
R E S E A R CH A R T I C L E

Proglacial groundwater storage dynamics under climate change
and glacier retreat

Jonathan D Mackay1,2 | Nicholas E Barrand2 | David M Hannah2 |

Stefan Krause2 | Christopher R Jackson1 | Jez Everest3 | Alan M MacDonald3 |

Brighid É Ó Dochartaigh3

1British Geological Survey, Environmental

Science Centre, Keyworth, UK

2School of Geography, Earth and

Environmental Sciences, University of

Birmingham, Edgbaston, UK

3British Geological Survey, Lyell Centre,

Edinburgh, UK

Correspondence

Jonathan D Mackay, British Geological Survey,

Environmental Science Centre, Keyworth,

Nottingham, NG12 5GG, UK.

Email: joncka@bgs.ac.uk

Abstract

Proglacial aquifers are an important water store in glacierised mountain catchments

that supplement meltwater-fed river flows and support freshwater ecosystems. Cli-

mate change and glacier retreat will perturb water storage in these aquifers, yet the

climate-glacier-groundwater response cascade has rarely been studied and remains

poorly understood. This study implements an integrated modelling approach that com-

bines distributed glacio-hydrological and groundwater models with climate change pro-

jections to evaluate the evolution of groundwater storage dynamics and surface-

groundwater exchanges in a temperate, glacierised catchment in Iceland. Focused infil-

tration along the meltwater-fed Virkisá River channel is found to be an important

source of groundwater recharge and is projected to provide 14%–20% of total ground-

water recharge by the 2080s. The simulations highlight a mechanism by which glacier

retreat could inhibit river recharge in the future due to the loss of diurnal melt cycling

in the runoff hydrograph. However, the evolution of proglacial groundwater level

dynamics show considerable resilience to changes in river recharge and, instead, are

driven by changes in the magnitude and seasonal timing of diffuse recharge from year-

round rainfall. The majority of scenarios simulate an overall reduction in groundwater

levels with a maximum 30-day average groundwater level reduction of 1 m. The simu-

lations replicate observational studies of baseflow to the river, where up to 15% of the

30-day average river flow comes from groundwater outside of the melt season. This is

forecast to reduce to 3%–8% by the 2080s due to increased contributions from rainfall

and meltwater runoff. During the melt season, groundwater will continue to contribute

1%–3% of river flow despite significant reductions in meltwater runoff inputs. There-

fore it is concluded that, in the proglacial region, groundwater will continue to provide

only limited buffering of river flows as the glacier retreats.
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1 | INTRODUCTION

Groundwater is increasingly being recognised as an important com-

ponent of water cycling in the foreland areas of glacierised moun-

tain catchments and could become strategically more important as

water supply from rainfall and meltwater become less reliable

under 21st century climate change (Ó Dochartaigh et al., 2019;

Taylor, 2013; Vincent, Violette, & Aðalgeirsdóttir, 2019). Proglacial

aquifers offer an accessible source of fresh water to downstream

communities year-round (e.g., for drinking and irrigation, Stefania

et al., 2018) and provide a steady supply of baseflow to glacier-fed

rivers, helping to supplement low flows outside of the melt season

(Jódar et al., 2017; MacDonald et al., 2016; Wilson, Williams,

Kayastha, & Racoviteanu, 2016). This baseflow input can be an

important regulator of glacier-fed river physiochemistry, providing

more favourable habitat conditions for aquatic fauna (Crossman,

Bradley, David, & Milner, 2012; Hotaling, Finn, Joseph Giersch,

Weisrock, & Jacobsen, 2017; Khamis, Brown, Hannah, &

Milner, 2016).

Recent studies indicate that climate change could cause long-

term decline of proglacial aquifer storage due to reductions in diffuse

recharge, from rainfall and snow melt (Somers, Mckenzie, Mark, &

Lagos, 2019), and in focused recharge from glacier-fed river channels

(Liljedahl, Gädeke, O'Neel, Gatesman, & Douglas, 2017). The

dynamic behaviour of proglacial aquifer storage dynamics (e.g., intra-

annual variability) will also change in response to regional precipita-

tion variability and meltwater runoff dynamics (Allen, Whitfield, &

Werner, 2010). Meltwater runoff dynamics will be most important

for aquifers hydraulically connected to meltwater river channels,

where groundwater dynamics are closely coupled to river stage vari-

ability. These systems may exhibit groundwater storage behaviour

that is more strongly tied to climatic conditions in the upstream

glacierised region away from the aquifer. The trajectory of proglacial

groundwater storage dynamics under climate change is, therefore,

likely to be complex: driven in part by perturbations in diffuse

recharge, and in part by perturbations in meltwater runoff dynamics

as a consequence of glacier retreat. One must consider linkages

along this climate-glacier-groundwater response cascade in order to

understand proglacial groundwater vulnerability to climate change.

Yet, this cascade remains poorly understood and is likely to be highly

non-linear and time-dependant (La Frenierre & Mark, 2014; Vincent

et al., 2019).

