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ABSTRACT

Materials can be modified for improved functionality. Our aim was to test whether pulmonary
toxicity of silica nanomaterials is increased by the introduction of: a) porosity; and b) surface
doping with CuO; and whether c) these modifications act synergistically. Mice were exposed by
intratracheal instillation and for some doses also oropharyngeal aspiration to: 1) solid silica
100 nm; 2) porous silica 100 nm; 3) porous silica 100 nm with CuO doping; 4) solid silica 300 nm;
5) porous silica 300 nm; 6) solid silica 300nm with CuO doping; 7) porous silica 300 nm with
CuO doping; 8) CuO nanoparticles 9.8 nm; or 9) carbon black Printex 90 as benchmark. Based
on a pilot study, dose levels were between 0.5 and 162 pg/mouse (0.2 and 8.1 mg/kg bw).
Endpoints included pulmonary inflammation (neutrophil numbers in bronchoalveolar fluid),
acute phase response, histopathology, and genotoxicity assessed by the comet assay, micronu-
cleus test, and the gamma-H2AX assay. The porous silica materials induced greater pulmonary
inflammation than their solid counterparts. A similar pattern was seen for acute phase response
induction and histologic changes. This could be explained by a higher specific surface area per
mass unit for the most toxic particles. CuO doping further increased the acute phase response
normalized according to the deposited surface area. We identified no consistent evidence of
synergism between surface area and CuO doping. In conclusion, porosity and CuO doping each
increased the toxicity of silica nanomaterials and there was no indication of synergy when the
modifications co-occurred.
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Introduction area has been identified as an important driver of
inflammation (Poulsen et al. 2016; Schmid and

Stoeger 2016; Barfod et al. 2020; Danielsen et al.

Manufactured nanoparticles can be modified to
widen their industrial applications. Modifications

such as introduction of porosity or addition of chem-
icals may influence the toxicity of the nanomaterials.

Introducing porosity into nanoparticles is intended
to increase the surface area of the particle and
decrease their density. This can be advantageous in
products such as catalysts and pharmaceutical drug
delivery (Auyeung et al. 2015; Baeza, Ruiz-Molina,
and Vallet-Regi 2017). Since lung-deposited surface

2020), porous particles would be expected to induce
more inflammation than solid particles due to a
larger total deposited surface area.

Doping metals such as copper onto the surface
of nanomaterials is a means for increasing catalytic
properties (Zhang et al. 2014; Witoon et al. 2018;
Koohestani et al. 2020). The pulmonary toxicity of
copper (CuO) nanoparticles has

oxide been
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investigated in pregnant mice (3.5mg/m>, 4h/day
on gestation days 3-19). Neutrophils were increased
in BAL fluid, and immune response gene expression
was affected in the spleen of pups (Adamcakova-
Dodd et al. 2015). Inflammation was also seen fol-
lowing short-term inhalation of 10mg/m® CuO
nanoparticles 15-20nm in diameter (Gosens et al.
2016). In addition, CuO nanoparticles dosed via
intratracheal instillation or aspiration induced
increased neutrophil number in BAL fluid at doses
between 0.5 and 2mg/kg bw (Yokohira et al. 2009;
Cho et al. 2010; 2012, Jeong, Kim, et al. 2016,
Minigalieva et al. 2017). Copper salts seem to be
more potent than CuO nanoparticles: studies with
copper salts have demonstrated toxicity in the
microgram range (per kg bw) (Hirano et al. 1990,
Rice et al. 2001, Prieditis and Adamson 2002,
Wallenborn et al. 2009).

When designing novel nanomaterials combining
various functionalities, there is a very high number
of potential combinations taking the vast number
of available chemicals and modifications into
account. Therefore, we need to be able to predict
the resulting toxicity based on knowledge on the
toxicity of each modification. For mixtures of chemi-
cals this is done by using mathematical models
such as ‘dose addition’ or ‘independent action’
(Hadrup et al. 2013, Hadrup 2014). Yet, these mod-
els are based on the notion that the effects are
additive; while potential synergistic effects are a
source of uncertainty (Hadrup et al. 2016). It has
not yet been assessed whether these models can
be used to predict the toxicity of combinations of
modifications in complex nanoparticles.

The specific research questions in this study were
whether the introduction of: a) mesoporosity; and
b) surface CuO doping could affect the toxicity of
synthetic amorphous silica materials and whether ¢)
a combination of these modifications could have
synergistic effects. To this end, mice were intratra-
cheally dosed with solid or porous silica particles,
both in the presence and absence of CuO doping
(small particles of CuO placed onto the silica sur-
face). For reference, we included pure 10nm CuO
nanoparticles and 14 nm carbon black nanoparticles.
After 1 and 28days of recovery, we investigated
inflammation as cellularity of BAL fluid, acute phase
response markers in the lung and liver, and geno-
toxic effects in the blood, BAL fluid cells, lung and
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liver. The amount of copper was measured by ICP-
MS in lung tissue, and the presence of particles in
BAL fluid cells was evaluated by phase contrast
microscopy. To increase the strength of the data,
we - in an independent study - investigated the
effect of porosity in a mouse oropharyngeal aspir-
ation model, using recovery times of 1, 3,
and 7 days.

Methods

Test materials and preparation of particle
suspensions

Powders of CuO nanoparticles and 100 or 300 nm
target-size silica with combinations of porosity and
CuO doping were synthesized through wet-chem-
ical procedures. All silica materials were subse-
quently coated with methyl-groups to lower their
hygroscopicity (e.g. Smeets et al. 2018) and hence
and dissolution rate. The test materials were charac-
terized by Transmission (TEM: Tecnai T20 G2 - LaB6
microscope, operating at 200kV) and Scanning
Electron Microscopy (SEM; FEI Quanta 200), specific
surface area by BET Nitrogen adsorption
(Micromeritics Instrument Corporation), Cu-content
by Inductively Coupled Mass-Spectrometry (ICP-OES;
Agilent 5100), and water-loss and methylation by
coupled Thermogravimetric Mass-Spectrometry ana-
lysis (TGA-MS; Netzsch STA 449F3 and QMS D
Aéolos MS). The synthesis procedures for the silica
particles were tailored based on the approaches
described in (Graf et al. 2003, Zhao et al. 2012, Wu,
Mou, and Lin 2013), and for CuO based on (El-Trass
et al. 2012). Details will be reported in (Sahlgren
et al. n.d.). Printex 90 carbon black was included an
internal benchmark material.

