytoplankton growth. The model simulates a clear diurnal cycle during the 
growing season, when autotrophic production is maximum. The model successfully captures the timing 
and magnitude of major peaks at all calibration sites. Previous phytoplankton modeling studies at daily to 
annual scale in the River Thames have reported NSE values of −5.350–0.228 (Waylett et al., 2013), 0.34–0.75 
(P. G. Whitehead et al., 2015) and mean error values up to ±30% (M. Hutchins and Bowes 2018; M. Hutchins 
et al. 2016). A recent study (M. Hutchins et al., 2020) with daily time-step QUESTOR model in the Thames 
for 2013–2014 reported NSE statistics for chlorophyll between −0.17 and 0.22 at lower Thames reaches. Our 
study simulates hourly phytoplankton variation for the same period, and reports NSE > 0.73 at all calibra-
tion sites and mean errors ranging from −35% to 26%. Better performance of the hourly model, compared 
to the previous modeling studies in the Thames, confirms our hypothesis that high-resolution modeling can 
improve the predictions of timing and magnitude of phytoplankton blooms.

Model sensitivity testing with different algal groups derives SH model as the best representing model of 
phytoplankton growth in the lower Thames. Although the assumptions of green algae and small centric 
diatoms dominance also provide satisfactory fits, these models do not capture the peak blooms as well 
as the SH model does and overestimate low concentrations. Previously, mixed-phytoplankton populations 
have been reported to best represent phytoplankton biomass in the River Thames using the daily time-step 
QUESTOR (Waylett et al., 2013), where phytoplankton groups were allowed to thrive regardless of tempera-
ture. However, the hourly model, with better agreement with observations, suggests that the phytoplankton 
biomass in the river do not survive at higher temperatures. Thus, modeling studies at coarser resolution can 
sometimes result in misleading interpretations about the dominant algal communities and river processes.

The model performs best with an optimum temperature of 14°C in the lower Thames, which is also ob-
served in other lowland rivers (Descy et al., 2003). Stephanodiscus hantzschii is found to be dominant in 
many lowland, temperate rivers (Everbecq et al., 2001) offering a wider applicability of the hourly mod-
el. Observational studies (M. Bowes et al., 2012; Lack, 1971) including the flow cytometry analysis (Read 
et al., 2014) in the River Thames showed dominance of diatoms in spring. However, during summer, a lower 
biomass is observed in the river and smaller pico-chlorophytes dominate the community (Read et al., 2014). 
Hence, our assumption about the dominant species works well for modeling phytoplankton seasonality. 
However, it is important to note that the dominance of phytoplankton groups in rivers may change over 
a year. In reality, different phytoplankton groups compete for resources and their dominance depends on 
multiple environmental factors that are not just limited to temperature. The current model structure does 
not incorporate these processes, but future research on model development should focus on including the 
interplay between different phytoplankton groups.
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4.1.3. Model Uncertainties

Process-based water quality models include uncertainties introduced from several sources such as in-
put data quality, conceptual simplifications causing structural uncertainty, and limitations in process 
understanding of the modeler because of lack of sufficient data (Abbaspour et al., 2015). This is especially 
a problem in large lowland catchments with inputs from a considerable number of sources. The hourly 
model in this study is based on the QUESTOR model, which has been widely applied in rivers across Eu-
rope. QUESTOR has been tested and subjected to comprehensive sensitivity analysis elsewhere (Deflandre 
et al., 2006; M. G. Hutchins & Hitt, 2019). Moreover, extensive QUESTOR applications in the River Thames 
provide confidence in calibration of the hourly model parameters and optimized values lie within similar 
ranges. In this study, we address the importance of inputs relative to that of in-stream processes for model 
predictions by testing the model with low-frequency input data. Through this exercise, we find that the 
model outputs are not sensitive to the time-scale of flow and water quality inputs, but are highly sensitive 
to the radiation inputs. The hourly model requires high-resolution radiation information to estimate phy-
toplankton growth. Obtaining high-resolution radiation data is feasible either directly or indirectly based 
on catchment location and sunshine hours, unlike high-resolution river water quality data that are often 
difficult to obtain. High-frequency inputs should reduce uncertainties in the model, but sparse data from 
tributaries may still introduce some uncertainties. However, assessment of model uncertainty requires a 
much more comprehensive analysis, and is out of the scope of this study. The hourly model application 
in this study is a step forward in high-resolution phytoplankton modeling, and demonstrates an efficient 
and skilful modeling tool for simulating hourly to annual scale variation in phytoplankton biomass and 
its controls.