Numerical models of glacio-hydrology and groundwater flow pro-

vide a means to investigate the climate-glacier-groundwater response

cascade. To date, only one study has integrated the required process

models to investigate this (Somers et al., 2019). They forced a distrib-

uted GSFLOW surface-groundwater model of the Shullcas Watershed

in Peru with runoff simulations from a glacier melt model. They used

this integrated modelling approach to project 21st century changes in

the flow regime of the Shullcas River and showed that baseflow from

groundwater could buffer reductions in dry-season runoff due to gla-

cier retreat.

Other studies have integrated models to investigate groundwater

storage dynamics in mountain catchments without glaciers. For exam-

ple, Okkonen and Kløve (2011) linked a hydrological, land surface and

distributed MODFLOW groundwater model to study changes in

groundwater storage seasonality in an esker aquifer in Finland due to

climate change. Their results showed an earlier rise and fall of ground-

water storage due to a projected shift in seasonal peak diffuse

recharge from spring to winter. Sridhar, Billah, and Hildreth (2018)

integrated the Variable Infiltration Capacity hydrological model with

MODFLOW to simulate climate change impacts on water table

dynamics in an unconfined fractured basalt aquifer in the north-west

of the United States. They also showed that future trajectories in

water table elevation were strongly controlled by changes in diffuse

recharge inputs. Huntington and Niswonger (2012) used GSFLOW to

investigate the mechanism for observed reductions in summer

streamflow in three mountain watersheds in California and Nevada. In

contrast to other studies, they found that the trajectory of groundwa-

ter level dynamics were driven by changes in runoff patterns from

neighbouring mountains rather than diffuse recharge (note, Scibek,

Allen, Cannon, & Whitfield, 2007, also found this). More specifically,

they found that climate warming induced an earlier recession in

mountain spring snow melt runoff, inducing earlier drainage of the

alluvial aquifer to the stream, and subsequently, a fall in baseflow to

the stream in the summer.

The findings of Huntington and Niswonger (2012) raises the

question of how groundwater storage dynamics in glacierised catch-

ments might respond to changes in meltwater runoff due to glacier

retreat. This question is particularly pertinent, given that glaciers

around the world are retreating rapidly (Zemp et al., 2019). A number

of field observation studies have demonstrated the sensitivity of

proglacial groundwater storage dynamics to glacier meltwater runoff

variability, especially where aquifers are in strong connection with

meltwater river channels (Dragon, Marciniak, Szpikowski,

Szpikowska, & Wawrzyniak, 2015; Levy, Robinson, Krause, Waller, &

Weatherill, 2015; Ó Dochartaigh et al., 2019; Robinson, Fairchild, &

Arrowsmith, 2009). Yet, our understanding of how proglacial ground-

water storage dynamics will respond to 21st century climate change

and prolonged glacier retreat remains limited. This is in part, due to

the scarcity of high quality observation data of local climate, glacier

mass balance, meltwater flows and aquifer storage and characterisa-

tion (Vincent et al., 2019).

This study uses an integrated modelling approach consisting of a

glacio-hydrological model and a distributed Newton–Raphson formu-

lation of MODFLOW (MODFLOW-NWT) to simulate groundwater

storage dynamics and surface-groundwater interactions in the fore-

land region of the well-characterised and monitored Virkisá River

basin in Iceland. Through driving the models with climate change pro-

jections, they are used to investigate: (1) twenty-first century changes

in groundwater storage dynamics in the proglacial aquifer in response

to climate change and glacier retreat; and (2) the principal drivers of

these changes including diffuse recharge and meltwater runoff

dynamics.
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2 | METHODOLOGY

2.1 | Study site

The Virkisá River basin covers an area of 22 km2 on the western side

of the ice-capped Öræfajökull stratovolcano in south-east Iceland

(Figure 1(a)). Approximately 60% of basin is covered by Virkisjökull

and Falljökull, which together comprise a twin-lobed outlet glacier of

the Öræfajökul ice cap (herein referred to as Virkisjökull). Between

1988 and 2011 Virkisjökull lost �0.3 km3 of ice and retreated

�0.5 km. Continued retreat over the last decade has formed a small

proglacial lake at the terminus which forms the headwater of the

Virkisá River, the only drainage pathway for melt and rainfall runoff

from the basin. The river flows through an 800 m bedrock-controlled

section flanked on either side by push moraines and then over a san-

dur floodplain which forms a shallow, unconfined and gently sloping

(average surface gradient = 0.017) aquifer. This is made up of loosely

consolidated, moderately to poorly sorted, dominantly medium- to

F IGURE 1 Study site including
topographical map of Virkisá river
basin and proglacial sandur
groundwater catchment with
instrumentation (a); conceptual model
of water flow along cross section from
glacier to groundwater adapted from
Ó Dochartaigh et al. (2019) (b); and
photograph of sandur floodplain,
meltwater channels and Virkisjökull
taken from the southern boundary of
the groundwater catchment (c)
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coarse-grained glaciofluvial sand, gravel and cobbles which have been

deposited from actively shifting meltwater streams and frequent (c. 5

per century) jökulhlaups (Robinson, Fairchild, & Russell, 2008). Geo-

physical evidence from Tromino® passive seismic surveys indicate

the deposits are up to 150 m thick within several kilometres of the

lake outlet (Ó Dochartaigh et al., 2019). The Virkisá groundwater

catchment forms part of the world's largest sandur, Skeiðarársandur.