For animal exposure, the materials were pre-wet-
ted with 0.5% v/v ethanol (5 ul/mL) and suspended
in 0.2mm filtered, y-irradiated Nanopure Diamond
UV water (Pyrogens: <0.001 EU/ml, total organic
carbon: <3.0 ppb) with 2% v/v mouse serum from
sister mice (Hadrup et al. 2017). The suspension was
continuously sonicated for 16 min in an ice-water
bath by use of a Branson Sonifier S-450D (Branson
Ultrasonics Corp., Danbury, CT) equipped with a
13 nm disruptor horn (Model number: 101-147-037,
Branson Ultrasonics Corp., Danbury, CT, USA) using
an amplitude of 10%. Exceptions to this procedure
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was particle NRCWE #067 (sonication for 16 min at
an amplitude of 20%) and NRCWE #070 (sonication
for 20min at an amplitude of 10%). The particle
mass concentrations were 2.56 mg/mL correspond-
ing to a dose of 128 ug/mouse in a 50 pL instillation
volume. To obtain lower doses, the suspensions
underwent repeated cycles of three-fold dilutions
followed by 2min of sonication after each dilution,
until the appropriate concentration was obtained.

DLS and zeta-potential characterization of
particle suspensions

The hydrodynamic size distributions of the batch
dispersions were determined via Dynamic Light
Scattering (DLS) on a Malvern Zetasizer Nano ZS
(Malvern Instruments, UK). Size distributions were
measured directly at 25°C for all instillation suspen-
sions. Zeta-potential measurements were conducted
with the same equipment using the Auto mode for
the analysis. The data were collected and analyzed
with the Dispersion Technology Software v7.11
(Malvern Instruments, UK). For the zeta-sizer ana-
lysis, the following values were used: refractive and
absorption indices of as well as standard optical

and viscosity properties for water (Viscosity:

0.887cP; RI 1.33). pH measurements were con-
ducted using a pH Meter M240 (Sigma-
Aldrich, Denmark).

Animal procedures (intratracheal

instillation study)

All  animal procedures complied with the EC

Directive 86/609/EEC and Danish law regulating
experiments with animals (The Danish Ministry of
Justice, Animal Experiments Inspectorate permission
2015-15-0201-00465). Female C57BL/6J BomTac
mice, 7 weeks of age and with a body weight (bw)
of 19+1.59g, were obtained from Taconic Europe
(Ejby, Denmark). Upon arrival, the animals were
randomized to cages with either control or nano-
material administered animals (n=7 animals per
cage and treatment group). Drinking water (tap
water) and feed (Altromin no. 1324, Brogaarden,
Denmark) were provided ad libitum. The mice were
housed in polypropylene cages with Enviro-Dri bed-
ding (Brogaarden, Gentofte, Denmark). Enrichment
consisted of wood blocks (Brogaarden, Gentofte,

Denmark) and hides (Mouse House, Scanbur,
Karlslunde, Denmark). Room temperature was
20+2°C and humidity 50+20%. The animals were
kept under a 12h light: 12h dark cycle (light on
from 6 a.m.). Following one week of acclimatization,
anesthetized mice were instilled with 50 pL of par-
ticle suspension as previously described (Jackson
et al. 2011, Hadrup et al. 2017) (DLS data from the
specific animal study are provided in Table 1). One
or 28days after exposure, the mice were anesthe-
tised by an injection of Zoletil-Fentanyl, and
humanely killed by collection of heart blood as
described (Bengtson et al. 2017). The thorax was
monitored for macroscopic abnormalities such as
discolorations, ascites or bleeding, and lung and
liver were excised for further analysis. Based on
review of the toxicological literature, a pilot study
was performed, using doses of 128 ug/mouse,
except CuO nanoparticle, where 42 ng was used. In
addition, silica 300 nm-CuO was administered at
141g since the suspension in instillation vehicle
had an unacceptably high pH at higher concentra-
tions (pH 10.3 reduced to 7.3 at 14 pnug/mouse).
Based on clinical appearance and body weight of
the two mice in each pilot treatment group, dose
levels were set for the main study as shown in
Table 2.

Animal procedures (oropharyngeal
aspiration study)

This part of the study was performed in agreement
with the European Convention for the Protection of
Vertebrate Animals Used for Experimental and
Other Scientific Purposes (Strasbourg 18 March
1986, adopted in Finland 31 May 1990), and were
approved by the State Provincial Office of Southern
Finland (ESAVI/518/04.10.07/2017). Female 7-week
old C57BL/6)J BomTac mice were obtained from
Taconic Europe (Ejby, Denmark) and quarantined
for one week upon arrival. The mice were housed
in groups of four in transparent plastic cages
bedded with aspen chip, and were provided tap
water and standard mouse diet (Altromin no. 1314
FORTI, Altromin Spezialfutter GmbH & Co,
Germany) ad libitum. The environment of the ani-
mal room was carefully controlled, with a 12h dark-
light cycle the light was on from 6 AM to 6PM),
temperature of 20-21°C, and relative humidity of
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Table 1. Representative electron microscopy images and physico-chemical properties of the used test-materials.