4.2. Environmental Controls in the Lower Thames

BRT analysis provides an insight in to the nature and importance of associations of phytoplankton with 
multiple environmental variables, and the box-plots provide information about environmental bounds 
of these variables that promote harmful algal blooms. River Thames exhibits high nutrient availabili-
ty throughout the year, and nutrients are consumed by phytoplankton during high growth (M. Bowes 
et al., 2016). Instead of nutrient concentrations influencing phytoplankton growth, we find that in fact, the 
stronger control is the reverse, that of biomass on nutrient availability. Nitrate is present in excess through-
out both years due primarily to diffuse input of nitrate-rich groundwaters. The delivery of nutrients to the 
Thames from diffuse agricultural sources is primarily during winter and autumn high flows. In contrast, 
phosphorus addition from point sources is constant throughout the year, resulting in high SRP levels dur-
ing low summer flows (Jarvie et al., 2002). Low flows and elevated SRP levels, in theory, should promote 
algal growth in the river (Hilton et al., 2006). However, high chlorophyll concentrations coinciding with 
low SRP levels and low flows (Figure S4) in this study suggest that (i) the residence time in the river is long 
enough for phosphorus uptake by phytoplankton biomass for autotrophic production, and (ii) as blooms 
develop, phosphorus levels start depleting in the river and become limiting.

After excluding the nutrients from the list of controls, the BRT analysis shows highest relative influence 
of flow (55%) followed by water temperature (38%) and PAR (7%). PAR is sufficiently available throughout 
the year accounting for the pattern in the relationship between chlorophyll and PAR (Figure 9c). This con-
trasts with findings from the process-based modeling exercise, where high-resolution light information is 
a crucial predictor to model accurate timing and magnitude of phytoplankton blooms. Light is a complex 
parameter to consider compared to other environmental variables as the influence of light on phytoplank-
ton can be a function of past light information in terms of its timing, periodicity, and intensity over time 
(M. Bowes et al., 2016). Moreover, phytoplankton growth is also influenced by seasonal changes in riparian 
shading (M. Hutchins et al., 2010), which are hard to capture in the BRT model using only a simple meas-
urement of PAR. Hourly process-based modeling, on the other hand, accounts for these details, albeit with 
specific assumptions about incoming light information and riparian shading patterns.

Flow and temperature showed an important control on phytoplankton growth. The interactions between 
flow versus temperature and PAR versus flow also showed significant influences. High PAR promotes 
phytoplankton growth only at low-mid flows. Moreover, large blooms are observed when temperature and 
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flow interacts within specific ranges. Phytoplankton growth at Caversham has been reported to respond 
to certain flow and temperature thresholds (M. Bowes et  al.,  2016). Downstream of Caversham, lower 
and upper flow bounds exist for phytoplankton growth (Table 4). Majority of high simulated chlorophyll 
(>0.03 mg L−1) concentrations only occur when flows are between 21 and 63 m3 s−1 in contrast to M. Bowes 
et al. (2016) who only found high concentrations below 30 m3 s−1 from analyzing 5 years (2009–2013) of 
high-frequency measurements at Caversham. Flow bounds identified from the observations at Windsor 
(32–68 m3 s−1) are in a similar range to the modeled bounds (Table 4). Phytoplankton blooms only develop 
at low flows (<51–63 m3 s−1 here), when the residence time is long enough for phytoplankton growth. 
However, the presence of a lower flow bound (>21–30 m3 s−1 here), below which high concentrations do 
not occur, also suggests that the phytoplankton biomass cannot remain suspended when the flow becomes 
too low (<20 m3 s−1), and settle in the river (Balbi, 2000).

Due to SH model assumption of an optimum temperature for growth of 14°C, a consistent temperature 
range, within which high concentrations are simulated (11°C–18°C [Table 4]), is apparent throughout the 
stretch. Observed data show a temperature range of 10°C–17°C at Windsor, whereas M. Bowes et al. (2016) 
reported a temperature range of 9°C–19°C at Caversham. The slightly different bounds for temperature are 
likely indicative of a more-complex system than that represented in the model. These differences are likely 
to reflect largely dominant cool-water centric diatoms, but with secondary influences from other groups, 
such as groups thriving in warmer conditions and attached algae mobilized under turbulent conditions at 
lower temperatures. Important environmental controls found in this study (flow, light, and temperature) 
are consistent with findings from other lowland rivers around the world such as the Murray (Bormans 
& Webster, 1999), the Meuse (Everbecq et al., 2001), and the Severn (Reynolds & Glaister, 1993). Some 
lowland studies have also highlighted the importance of chemical (nutrients) and biological (grazing) 
controls, but these are shown to become significant only when physical constraints are reduced (Billen 
et al., 1994; Gosselain et al., 1998; Reynolds & Descy, 1996).