The sandur aquifer is recharged by diffuse rainfall and snow melt

infiltration as well as focused infiltration of mountain runoff along the

Virkisá River channel (Figure 1(a)). Shallow borehole investigations

have shown that the groundwater flows downstream, approximately

parallel to the river (Ó Dochartaigh, MacDonald, Wilson, &

Bonsor, 2012). However, stable isotope data have shown that there is

a zone of meltwater-groundwater mixing within 500 m of river chan-

nel where more than 25% of groundwater is derived from mountain

meltwater runoff (Ó Dochartaigh et al., 2019). River-aquifer water

exchanges in both directions are promoted by the shallow water table

which is typically between 0 and 4.4 m below ground level. Transmis-

sivity has been estimated to be between 100–2500 m2 d−1 with a

median value of 600 m2 d−1 from pumping tests conducted at eight

sandur piezometers (green markers in Figure 1(a)). The median surface

hydraulic conductivity has been estimated to be 35 m d−1 from

Guelph permeameter experiments and particle size analysis (Ó Doch-

artaigh et al., 2019). In the lower sandur, groundwater discharges to

the surface via the river and a network of springs which, eventually,

feed back to the main Virkisá River channel, providing year-round

baseflow. Stable isotope data have shown that outside of the melt

season, groundwater contributes 15%–20% of total river flow in the

lower sandur (MacDonald et al., 2016).

The local maritime climate is characterised by cool summers

(�10�C on average near the glacier terminus) and mild winters (�1�C

on average) with an average temperature lapse rate of −0.44�C

100 m−1 (Flett, 2016). There is a significant lateral precipitation gradi-

ent due to the prevailing north-easterly winds and orographic effects.

The lower sandur receives �1200 mm yr−1 of precipitation, while the

Öræfajökull summit receives closer to 8000 mm yr−1 (Nawri,

Pálmason, Petersen, Björnsson, & Ãđorsteinsson, 2017).

2.2 | Integrated modelling framework

The modelling framework consists of the three principal components

to represent the climate-glacier-groundwater response cascade

including historical and future driving climate data, a distributed con-

ceptual glacio-hydrological model and a distributed physically-based

groundwater model. The climate data provide boundary conditions for

the glacio-hydrological model which simulates runoff from the

glacierised region to the Virkisá River and diffuse recharge from rain-

fall and snow melt over the sandur. These simulations provide bound-

ary conditions for the groundwater model of the sandur aquifer. The

climate data and glacio-hydrological model are documented in detail

by Mackay et al. (2018, 2019) and accordingly, are only briefly

outlined here.

2.2.1 | Historical and future climate data

Mackay et al. (2018) compiled what are considered to be the most

reliable record of hourly near-surface air temperature, precipitation

and incident solar radiation (ISR) data for the Virkisá River basin. All

data span 1981–2016 inclusive. A continuous temperature record for

the weather station at the glacier terminus (Figure 1(a)) was con-

structed by combining in-situ weather station measurements with

records from the Icelandic Meteorological Office weather station net-

work. A combination of in-situ ISR measurements and a statistical

model for converting temperature to ISR was used to generate a con-

tinuous ISR time series for the catchment. For precipitation, state-of-

the-art 2.5 km gridded reanalysis precipitation data were used (Nawri

et al., 2017) after bias-correction against in-situ rainfall records using

equidistant quantile mapping (Li, Sheffield, & Wood, 2010).

Future hourly climate data until 2100 were compiled by Mackay

et al. (2019) using the 0.11� daily EURO-CORDEX climate projection

ensemble (Gosseling, 2017). The ensemble is based on the RCP4.5 and

RCP8.5 greenhouse gas pathways and includes simulations from 14 dif-

ferent General Circulation Model (GCM) and Regional Climate Model

(RCM) combinations. Mackay et al. (2019) used an advanced quantile-

based downscaling procedure (Lutz, Immerzeel, Kraaijenbrink,

Shrestha, & Bierkens, 2016) to ensure statistical consistencywith the his-

torical observation data. They implemented 10 different para-

meterisations of this procedure to account for uncertainty in

incorporating inter-annual variability into the future climate time series.

A total of 280 future climate time series from 2 RCPs, 14 GCM-RCMs

and 10 downscaling parameterisationswere available for this study.

2.2.2 | GHM++ glacio-hydrological model

The distributed GHM++ glacio-hydrological model code developed by

Mackay (2020) was used in this study. The model resolves glacio-

hydrological processes over a regular 2-D Cartesian grid of 50 m cells.