C-average PDI
Representative Water-loss/ Specific (nm) mean mean and SD
Name and electron Cu0 Methylation surface area and SD of 6 of 6 (~potential
description microscopy image (Wt.%) (wt.%) (mz/g) measurements  measurements (mV) pH
NRCWE#065 n.a. 0.72 /2.1 828 128 ug 128 ug: —36.5 7.68
porous (2.56 g/L)* :
silica 300 nm 337.7+49 0.297 4+ 0.031
43 ng 43 ug:
0.86 g/L):
335.8+9.1 0.377 +0.032
14 ng 14 pg:
(0.28 g/L):
281.1+£373 0.387 +0.038
NRCWE#066 solid na. 594 /24 10 128 g 128 ug: —325 7.48
silica 300 nm (2.56 g/L):
379.2+£61.45 0.464 +0.047
43 ng 43 ug:
(0.86 g/L):
327.5+128.2 0.562 + 0.054
14 ng 14 ng:
(0.28 g/L):
316.3+£168.8 0.619+0.097
NRCWE#067 n.a. 019/ 1.6 844 128 ug 128 ug: —325 7.59
porous (2.56 g/L):
silica 100 nm 247.6 £40.44 0.541 +0.065
43 ng 43 pg:
(0.86 g/L):
188.2+31.16 0.524+0.065
14 ng 14 pg:
(0.28 g/L):
326.6+127.5 0.513+0.082
NRCWE#068 solid na. 435/28 2 128 g 128 ug: —311 7.85
silica 100 nm (2.56 g/L):
155.2+2.06 0.222+0.014
43 ng 43 pg:
(0.86 g/L):
163.2 £5.64 0.281+0.012
14 ng 14 ng:
(0.28 g/L):
149.8+7.93 0.248+0.036
NRCWE#069 46 0.26 / 3.0 862 439 43pg: 386 7.50
porous silica (0.86 g/L):
300 nm- 268.8 +£3.81 0.265+0.023
CuO doping 14 g 14 pg:
(0.28 g/L):
254.0+5.98 0.293 +0.025
4.7 ng 4.7 ng:
(0.10 g/L):
218.9+£5.31 0.399+0.023
NRCWE#070 53 110/ 24 747 43 ng 43 pg: -31.7 7.48
porous silica (0.86 g/L):
100 nm- 215.6 +62.95 0.465 + 0.055
CuO doping 14 ng 14 ng:
(0.28 g/L):
2353 +77.57 0.466 +0.061
4.7 ng 4.7 ng:
(0.10 g/L):
204.7 £100.4 0.457 £0.023
NRCWE#071 solid 93 443 /64 9 14 g 14pg: —50.0 10.30
silica 300 nm- (0.28 g/L):
CuO doping 587.8£45.92 0.496 +£0.165
4.7 ng 4.7 ug:
(0.10 g/L):
466.8 + 60.91 0.762+0.111
1.5ug 1.5ng
(0.03 g/L):

417.4+£1489 0.731+0.146

(continued)
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Table 1. Continued.

(-average PDI
Representative Water-loss/ Specific (nm) mean mean and SD
Name and electron Cu0 Methylation surface area and SD of 6 of 6 (~potential
description microscopy image (wt.%) (wt.%) (mz/g) measurements  measurements (mV) pH
NRCWE#072 CuQ 89.2 455/0.0 75 47 pg 4.7 ng: —27.2 8.14
nanoparticles. (0.10 g/L):
9.8nm 135.4+21.44 0.364 +0.036
1.5ug 1.6 ug:
(0.03 g/L):
174.9+£91.93 0.400 £ 0.055
0.5 pg 0.5 pg:
(0.01 g/L):
497.5 401 0.673+0.186
Printex 90 N/A N/A 295 m%/g in 162 ug 0.228 +0.01 N/A N/A
Carbon black (Saber (3.249/
et al. 2005) L):
93.64 +0.69
/ 80.05+0.44 /0.188+0.013

(dosed on 2
different days)

(dosed on 2
different days)

PDI is an abbreviation of poly-dispersity index. Scale bar SEM image (NRCWE#71): 1 um; Scale bar TEM-images (all particles except NRCWE#71): 100 nm;
Arrows in NRCWE-069 and NRCWE-070 illustrate the presence of CuO in these samples. CuO is not immediately recognized in the SEM-image of NRCWE-
071. C-average and PDI are from the suspensions dosed to the animals. Other data are from (Sahlgren et al. in preparation).

The instillation volume was 50 pl.

Table 2. Study doses.

Treatment

Doses

Amount of CuO dosed

Intratracheal instillation study

Control vehicle

NRCWE#065 porous Silica 300 nm
NRCWE#066 solid silica 300 nm

NRCWE#067 porous silica 100 nm
NRCWE#068 solid silica 100 nm

NRCWE#069 porous silica 300 nm-CuO doping
NRCWE#070 porous silica 100 nm-CuO doping
NRCWE#071 solid silica 300 nm-CuO doping
NRCWE#072 CuO nanoparticles

Positive control: carbon black (CB) Printex 90

Oropharyngeal aspiration study
NRCWE#065 porous Silica 300 nm

NRCWE#066 solid silica 300 nm
NRCWE#067 porous silica 100 nm

NRCWE#068 solid silica 100 nm

0 pug/mouse (0 mg/kg bw)
14, 43 and 128 pg/mouse
~0.7, 2.2, and 6.4 mg/kg bw
14, 43 and 128 pg/mouse
~0.7, 2.2, and 6.4 mg/kg bw
14, 43 and 128 pg/mouse
~0.7, 2.2, and 6.4 mg/kg bw
14, 43 and 128 pg/mouse
~0.7, 2.2, and 6.4 mg/kg bw
4.7, 14 and 43 pg/mouse
~0.2, 0.7, and 2.2 mg/kg bw
4.7, 14 and 43 pg/mouse
~0.2, 0.7, and 2.2 mg/kg bw
1.6, 4.7 and 14 ng/mouse
~0.08, 0.2, and 0.7 mg/kg bw
0.5, 1.6 and 4.7 pg/mouse

~0.03, 0.08, and 0.2 mg/kg bw
162 pg/mouse ~8.1 mg/kg bw

43 and 128 pg/mouse
~2.2, and 6.4mg/kg bw
43 and 128 pg/mouse
~2.2, and 6.4 mg/kg bw
43 and 128 pg/mouse
~2.2, and 6.4 mg/kg bw
43 and 128 pg/mouse
~2.2, and 6.4 mg/kg bw

n/a
n/a

n/a

n/a

n/a
~0.01, 0.03 and 0.09 mg/kg bw
~0.01, 0.03 and 0.09 mg/kg bw
~0.007, 0.02 and 0.06 mg/kg bw
~0.02, 0.06 and 0.18 mg/kg bw

No copper was detected
in a previous study (Jacobsen et al. 2008)

n/a
n/a
n/a

n/a

Based on a pilot study the intratracheal instillation and oropharyngeal aspiration doses in mice were as shown below.

40-45%. Dispersions of 100 and 300 nm solid and
porous silica nanomaterials (NRCWE#065 -
NRCWE#068), carbon black as positive control (all
dispersed in 2% mouse serum/PBS), or 2% mouse

serum/PBS as vehicle control, were once adminis-
tered to the 8-week old mice (n=28 per treatment
group) by oropharyngeal aspiration under isoflurane
anesthesia as described earlier (Rydman et al. 2015).