4.3. Flow Regulation and Water Quality

Physical factors, such as river residence time and flow variability, play an important role in controlling 
phytoplankton growth in lowland rivers (Reynolds, 2000). High flows prevent growth by rapid flushing of 
phytoplankton biomass. The lower Thames reaches are deeper than the upstream reaches with slow-mov-
ing water enriched by high floods in the winter and consistent low flows during the rest of the year. 
Moreover, locks and weirs for navigation throughout the river stretch slow the flow, resulting in increased 
residence times (M. Hutchins & Bowes, 2018). Median residence time in the river stretch in our study 
during 2013–2014 was 40 h, which varied from 9 to 112 h at very high (90th percentile) and very low (10th 
percentile) flows, respectively. One possible solution to avoid high phytoplankton growth in rivers could be 
via the maintenance of river flow above critical thresholds (Wang et al., 2019), in line with environmental 
flow concepts (Poff & Zimmerman, 2010). Experimental flow releases have proved to facilitate mainte-
nance of chemical and biological water quality in regulated rivers elsewhere (Gillespie et al., 2020; Lind 
et al., 2007). As discussed in the previous section, high phytoplankton concentrations in the lower Thames 
are only encountered at low flows below ̴60 m3 s−1. Although more evidence is required to use this thresh-
old as a minimum environmental flow in the river, short pulses of high flow release could act as a measure 
to prevent large algal bloom developments in regulated, lowland rivers like Thames.
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Variable

Observed Modeled

Cavershama Windsor Sonning bridge Windsor Runnymede

Flow (m3 s−1) <30 32–68 28–51 30–63 21–54

Temp (°C) 9–19 10–17 11–18 11–18 11–18
aThresholds at Caversham were reported by M. Bowes et al. (2016).
Note. Temp represents water temperature.

Table 4 
Comparison of Environmental Bounds (For Chl-a>0.03 mg L1) Along the River Stretch
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5. Conclusion
We develop a new hourly river model for a 62 km stretch in the lower River Thames. By including an hourly 
mass balance, the model successfully simulates flow, water temperature, DO, nutrients, and phytoplankton 
biomass in the river. The model satisfactorily captures diurnal variation of phytoplankton dynamics as well 
as the magnitude and timing of bloom events. The hourly model in this study represents better goodness 
of fits compared to the previous daily time-step modeling studies in the Thames, and thus, confirms our 
hypothesis that high temporal-resolution modeling improves phytoplankton growth prediction. The model 
can predict phytoplankton dynamics from low-resolution water flow and quality with hourly resolution 
data only needed for solar radiation. This offers a possibility of model application in catchments where 
high-frequency measurements are not available.

From a range of algal groups tested under sensitivity analysis, a model assuming Stephanodiscus hantzschii 
with optimum growth at 14°C to predominate best represented biomass variation. Stephanodiscus hantzschii 
is also predominant in many lowland rivers worldwide. The model can easily be applied elsewhere and 
also be adapted in its parameterization to reflect dominance by different species if needed. Phytoplankton 
growth in lower Thames is mainly influenced by hydrological (residence time) and physical controls (water 
temperature and light intensity), which is typically found in lowland rivers worldwide. We observe that phy-
toplankton blooms only develop within specific flow bounds (21–63 m3 s−1). Identification of flow bounds 
is useful to prevent major bloom developments and to maintain river water quality. Hence, short-term high-
flow release (here, above 60 m3 s−1), as experimented in other regulated rivers, could form a potential man-
agement strategy in critical situations.

This is the first study where high-resolution hourly model is validated against similarly high-frequency bio-
mass observations. To our knowledge, river modeling studies with all environmental controls at such a tem-
poral and spatial extent have not previously been undertaken. It offers the following powerful possibilities:

 (1)  Feasibility for hourly model application in any river with a single continuous water quality monitoring 
site in the lower reaches

 (2)  Reconstruction of past long-term changes in hourly water quality dynamics before continuous monitor-
ing with sensors was widely available

 (3)  Application to provide early warnings of phytoplankton blooms as well as to evaluate management 
strategies using scenario analysis

 (4)  Hourly scale DO curves and biomass information can be further interpreted to evaluate ecosystem me-
tabolism and to identify low night-time oxygen levels that may threaten ecological health

 (5)  The costs for high-frequency monitoring over multiple sites within the river network can be reduced if 
a reliable modeling tool such as the one described in this study is available

Data Availability Statement
The hourly data for water temperature, chlorophyll and dissolved oxygen in the lower Thames were made 
available from the Environment Agency and can be downloaded from Zenodo data repository (https://doi.
org/10.5281/zenodo.4288254). Daily flow data are available at the NRFA (NERC, National River Flow Ar-
chive, http://www.ceh.ac.uk/data/nrfa/). Weekly water quality data can be found at (1) the UK Centre for 
Ecology & Hydrology's Thames Initiative research platform (https://doi.org/10.5285/e4c300b1-8bc3-4df2-
b23a-e72e67eef2fd) hosted by the UK NERC Environmental Information Data Centre and (2) Environment 
Agency's water quality data archive (http://environment.data.gov.uk/water-quality/view/landing). Radia-
tion information is available at British Atmospheric Data Centre (MIDAS Landsat data) (http://archive.
ceda.ac.uk/).
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