Empirical temperature index model (TIM) equations simulate the melt

of snow and ice. Snow redistribution by drift and avalanches is calcu-

lated using the curvature and slope of the surface (Huss, Bauder,

Funk, & Hock, 2008) while a modified version of the mass-conserving

Δh parametrisation (Huss, Jouvet, Farinotti, & Bauder, 2010; Mackay

et al., 2019) simulates glacier advance and retreat. Excess soil mois-

ture, rainfall and melt are routed to the catchment outlet via a semi-

distributed network of linear-reservoir cascades (Ponce, 1989) which

represent the average water storage behaviour of the major hydrolog-

ical pathways in the watershed (see fig. 2 in Mackay et al., 2018). The

model has a modular structure which allows the user to experiment

with different model structures (equations) representing key pro-

cesses including the TIM and runoff-routing structures.

Mackay et al. (2019) used a rigorous limits of acceptability model

calibration approach (Mackay et al., 2018) to identify 336 behavioural

structural configurations and parameterisations of GHM++ for the

Virkisá River basin based on their ability to capture a series of metrics

of glacio-hydrological behaviour derived from a range of observation
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data including: 4 years of hourly river discharge measurements;

3 years of seasonal ablation stake data; and remotely-sensed ice and

snow cover data.

GHM++ has not been used to provide river discharge or diffuse

recharge boundary conditions to a groundwater model before, but was

deemed suitable for this application as it has shown to be efficient at sim-

ulating the Virkisá River flow dynamics and it uses a soil water balance

routine to calculate diffuse recharge which has been applied extensively

in temperate environments (Jackson, Wang, Pachocka, Mackay, &

Bloomfield, 2016; Mackay, Jackson, & Wang, 2014; Mansour, Wang,

Whiteman, & Hughes, 2018) and compares favourably to physically-

based models at the field scale where interception losses are small

(Sorensen, Finch, Ireson, & Jackson, 2014).

2.2.3 | MODLFOW-NWT groundwater model

The distributed, physically-based MODFLOW-NWT groundwater

modelling code (Niswonger, Panday, & Ibaraki, 2011) was used to sim-

ulate groundwater flow through the sandur and water exchanges with

the Virkisá River and springs. MODLFOW-NWT uses a Newton–

Raphson solver which has been designed specifically for simulating

non-linear unconfined groundwater flow problems. The model domain

was divided into a Cartesian grid with 50 m horizontal and 10 m verti-

cal resolution. The model time step was set to hourly. These dis-

cretisations were selected as a compromise between model

complexity and runtime requirements, to ensure consistency with

GHM++ and to ensure that the aquifer geometry could be adequately

represented. The upstream model boundary (B1 in Figure 2(a)) coin-

cides with known outcropping of the bedrock �800 m downstream of

the lake outlet. Pumping tests conducted by Ó Dochartaigh

et al. (2012) have shown that the permeability of the volcanic bedrock

material is negligible, and so no flow model nodes were specified at

this boundary. No flow conditions were also imposed along the

boundaries to the east and west of the river (B2 and B3 in Figure 2

(a)), given that groundwater predominantly flows parallel to the river.

At the downstream boundary (B4 in Figure 2(a)), specified flux bound-

ary conditions were prescribed by assuming that the hydraulic gradi-

ent is equal to the topographic slope, which is reasonable given that

the water table resides close to the ground surface year-round.

The thickness of the sandur model was set according to the inter-

pretation of bedrock topography by Ó Dochartaigh et al. (2019) from

Tromino® seismic data (Figure 2(b)). No flow boundary conditions

were also imposed at the aquifer-bedrock interface.

The Virkisá River was represented by a single rectangular channel

running between the upstream and downstream model boundaries.

F IGURE 2 Groundwater model lateral (a) and vertical (b) extent and model used to define river width variations (c). Aerial image taken on
7 August, 2012,Source:DigitalGlobe (Vivid - Iceland), created using ArcGIS. Copyright©Esri. All rights reserved
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This is contrary to observed channel braiding in the lower sandur, but

was deemed a necessary simplification, given that sediment reworking

causes regular (sub-annual) changes to channel morphology and the

deactivation and reactivation of channels (Marren, 2005) which would

be practically infeasible to simulate. The braided channel system pro-

motes meltwater exchanges with the aquifer. To mimic this, the width

of the river channel was varied in the groundwater model according

to the degree of braiding downstream. Here, the total width of all

river braids were measured at 50 m intervals along the main river

channel (blue dots in Figure 2(c)). A polynomial was then fit to these

data points (black dash line in Figure 2(c)) to parameterise the river

channel width in the groundwater model. The streamflow-routing

package (SFR1) (Prudic, Konikow, & Banta, 2004) was used to route

flow along the river channel. It calculates surface-groundwater

exchanges across the river bed using Darcy's Law.

No direct measurements of the river bed topography exist. How-

ever, numerous sections of the river have been waded during field

excursions where water depth is typically between 0.2 and 1 m with

an estimated average water depth of 0.5 m. Accordingly, the river bed

bottom elevation was set for each river section by subtracting 0.5 m

from the 5 m airborne lidar digital elevation model in Figure 1(a).