The administration volume was 50pul, and mice
received the silica particles at two dose levels — 43
or 128 ug/mouse, and carbon black particles at
128 pg/mouse. Animals were sacrificed 1, 3, and
7 days after the exposure by isoflurane overdose
accompanied by immediate blood withdrawal from
the vena cava and collection of BAL and
lung biopsies.

Measurement of copper in lung samples and
evaluation of color change of BAL cells to indicate
the location of nanomaterials inside cells

For measurement of copper content in the intratra-
cheal instillation study, lung samples were digested
with 1 mL of 70% HNOs per 0.05g of dry sample at
200°C for 15min. Copper content was measured
with a Perkin Elmer DRCII ICP-MS apparatus, with a
detection limit of 0.029 ug/L. To give an indication
whether BAL cells contained nanomaterials, we
invoked phase contrast microscopy. A bluish color,
likely representing the uptake of particles, was
observed inside bronchoalveolar lavage fluid cells at
different extents across the materials. The BAL cell
slides were reviewed blinded to the observer.

BAL fluid cellularity

In the intratracheal instillation study, BAL fluid cellu-
larity was determined as previously described
(Kyjovska et al. 2015). Further details are provided
in the Supplementary materials.

Determination of saa mRNA levels by
quantitative PCR

Saa mRNA levels serve as biomarkers for acute
phase response induction, and as biomarker of risk
of cardiovascular disease (Saber et al. 2014, Hadrup,
Zhernovkov, et al. 2020). In the intratracheal instilla-
tion study, quantitative PCR was conducted on
cDNA from total RNA isolated from snap frozen
lung and liver tissue as described earlier (Poulsen
et al. 2017). Quantitative PCR was performed in trip-
licates on ViiA7 Real-Time PCR detector (PE
Biosystems, Foster City, CA, USA); the Saa mRNA
levels were normalized to 185 rRNA (prod. no.
Mm03024053_m1 from Applied Biosystems).
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Genotoxicity

The level of DNA strand breaks was assessed in BAL
cells, and lung and liver tissue in the intratracheal
instillation study as tail percent DNA, measured by
the comet assay using the IMSTAR system as previ-
ously described (Jackson et al. 2013). Negative and
positive controls included on all slides were A549
cells exposed to 0 or 30uM of H,0,, respectively.
The frequency of micronuclei was scored in 2000
normochromatic erythrocytes from peripheral blood
per mouse, as previously described (Lindberg et al.
2012), 28 d post-instillation. At the same time-point,
the lungs of animals treated with the highest dose
of each material were assessed for DNA double-
strand breaks by the y-H2AX assay (Plappert-Helbig
et al. 2019). Immunofluorescent y-H2AX staining
was performed on formalin-fixed paraffin-
embedded lung samples after deparaffination and
antigen retrieval by boiling. An autostainer was
used for primary (rabbit monoclonal anti-gamma
H2AX phospho-Ser139) and secondary (goat anti-
rabbit 1gG) antibody incubations and for tyramide
amplification of the fluorescent signal (Alexa
Fluor'™ 488  Tyramide  SuperBoost™  Kit;
ThermoFisher Scientific) according to manufacturer’s
instructions. Samples were counterstained with 4/,6-
diamidino-2-phenylindole and digitized with 20x
fluorescent scanning. Expression of y-H2AX foci was
analyzed by a digital microscope application. For
each sample, all nuclei in four randomly selected
annotations (200 x 200 um) were classified as nega-
tive, weak positive (<3 foci), positive (>3 foci), or
apoptotic (pan-stained nucleus).

Histopathology

Lung, liver, kidney and spleen from the highest
dose group of each particle (28 days post treatment
in the intratracheal instillation study, and 1, 3, and
7 days after treatment in the oropharyngeal aspir-
ation study) were fixed in 4% formalin for at least
24h, and the formalin fixed samples were then
trimmed, dehydrated and paraffin embedded.
Sections were cut at a thickness of 3 um. For the
evaluation of general morphology, the sections
were stained with the hematoxylin and eosin (H&E)
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stain. Next, the sections were evaluated for histo-
pathological changes under light microscope.

Statistics

Statistics were calculated using the Graph Pad
Prism software package 7.02 (Graph Pad Software
Inc,, La Jolla, CA, USA). Data were first tested for
normality using the Shapiro-Wilk test. The t-test and
ANOVA are relatively robust against deviations from
normality but somewhat sensitive to differences in
standard deviation. Therefore t-test and ANOVA
were performed, unless the p value of the Shapiro
Wilks test was very low (p<0.001), or standard
deviations differed from each other in the F test
(for two sample comparisons) or Brown-Forsythe
test for three or more treatment groups (p < 0.001).
The latter tests were calculated because the t-test
and the ANOVA are somewhat sensitive to differen-
ces in standard deviation. In cases of deviations in
normality or standard deviations, the non-paramet-
ric Mann Whitney (two groups) or Kruskall-Wallis
(more than two groups) tests were applied. The
data were tested so that each particle type was
considered independently against the vehicle con-
trol. In order to assess differences in between
groups in the one-way ANOVA or Kruskall-Wallis
test, Holm-Sidak's multiple comparisons test
(ANOVA) and Dunn’s multiple comparisons test
(Kruskall-Wallis test) were applied, respectively.

To test across each material, we calculated the t-
test or (in accordance with the considerations
above) the non-parametric Mann-Whitney test. For
this, we tested each dose level (in pg) of the porous
silica against the corresponding dose level of solid
silica, and each dose level of CuO-doped particles
against their respective dose level of un-CuO-doped
solid or porous silica. We used a Bonferroni-cor-
rected p value adjusted for the 11 comparisons in
the intratracheal instillation study (for some par-
ticles there was only partial overlap between the
dose levels due to adjustment of dose levels based
on toxicity in the pilot study); and the four compari-
sons in the oropharyngeal aspiration study (only
solid and porous particles included).

Concerning the presence of nanomaterials inside
BAL cells, whether there was a difference to the con-
trol group was evaluated using Fisher’s exact test with
a p Value of less than 0.05 considered significant.