In addition to the river, an extensive network of ephemeral and

perennial springs exist, particularly at the downstream end of the san-

dur. These springs are thought to form a significant drainage output

and so were included in the model using the MODFLOW drain pack-

age. Here, drains were placed at the land surface elevation at each x

and y coordinate covering the lateral extent of the model domain.

2.3 | Groundwater model calibration

Eight unknown model parameters relating to aquifer and river hydrau-

lic properties needed to be identified (Table 1). Depositional processes

on alluvial aquifers bring about heterogeneity in aquifer permeability

and porosity (Chen, Song, & Wang, 2010; Neton, Dorsch, Olson, &

Young, 1994). Pumping tests at the sandur piezometers indicate that

transmissivity is high (median 600 m2 d−1), but do not provide evi-

dence of spatial variability in aquifer permeability or storage (Ó Doch-

artaigh et al., 2012). Surface permeability measurements indicate no

significant spatial variability (Ó Dochartaigh et al., 2019). Accordingly,

the hydraulic properties were uniformly parameterised over the

sandur.

A number of preliminary steady-state simulations were used to

explore parameter sensitivity and refine their behavioural ranges.

Groundwater level simulations showed to be insensitive to the pre-

scribed river bed thickness parameter. This was set to an estimated

thickness of 0.5 m.

Given that the sandur is unconfined, the specific storage was also

fixed to a representative value for unconsolidated coarse sand aqui-

fers (Domenico & Schwartz, 1990). The river bed hydraulic conductiv-

ity and drain conductance were both set using the mean of the

surface permeability measurements undertaken by Ó Dochartaigh

et al. (2019). Finally, the Manning's roughness coefficient was set to

0.05 based on the “normal” value for mountain streams with beds

made up of cobbles and large boulders (Chow, 1959).

The horizontal hydraulic conductivity, vertical anisotropy and spe-

cific yield were calibrated against hourly groundwater level time series

from the sandur piezometers which span August 2012–December

2017 inclusive. Groundwater level fluctuations at one of the piezome-

ters are known to be affected by a small ephemeral surface water

channel which causes discrete focused groundwater recharge in the

immediate vicinity of the piezometer. Accordingly, only data from

seven piezometers were used for model calibration (see Figure 2(a)).

The parameters were calibrated from a 5000-run Monte Carlo

procedure with parameter sets drawn from uniform distributions

using Sobol sampling (Brately & Fox, 1988). Five thousand runs were

deemed adequate after subsequent tests on parameter and simulation

identifiability and convergence (Appendix A). Given the computer

TABLE 1 MODFLOW-NWT parameters requiring identification for groundwater model of the sandur

Parameter Description Calibration range Justification

Kh Horizontal hydraulic conductivity 1–20 m d−1 Preliminary steady-state runs

κ Vertical anisotropy 0.01–1.0 Recommended range from Anderson and

Woessner (2002)

Sy Specific yield 0.1–0.3 Estimate from Ó Dochartaigh et al. (2019)

Ss Specific storage 1e−5 m−1 Based on representative values for unconsolidated

coarse sand aquifers (Domenico & Schwartz, 1990)

Kriv River bed hydraulic conductivity 40 m d−1 Average of surface permeability measurements in

abandoned river channels (Ó Dochartaigh

et al., 2019)

m Rived bed thickness 0.5 m Not known, but preliminary steady-state runs showed

it to be insensitive

n Manning's roughness coefficient 0.05 Based on “normal” value for mountain streams with

cobble/large boulder beds (Chow, 1959)

cdrn Drain conductance 2e5 m2 d−1 Set using the river bed parameterisation so that

cdrn =Δ×ΔyKriv
m
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requirements for running the Monte Carlo procedure, the model time

step for the calibration runs were set to daily. For each run, a steady

state simulation was used to initialise the hydraulic head field. The

model was then executed in transient mode over the years

2010–2017 inclusive. Diffuse recharge and upstream river discharge

boundary conditions were taken from the ensemble mean of the 336

behavioural GHM++ models identified by Mackay et al. (2019).

The model fit was quantified using the average root mean square

error (RMSE) over all peizometers. Simulated groundwater levels were

extracted using the Observation Process MODFLOW package

(Harbaugh, 2005) to ensure spatial and temporal coherence between

model and observations.

2.4 | Twenty-first century simulations

Due to computational limitations, it was not feasible to force the

groundwater model with boundary conditions from all 336 GHM++

models, driven by the 280 climate time series (a total of 94,080 possi-

ble combinations). Instead, a small subsample of five combinations,

hereafter referred to as scenarios, were selected to represent a range

of potential future outcomes. While this approach precludes a full

examination of model projection uncertainty, using a handful of sce-

narios crucially allows a more process-oriented analysis of the individ-

ual scenarios to be undertaken to better-capture the nuanced

feedbacks between climate, glacio-hydrology and groundwater that

might be lost when averaging simulations over large ensembles

(Knutti, Furrer, Tebaldi, Cermak, & Meehl, 2010). This is particularly

beneficial for evaluating water cycling in unconfined aquifers given

their non-linear response to boundary forcing (Cayar & Kavvas, 2009).

Given the emphasis on a small number of scenarios, it was

important to adopt a robust scenario selection procedure that

captured a range of future glacio-hydrological and climatic behav-

iours important to proglacial groundwater dynamics. Here, the k-

means clustering (MacQueen, 1967) approach was used, which finds

natural groupings in multivariate data that are distinct from one

another and has been used in the past for climate projection scenario

selection (Cannon, 2015; Wilcke & Bärring, 2016). For this study,

clustering was based on 11 quantitative signatures of climatic and

glacio-hydrological behaviour which were calculated for each of the

94,080 possible scenarios (Table 2). The MATLAB® kmeans function

was used which uses an iterative approach to determine the optimal

location of k centroids. Given the potential to reach local minima in

the solution space during the optimisation procedure, 100 replicates

were undertaken using random centroid locations initialised using

the kmeans++ algorithm.

It was decided to focus the projections on the time slice centred

on the 2080s (2073–2097) given that Mackay et al. (2019) found this

period to have the largest spread in projected evolution of climate

and glacio-hydrological characteristics.

3 | RESULTS

3.1 | Groundwater model calibration

In total, 4398 of the 5000 Monte Carlo calibration runs executed suc-

cessfully. The remaining 602 runs did not converge. The least efficient

model run obtained an RMSE of 1.89 m while the most efficient

model obtained an RMSE more than three times smaller of 0.56. Anal-

ysis of the parameter identifiability revealed that Kh and κ were both

identifiable, but Sy wasn't due to inter-piezometer groundwater level

variability being larger than groundwater level variability at individual

piezometers. Even so, simulations of key state variables were well

TABLE 2 Eleven signatures used to characterise the glacio-hydrological and climatic drivers of proglacial groundwater dynamics from the
94,080 possible scenarios for the 2080s with ensemble mean and 95% confidence interval (in brackets) for the reference period (1991–2015) and
2080s (2073–2097)

Signature Reference 2080s Relevance to Sandur groundwater dynamics

Ice coverage (IceCov) 14.09 (13.97–14.19) km2 8.06 (4.09–11.28) km2 Intra-annual river flow dynamics:

Seasonal and daily melt cycle

Snow coverage (SnowCov) 17.20 (16.84–19.04) km2 12.03 (7.99–15.7) km2

Winter river discharge (QDJF) 1.68 (1.43–1.86) m3 s−1 2.55 (1.52–4.53) m3 s−1 Melt and rainfall runoff seasonality

Spring river discharge (QMAM) 2.45 (2.17–2.85) m3 s−1 2.13 (1.20–3.55) m3 s−1

Summer river discharge (QJJA) 9.17 (8.77–9.75) m3 s−1 6.22 (4.29–9.25) m3 s−1

Autumn river discharge (QSON) 5.00 (4.38–5.90) m3 s−1 5.00 (3.43–6.84) m3 s−1

1% exceedance flow (Q01) 20.00 (18.00–21.91) m3 s−1 22.65 (15.56–32.4) m3 s−1 Episodic river recharge during high f

low events

Winter total precipitation (PDJF) 5.32 mm d−1 4.49 (3.04–6.04) mm d−1 Diffuse recharge seasonality

Spring total precipitation (PMAM) 3.09 mm d−1 2.94 (2.08–4.08) mm d−1

Summer total precipitation (PJJA) 3.09 mm d−1 3.48 (2.26–5.09) mm d−1

Autumn total precipitation (PSON) 5.25 mm d−1 5.17 (3.57–6.92) mm d−1

Note: The reference period precipitation signatures are calculated form the deterministic historical climate data.
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constrained by the calibration procedure indicating the calibration

approach was successful (Appendix A).

The calibrated Kh value was 3.3 m d−1 (150–300 m2 d−1) which is

within the range reported by Ó Dochartaigh et al. (2012) and com-

pares favourably to a geological analogue of a large outwash plain

(MacDonald, Maurice, Dobbs, Reeves, & Auton, 2012). κ was cali-

brated to 0.98 which is approximately isotropic. Sy was calibrated to

0.15 which falls within the representative range (10%–20%) for

proglacial fans and sandur aquifers (Parriaux & Nicoud, 1990). The

model captures the seasonality of peizometer observations as well as

the timing of individual, event-scale peaks (Figure 3(a–g)). It also

shows some deficiencies including a systematic underestimation of

summer levels at U2 and M1 and overestimation at M2 and L3. At L1

and L2 the amplitude of seasonality is overestimated. Even so, the

model captures the spatial distribution of mean depth to water table

accurately, obtaining an R2 of 0.84 (Figure 3(h)). It is also relatively

consistent across the calibration and evaluation periods where the

average RMSE only rises from 0.39 to 0.40 (Table 3).