Results
Nanomaterial properties

Representative electron microscopy images of the
silica and CuO test materials are shown in Table 1.
The physico-chemical properties including CuO con-
tent, amount of adsorbed water and methyl coat-
ing, specific surface area, as well as the (-average,
polydispersity index (PDI), and {-charge and pH of
batch suspensions are shown in Table 1. The data
show that the silica materials consist of highly
spherical particles. CuO nanoparticles in the doped
materials can be clearly identified. The pure CuO
nanoparticles appeared as very small ca. 10 nm-size
spherical to elongated nanocrystals. CuO-content of
doped silica materials was 4.6 to 9.3 wt.%. The silica
materials contained 0.26 to 5.94wt.% adsorbed
water and 2.1 to 6.4wt% methylation. The CuO
nanoparticle contained 4.55wt% adsorbed water
and no methylation. The specific surface areas of
the materials, varied from 9 to 862 m?/g and porous
silica materials have 34 to 86 times higher specific
surface areas than the solid counterparts. Analysis
of batch suspensions following the procedure for
toxicity testing showed hydrodynamic C-sizes rang-
ing from 135 to 587 nm suggesting some influence
of agglomerates or minor contents of coarser par-
ticles. The (-potentials were all negative with values
typically ranging from —27.2 to —38.6 mV. One sam-
ple had a (-potential of —50.0mV and an abnor-
mally high pH of 10.2 as compared to the other
silica and CuO materials with pH values ranging
from 7.48 to 8.14.

Body weight and clinical appearance

In the pilot study, 42ug/mouse CuO nanoparticles
induced passiveness to an extent that the animals
had to be humanely killed 30 min after exposure. Two
mice were subsequently dosed with 14 g of this par-
ticle but lost body weight (14% weight loss on day
3). Although their weights normalized over the next
two days (Supplementary Materials Figure S1), the
highest dose was set to 4.7 ug/mouse in the main
study. We observed no toxicity in the other treatment
groups in the pilot study. In the main study, there
were no effects on body weight or clinical appear-
ance in any of the exposure groups.
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Copper content in the lungs, and color change
indicating nanomaterials inside BAL fluid cells

Particle uptake in BAL fluid cells 24 h after exposure
was indicated by a color change (purple/blue label-
ling) of the cells, observed at all dose levels of
almost all particles (Supplementary materials Figure
S2). Exceptions were the two lowest dose levels of
the solid silica 300 nm-CuO (1.6 and 4.7 pg/mouse)
and all dose levels of the pure CuO nanoparticle
(0.5 to 4.7 ug) (Supplementary materials Figure S2).
At 28days, a color change was still present at all
doses of un-doped solid and porous silica 300 nm
and CuO-doped porous silica 300 nm, whereas for
the other silica particles the color change had
diminished (Supplementary materials Figure S2).
Copper content was measured in lung tissue from
selected animal groups (Supplementary materials
Figure S3). Copper content was increased in the
lungs at the highest dose of CuO nanoparticles 24 h
post-exposure, the only group assessed at this time
point. There was no increases in copper in any of
the tested groups 28days after exposure, which
included the two highest dose levels of the CuO-
doped silica particles and the CuO nanoparticle
(Supplementary materials Figure S3).

Inflammation determined as the number of BAL
neutrophils

Lung inflammation, in terms of increased neutrophil
numbers in BAL fluid, was observed for both the
porous 100 nm and porous 300 nm silica nanomate-
rials 24 h after intratracheal instillation, at the two
highest and the highest dose levels, respectively
(Figure 1). Moreover, the highest dose levels of por-
ous silica - of both sizes - induced significantly
higher neutrophil numbers in BAL fluid than the
highest doses of their solid counterparts (Figure 1).
The porous silica 300 nm-CuO (highest dose was
43pug) induced more inflammation than 43pug of
porous silica 300nm with no CuO doping (Figure
1). The CuO particle increased neutrophil numbers
at the two highest dose levels (1.6 and 4.7 ug/
mouse). At 28 days, inflammation was sustained for
the 100nm porous particle doped with CuO, but
not for its un-doped counterpart. In addition, at 28-
days post-exposure, increased neutrophil influx was
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observed across particles and doses. The positive
control particle CB Printex-90 increased neutrophil
numbers at both time points (Figure 1). To enable
comparison of similar dose levels in relation to pos-
sible synergy between porosity and CuO-doping,
data regarding the 14 and 43 pg/mouse solid, por-
ous and CuO-doped silica particles are shown separ-
ately in Supplementary materials Figure S4.

After particle exposure by oropharyngeal aspir-
ation, porous silica of both sizes increased neutro-
phil numbers in BAL fluid at the highest dose level
(128 ng/mouse), at all time-points (Figure 2). At day
1, both sizes of porous particles resulted in more
pronounced effects than those of their solid coun-
terparts at 128 pg/mouse (Figure 2). At the same
time, the lowest dose of Porous Silica 300 nm had a
greater effect as compared to the lowest dose of its
solid counterpart (Figure 2). On day 3, the highest
dose of Porous Silica 300 nm showed a higher effect
than the corresponding dose of the solid 300 nm
particle. We observed no effects seven days after
exposure. We only found minor effects of the solid
silica particles at equal mass doses. The positive
control, CB Printex 90, increased neutrophil num-
bers at all time-points (Figure 2).

In Figure 3 (and Supplementary Figures S5 and
S6), neutrophil numbers in BAL are shown as func-
tion of the total deposited surface area (BET surface
area) at 24h post-exposure (instillation and aspir-
ation). The solid particles did not induce statistically
significant inflammation. The porous silica particles
of 100 and 300 nm exhibited similar dose-response
relations, but were less inflammogenic by surface
area than the positive control (carbon black). The
pure CuO nanoparticles were the most inflammo-
genic by surface area (Figure 3). Porous silica
300nm-CuO were more inflammogenic than the
two porous silica particles with no CuO, suggesting
that copper contributed to inflammogenicity on top
of the surface area effect (Figure 3). Concerning
porous and solid particles tested by oropharyngeal
aspiration (Supplementary Figure S6), a similar pat-
tern emerged over the three time points (1, 3, and
7 days), with the porous particles being less inflam-
mogenic by surface area compared to carbon black.
In addition, on day 1, the inflammation induced
by100 nm solid silica did not correlate with the spe-
cific surface area.
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Neutrophils in BAL fluid, 24 h
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Figure 1. Neutrophil numbers in bronchoalveolar lavage fluid of mice exposed to the nanomaterials. The upper panel show data
from 24 h of exposure and the lower panel from 28 days of exposure. The columns represent means and bars SD. ***, ** and *
designates p values of <0.001, <0.01 and <0.05 respectively of one way ANOVA with Holm-Sidak's multiple comparisons test in
case of data approaching normality and not having a highly different variation. In the case of carbon black ***, ** and * desig-
nates p values of <0.001, <0.01 and <0.05 respectively vs. vehicle of t-test. ** and * designate Bonferroni-corrected (11 compari-
sons) p values of <0.01 and <0.05 of unpaired t-test or Mann-Whitney test.

Acute phase response determined as saa
mRNA levels

At 24 h after intratracheal instillation, Saa3 mRNA
levels were increased by both porous particles at
the two highest dose levels (43 and 128 pg/mouse)
(Figure 4). Both solid silica particles increased Saa3
mMRNA levels at 128 pg/mouse, and a small, but

statistically significant, increase was also seen at the
lowest dose of the 300 nm solid silica. Porous silica
300 nm-CuO increased Saa3 mRNA levels at 14 and
43 pg/mouse, and small increases were observed for
porous silica 100 nm-CuO and solid silica 300 nm-
CuO (Figure 4). No statistically significant differences
were found between the treatment groups. The
pure CuO nanoparticle induced effects at the two
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S PP L OO
N

e o)
ERAUICAUIUAUIURUAN
‘-\\0\0 QQ(\ R QQ ,‘JQQ(\ %QQQ (@)
RO A SO
< N & N
é\ 6\ 6\ 6\
O R & R
‘.oo\‘ O 0 O
Q° Q°

Figure 2. Neutrophil numbers in bronchoalveolar lavage fluid of mice exposed to the nanomaterials by oropharyngeal aspiration.
The plots represent neutrophil recruitment to the airways 24 h, 3 and 7 days after the treatment with vehicle or nanomaterial dis-
persions. Data are mean and bars represent SD. **** *** “* and * designates p values of <0.0001, <0.001, <0.01 and <0.05
respectively of one way ANOVA with Holm-Sidak’s multiple comparisons test in case of data approaching normality and not hav-
ing a highly different variation. In the case of carbon black ***, ** and * designates p values of <0.001, <0.01 and <0.05

respectively vs. vehicle of t-test. *#*

ively, of unpaired t-test or Mann-Whitney test.

highest dose levels (1.6 and 4.7 ug/mouse) as did
the positive control, CB Printex 90 (Figure 4). At
28 days, only the positive control and the pure CuO
nanoparticles sustained increased Saa3 mRNA levels
in lungs. In the liver, there were only sporadic
effects on Serum amyloid 1 mRNA levels (14 pug por-
ous silica 100nm, 128 ug porous silica 300 nm and
0.5p1g CuO nanoparticles; Supplementary materials
Figure S7).

and ** designate Bonferroni-corrected (4 comparisons) p values of <0.001 and <0.01, respect-

Figure 5 (and Supplementary materials Figure S8)
depict Saa3 mRNA levels in lung as a function of
the deposited specific surface area. The dose-
response curves for the porous particles were
shifted toward lower responses (Figure 5, upper
panel), suggesting that the internal surface area
contributes less to induction of acute phase
response. For both porous and solid silica with CuO
doping, the curves were shifted to the left in
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Figure 3. Neutrophil numbers in bronchoalveolar lavage fluid
of mice as function of dosed BET surface area of each nano-
material. The data on neutrophil numbers from Figure 1.
(intratracheal instillation) are here depicted as function of
dosed BET surface area per mouse. The upper panel represents
data from 24h of exposure of porous and non-porous par-
ticles; and the lower panel data from 24 h of exposure of CuO
nanoparticles, porous silica 300nm CuO and porous silica
300 nm to illustrate the effect of CuO doping. Some error bars
are not depicted, because the exponential axis does not
accommodate negative values.

comparison to their counterparts with no CuO dop-
ing (Figure 5 lower panel). For the porous 100 nm
particles with or with no CuO doping, this shift was
less clear.

Genotoxicity

We observed weak genotoxic effects in the comet
assay. In BAL fluid cells, the percentage of DNA in
the tail was increased only at the lowest dose of
porous silica 300 nm-CuO (Supplementary materials
Figure S9). In lung tissue, 24 h post-exposure, DNA-
damage was increased for the two highest dose lev-
els (4.7 and 14 pg/mouse) of CuO-doped solid silica

300nm. For the solid silica, 14ug of solid silica
300nm-CuO had a greater effect than the equal
dose of its un-CuO-doped counterpart — solid silica
300 nm. However, these differences in response are
not indicated on the graph as no dose-response
relations were seen for these treatments. Increases
were also observed for the lowest dose of CuO
nanoparticles and for the positive control CB
Printex 90 (Supplementary materials Figure S10). In
the liver, 24 h after exposure, the only increase in
percentage DNA in the comet tail was seen after
exposure to the porous silica 300nm particles at
the highest dose (128 ug/mouse), which also had a
greater effect than the same dose of its solid coun-
terpart (Supplementary materials Figure S11).

None of the tested nanoparticles significantly
increased the frequency of micronucleated normo-
chromatic erythrocytes (MNNCEs) 28 day post-adminis-
tration (Supplementary materials Figure S12). The
frequency of MNNCEs reflects chromosome damage
accumulated from the treatment until about 60h
prior to blood sampling. In all treated groups, the per-
centage of polychromatic (immature) erythrocytes
among blood erythrocytes was similar to the negative
control group, indicating that the NPs did not show
bone marrow toxicity. There was no increased induc-
tion of DNA double-strand breaks (assessed by the
v-H2AX assay) in the lungs of mice treated with the
highest dose of each material 28 days after exposure
(Supplementary Figure S13).