3.2 | Twenty-first century scenario selection

Figure 4 shows where the signatures for the five selected scenarios

(coloured from orange to blue to indicate the degree of glacier retreat)

F IGURE 3 Observed (blue) and simulated (yellow) groundwater level time series at the seven piezometers (a–g) and mean observed and
simulated depth to water table (h). Note, dashed black line in time series indicates divide between calibration (left) and evaluation (right) periods

MACKAY ET AL. 5463



lie on the distribution of all possible future scenarios. The selected

scenarios cover between 38% (spring river discharge) and 76% (sum-

mer river discharge) of the ensemble. The extremes are not always

represented in the selected scenarios, but on average, they cover 61%

of the full range of possible future scenarios.

Each scenario has been assigned a code with the format G*-Q*-

P* where G, Q and P represent glacier coverage, mean annual river

discharge and mean annual sandur precipitation respectively and * is

either 1, 2 or 3 representing low, moderate and high respectively.

These bandings were defined based on which tercile of the full distri-

bution they fall into. Table 4 provides a summary of each scenario.

Average near-surface air temperature is projected to rise by

0.7–3.1�C between the historical reference period (1991–2015) and

the 2080s. Glacier coverage (ΔG) is simulated to reduce by

3.7–8.1 km2. Glacier retreat is greatest for the warmest scenarios. All

scenarios show a reduction in mean river discharge (ΔQ) for the

2080s. The largest reductions are observed when glacier retreat is

greatest with the exception of the G3-Q1-P1 scenario in which glacier

retreat is relatively small, but the reduction in river flow is large. This

is because it is the driest scenario in terms of sandur precipitation. All

scenarios except for G2-Q2-P3 show a reduction in total precipitation

over the sandur relative to the reference period (ΔP).

3.3 | Groundwater storage dynamics

Daily average groundwater level and diffuse recharge simulations are

presented in Figure 5. Note, these are shown as an average over the

TABLE 3 Calibration and evaluation RMSE scores

Piezometer Calibration RMSE (m) Evaluation RMSE (m)

U1 0.16 0.17

U2 0.65 0.69

M1 0.59 0.65

M2 0.44 0.38

L1 0.29 0.22

L2 0.23 0.22

L3 0.38 0.47

F IGURE 4 Signatures of five scenarios selected using k-means clustering algorithm including ice and snow coverage (a), seasonal river
discharge (b), high river discharge (c) and seasonal sandur precipitation (d). Grey bars indicate the confidence intervals of the distribution of all
possible future scenarios. Percentages indicate the proportion of this distribution covered by the selected scenarios. Also shown are the mean of
the simulations from the historical reference period (1991–2015)
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upstream 1 km section of sandur where groundwater level dynamics

are not constrained by the surface topography. These plots are here-

after referred to as intra-annual distribution plots and are calculated

after applying a 30-day moving-average (MA) filter to the raw simula-

tions which smooths out inter-day variability, but preserves the aver-

age timing and magnitude of peaks and troughs in the hydrographs.

The seasonality of the reference and future hydrographs are similar,

with the highest groundwater levels simulated at the end of winter in

February and the lowest in the summer months of July and August

(Figure 5(a)). This broadly corresponds to the seasonality of diffuse

recharge (Figure 5(b)). There are some shifts in the timing of minimum

and maximum groundwater levels under the future scenarios. The

G1-Q1-P1 scenario (orange) shows a sharp rise in groundwater level

in October which causes the peak to occur in December. This corre-

sponds to a large diffuse recharge flux in October for this scenario.

The G3-Q1-P1 scenario (cyan) simulates the highest groundwater

levels in September on average, which can be attributed to a reduc-

tion in diffuse recharge during the main recharge season between

September and February. For this dry scenario, the amplitude of the

intra-annual distribution of groundwater levels is much smaller which

corresponds to flattening of the diffuse recharge seasonality. All sce-

narios except for the wettest G2-Q2-P3 scenario (yellow) simulate

reductions in winter (DJF) and spring (MAM) groundwater level

(Figure 5(c)). The wettest scenarios (yellow and blue) show a small

increase in 30-day average groundwater level between July and

November of up to 0.3 m. The three driest scenarios (orange, green

and cyan) show the reductions in average groundwater levels

throughout the year. The relative changes in groundwater level

between the scenarios broadly corresponds to the relative changes in

simulated diffuse recharge (Figure 5(c, d)). These results indicate that

groundwater storage dynamics are driven, to a large extent, by diffuse

recharge. This finding is consistent with the observation hydrograph

analysis undertaken by Ó Dochartaigh et al. (2019).