Histopathology

In the intratracheal instillation study, there were no
pathological changes in the lung, liver, kidney or
spleen (28days post exposure). Histopathological
evaluation of the lungs of the oropharyngeally treated
mice revealed that administration of porous silica
materials caused moderate perivascular and peribron-
chial inflammatory cell infiltration by eosinophils and
neutrophils in lung tissue 24h post-exposure at
128 pg/mouse (microscopy images from day 1 and 7
post exposure are shown in Supplementary materials
Figures S14 and S15). In contrast, only mild inflamma-
tory infiltrates were observed in response to the solid
silica materials. Inflammation reduced gradually from
day 1 to 7. At day 7, the remaining infiltrates trig-
gered by porous particles were predominantly
lymphocytic with the presence of some eosinophils.
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Figure 4. Saa3 mRNA level in lungs of mice exposed to silica nanomaterials. Mice were administered the silica materials by intra-
tracheal instillation and 24 h (upper panel), and 28days (lower panel) later the lungs were recovered, and the Saa3 mRNA level
was measured by quantitative real time PCR. Data are mean and bars represent SD. *¥¥* *¥* ** and * designates p values of
<0.0001, <0.001, <0.01 and <0.05 respectively, of one way ANOVA with Holm-Sidak’s multiple comparisons test in case of data
approaching normality and not having a highly different variation. In the case of carbon black ****, and ** designate p values
of <0.0001 and <0.01, respectively, vs. vehicle of t-test.

In addition, the 300-nm porous silica particles seemed
to induce milder inflammation in the lung tissue at
day 7 than the 100-nm particles, and lung tissue
exposed to the solid silica materials exhibited less
activity than tissue exposed to porous materials.
Carbon black induced similar effects as the porous sil-
ica particles at all time-points.

Discussion

We aimed to assess if the toxicity of silica nanomate-
rials was increased by the introduction of: a) poros-
ity and b) CuO doping; and whether c¢) the
combined effects of these modifications were addi-
tive or synergistic. For this, silica-based nanomaterials
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Figure 5. Saa3 mRNA levels in lungs of mice as function of
dosed BET surface area of each nanomaterial. The data on
Saa3 from Figure 4. are here depicted as function of dosed
BET surface area per mouse. The upper panel represents data
from 24 h of exposure of porous and non-porous particles; and
the lower panel data from 24h of CuO nanoparticles, porous
silica 300nm CuO and porous silica 300 nm to illustrate the
effect of CuO doping. Some error bars are not depicted, as the
exponential axis does not accommodate negative values.

with various combinations of porosity and CuO-dop-
ing were synthesized. We assessed particle toxicity
by intratracheal instillation into the lungs of mice; in
addition, we tested the silica particles in an inde-
pendent oropharyngeal aspiration study.

Toxicological effect of porosity

Porosity increased pulmonary toxicity in terms of
accumulation of neutrophil cells in bronchoalveolar
lavage fluid (Figure 1), and increased levels of Saa3
MRNA levels in lung tissue, at the same dose level
by mass (Figure 4). In addition, porous silica 100 nm
seemed to be more persistent in BAL fluid cells as
compared to its solid counterpart, as it was still pre-
sent at 43pg/mouse at the 28-day time point
(Figure S2). We corroborated the finding of
increased toxicity of porosity in a separate study
using oropharyngeal aspiration and follow-up at 1,
3 and 7 days (Figure 2). In addition, the porous silica

Saa3 mRNA levels in lung, as function of dosed CuO or ZnO (24 h)
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(This study)
10000 f -~ CuO nanoparticles
o Vehicle-control
1000 (previous ZnO study)
100 ZnO nanoparticles
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Figure 6. Saa3 mRNA levels in lungs, depicted as function of
the dosed amount of CuO (current data) or ZnO (previous
data). The amount of CuO in the CuO particle is described in
Tables 1 and 2. The amount of ZnO dosed was calculated as a
percentage of 100 of 0.2, 0.7 or 2 ug/mouse equal to ~0.01,
0.035, and 0.1 mg ZnO/kg bw. The ZnO data were previously
published (Hadrup et al. 2019). Carbon black (CB) data are
from the current study.

materials induced moderate perivascular and peri-
bronchial inflammatory cell infiltration by histo-
pathological evaluation, whereas we only observed
mild inflammatory infiltrates in response to the
solid silica materials (Supplementary materials
Figures S14 and S15).

The increased toxicity by mass of the porous
compared to the solid silica particles could be
caused by the increased deposited surface area.
Deposited surface area has previously been reported
as a predictor of inflammation and acute phase
response (Saber et al. 2013; 2014, Poulsen et al.
2016, Schmid and Stoeger 2016, Hadrup, Saber,
et al. 2020, Saber et al. 2019, Barfod et al. 2020,
Danielsen et al. 2020, Hadrup, Zhernovkov, et al.
2020). We therefore plotted neutrophil numbers and
Saa3 mRNA levels as functions of the total depos-
ited specific surface area. It appeared that dosage
with porous compared to solid silica particles shift
the curves to the right (higher dose levels needed
to exert a response) as compared to the positive
control, carbon black (Figures 3, 5 and
Supplementary materials Figure S6). Possible explan-
ations for this include differences in surface-specific
reactivity, or that the internal surface area of the
porous particles contributes less to surface-depend-
ent inflammation and Saa3 mRNA levels than the
external surface area. Notably, the number of par-
ticles dosed per mass unit is also higher for the por-
ous silica particles, as each particle weighs less due
to the lower density of the porous particles.
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Our data contradict a previous report where
solid, but not porous silica nanoparticles, induced
pulmonary inflammation (Park et al. 2015). This
might be explained by differences in dose levels, as
the latter study used porous particles with a lower
specific surface area than in our materials, i.e.
70.6 m?/g vs. around 800 m?/g in the present study.
Moreover, exposure was by intranasal inoculation as
compared to intratracheal instillation and oropha-
ryngeal aspiration in our studies. Observations in a
study exposing mice by intraperitoneal injection are
however in line with ours, in that porous silica
nanoparticles induced higher immuno-toxicity than
equal mass doses of colloidal solid silica (Lee
et al. 2013).

Toxicological effects of CuO doping

Doping CuO onto silica particles increased their tox-
icity: porous silica 300 nm-CuO increased neutrophil
numbers in BAL fluid at 43 pg/mouse. No effect was
observed at this dose level for the un-doped porous
silica 300nm particle (Figure 1). Similarly, Saa3
MRNA levels in lung tissue increased at 14 g/
mouse, after dosage with porous silica 300 nm-CuO,
but not after dosage of porous silica 300 nm with
no CuO doping (Figure 4). The pure CuO nanopar-
ticles increased Saa3 mRNA levels at both time
points — at 28 days at all three dose levels. The cop-
per content in lung was increased 24 hours after
exposure to pure CuO nanoparticles (at 4.7 ug/
mouse, the only tested dose at 24h), but not
28 days post exposure (Figure S3). Thus, toxicity was
observed in the absence of detectable CuO particles
at day 28. In addition, the pure CuO particle was
very toxic in the pilot study and it increased neutro-
phil numbers at low dose level (Figure 1).
Collectively, these data suggest that copper is
highly toxic through induction of inflammation and
acute phase response in the lung at low levels of
exposure. In line with this, blood levels of SAA and
C-reactive protein were increased in male volun-
teers exposed to welding fumes containing copper
(Markert et al. 2016, Baumann et al. 2018). In these
studies, the effects of copper were seen at 0.4 mg/
m?, and similar effects of Zn were seen at 1.5mg/
m>. When comparing the pulmonary toxicity of the
CuO particles in the current study with a previous
study on ZnO nanoparticles (Hadrup et al. 2019),
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the two soluble metal oxides have similar potency
in inducing Saa3 mRNA in lung (Figure 6). The
acute phase response is a risk factor for coronary
heart disease (Saber et al. 2013; 2014, Thompson
et al. 2018, Hadrup, Zhernovkov, et al. 2020) and
the current results therefore link especially exposure
to CuO with risk of cardiovascular disease.

CuO-induced inflammation appears to be driven
by dissolution of copper (Gosens et al. 2016, Jeong,
Lee, et al. 2016), and copper dosed as salts seems
to be more toxic than when dosed as CuO nanopar-
ticles, suggesting that the ions are more toxic (toxic
in the microgram per kg bw range) (Hirano et al.
1990, Rice et al. 2001, Prieditis and Adamson 2002,
Wallenborn et al. 2009). When neutrophil numbers
in BAL fluid or Saa3 mRNA levels in lung tissue
were depicted as function of the deposited surface
area (Figures 3 and 5), pure CuO particles induced a
higher accumulation of neutrophils on day 1 than
predicted by the dosed surface area. The curve for
porous silica 300 nm-CuO was shifted to the left of
porous silica 300 nm with no CuO doping (Figure
3), suggesting that, in addition to the dosed surface
area, copper contributes to the toxicity. Concerning
Saa3 mRNA levels, the effect of CuO doping was
most clearly seen for the solid silica 300 nm particle
as compared with the two porous ones (Figure 5).
This may suggest that the dissolution and release
of copper ions from CuO was slower inside the por-
ous silica particles.

CuO nanoparticles have previously been demon-
strated to be soluble in lung tissue and in simulated
biological fluids (Gosens et al. 2016). Gosens et al.
(2016) reported elevated copper levels in lung tis-
sue 1day after the last inhalation exposure to CuO
nanoparticles in rats, whereas copper levels had
returned to background levels 22 days post-expos-
ure. We found elevated copper levels in lung tissue
24 h post-exposure for the highest dose group of
the CuO nanoparticle, whereas copper levels in
CuO-exposed lung tissues were comparable to con-
trol tissues at 28days for all particle-types contain-
ing CuO (Supplementary Materials Figure S3). On
the other hand, particle-presence was indicated in
BAL cells 28 days post-exposure for all particle types
except 300nm solid silica-CuO and CuO nanopar-
ticles (Supplementary Materials Figure S2). Taken
together, this may suggest that the CuO had dis-
solved for all particle types 28 days post-exposure
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in line with the observations by Gosens et al.
(2016). We observed neutrophil influx 24h post-
exposure from 60 pg CuO/kg bw both for the pure
CuO particle, and the porous silica 300 nm-CuO.
This is in the same dose range as previously
observed for copper salts, inducing neutrophil influx
in the dose range of 6 to 80 pg/kg bw (Hirano et al.
1990; Rice et al. 2001; Wallenborn et al. 2009). A
limitation of the current study is that we did not
assess the short-term solubility of the studied par-
ticles, information that could have been related to
their toxic effects.

In the current work, we assessed genotoxicity
with three different assays - the comet assay,
micronucleus test, and y-H2AX assay. Weak geno-
toxic effects were observed only in the comet
assay—including, in lung, at the two highest dose
levels of solid silica 300 nm-CuO at 24 hours post
exposure (Supplementary materials Figure S10). We
did not identify other studies with pulmonary
exposure investigating genotoxicity. However, after
oral gavage, copper sulfate was genotoxic in mice
at dose levels of around 8.5mg Cu/kg bw (Franke
et al. 2006, Pra et al. 2008) as were Cu ions adminis-
tered to mice as CuCl, in the drinking water at
~8mg/kg bw (Corona-Rivera et al. 2007). This sug-
gests that copper ions have a genotoxic potential.
The copper exposure levels ranged between 0.01
and 0.18 mg/kg bw in the present study, and it is
noteworthy that we observed genotoxic effects at
these low dose levels.

Taken together, our data indicate that CuO sur-
face-doping and small CuO particles may exert a
level of toxicity similar to that seen for copper salts.
This should be taken into account when assessing
the risk associated with exposure to nanoparticles
doped with soluble substances of copper or other
soluble metals.

Synergy hypothesis

When neutrophil numbers were evaluated in BAL
fluid 24 hours post exposure, we found no indica-
tions of synergism between the 100 nm silica par-
ticles and doping with CuO. Porous silica 100 nm-
CuO did not induce more inflammation than any of
its two building blocks: the porous silica 100 nm,
and the pure CuO nanoparticles (with a similar
amount of CuO as in the doped 100 nm particles)

(Supplementary materials Figure S4). Moreover, for
the 300 nm particles, the inflammation induced by
the porous 300 nm-CuO could be explained by the
sum of CuO and surface area effects, although no
mathematical model is available for the combin-
ation of non-chemical modifications - in this case,
porosity (Supplementary materials Figure S4). A
similar pattern was seen for Saa3 mRNA levels
24 hours post exposure (Supplementary materials
Figure S4).

Conclusion

The introduction of porosity increased the toxicity
of silica particles per mass unit. The increased accu-
mulation of neutrophils in BAL fluid could be
explained by the deposited surface area. CuO dop-
ing also increased the toxicity. Overall, our study
suggests that introduction of internal surface area
by porosity or CuO doping increases the mass-
based toxicity. Furthermore, we found no evidence
of positive synergistic effects in relation to pulmon-
ary toxicity.
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