3.4 | Baseflow dynamics

Figure 6(a) shows the intra-annual distribution of simulated baseflow

to the Virkisá River and springs. The seasonality of baseflow fluxes

are closely aligned with diffuse recharge where peak baseflow occurs

TABLE 4 Scenarios listed in descending order according to their projected glacier retreat for the 2080s

Scenario Scenario code ΔT (�C) ΔG (km2) ΔQ (m3 s−1) ΔP (mm d−1) RCP GCM-RCM

1 G1-Q1-P1 3.1 −8.1 −1.1 −0.6 8.5 [HadGEM2-ES]-[CCLM4-8-17]

2 G2-Q2-P3 3.1 −6.4 −0.7 0.2 8.5 [EC-EARTH]-[RACMO22E]

3 G2-Q2-P1 1.9 −5.6 −0.9 −0.7 4.5 [HadGEM2-ES]-[RCA4]

4 G3-Q1-P1 1.0 −4.8 −1.2 −0.9 4.5 [NorESM1-M]-[HIRHAM5]

5 G3-Q3-P2 0.7 −3.7 −0.3 −0.2 4.5 [CNRM-CM5]-[CCLM4-8-17]

Note: Each have been assigned a code with the format G*-Q*-P* where G, Q and P represent glacier coverage, mean annual river discharge and mean

annual sandur precipitation respectively and * is either 1, 2 or 3 representing low, moderate or high respectively. Also shown are the changes in near-

surface air temperature (ΔT), glacier coverage (ΔG), upstream river discharge (ΔQ) and total precipitation over the sandur (ΔP).

F IGURE 5 Intra-annual distribution
plots of simulated groundwater level
(a) and diffuse recharge (b) over the upper
sandur, averaged over all scenarios for the
reference period (1991–2015, dashed
black line) and shown for individual
scenarios for the 2080s (coloured lines).
Also shown are the changes in
groundwater level (c) and diffuse recharge
(d) between the reference and 2080s
periods
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between September and March and the smallest baseflow fluxes

occur during the warmer months between May and August. The refer-

ence period simulations indicate that groundwater contributes up to

15% of the total sandur runoff in the winter months. This is within the

range estimated from stable isotope data (MacDonald et al., 2016).

Note, the exact contributions in the winter months depend on the ref-

erence scenario as shown by the reference run range (grey band in

Figure 5(b)).

All of the scenarios show a small reduction in baseflow in the win-

ter months (Figure 6(d)), which partly explains the simulated reduction

in groundwater contribution to sandur runoff in these months

(Figure 6(e)). For the three warmest scenarios (orange, yellow and

green), this is compounded by the simulated rise in runoff from the

Virkisá River basin during the winter months as more precipitation

falls as rainfall (Figure 6(c, f)).

During the melt season (May to September), the direction of

change in baseflow fluxes by the 2080s depends on the scenario, but

all scenarios consistently simulate �1% increase in proportional con-

tribution of groundwater to sandur runoff due to the simulated reduc-

tion in runoff from the Virkisá River basin (Figure 6(f)). During the

melt season, groundwater drainage only makes up 1%–2% of sandur

runoff in the reference and future simulations.

3.5 | River recharge dynamics

The seasonality of river recharge is consistent across the reference

and future scenarios where river recharge fluxes are highest in the

summer months and lowest in the winter months (Figure 7(a)). Over

the reference period, the 30-day average river recharge contributes

up to 39% of total recharge to the groundwater catchment in the melt

season. The reference simulations indicate that overall, river recharge

contributes 13%–17% of total recharge to the groundwater catch-

ment. Note, the range reported here is due to differences in simulated

river recharge between the reference runs (grey band in Figure 7(a)),

particularly the G2-Q2-P3 scenario (indicated with arrow in Figure 7

(a)) which showed a much higher peak river recharge during the sum-

mer months (up to 54 m3 h−1 higher than the other scenarios).

The seasonality of simulated changes in river recharge (Figure 7

(c)) closely follow the relative simulated changes in length of losing

river (Figure 7(b)) which is largely controlled by changes in groundwa-

ter level. All simulations for the 2080s project increases in river

recharge between November and March where the length of losing

river is projected to increase. For the spring and summer months, the

wettest scenarios (yellow and blue: higher diffuse recharge, higher

groundwater level and lower length of losing river) simulate a reduc-

tion in spring and summer recharge while the driest scenarios (orange,

green and cyan: lower diffuse recharge, lower groundwater level and

higher length of losing river) show an increase in river recharge for the

majority of the year. The relative wetness (P in scenario code) is more

influential on the simulated change in river recharge, than the magni-

tude of river flow (Q in scenario code). The projections indicate that

the contribution of river recharge to total recharge in the groundwater

catchment will increase to between 14% and 20% by the 2080s.

However, this is not true for the G2-Q2-P3 scenario (yellow)

which shows a reduction in July river recharge of >50 m3 h−1 which is

F IGURE 6 Intra-annual distribution plots of simulated baseflow (a), proportion of sandur runoff from groundwater (b), and runoff from the
Virkisá River basin (c), averaged over all scenarios for the reference period (1991–2015, dashed black line with range shown by grey band) and
shown for individual scenarios for the 2080s (coloured lines). Also shown are the corresponding changes between the reference and 2080s
periods (d–f)
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not reflected in the simulated change in losing river length. Instead,

this reduction is associated with a large reduction in the specific river

recharge that is, the rate of recharge per unit area of losing river bed

(Figure 7(d)).

To investigate this, Figure 8(a) shows the simulated river stage

at a single MODFLOW-NWT river node 1 km downstream of the

upstream model boundary over a three-day period during the melt

season in July 2013 for the reference runs of all scenarios. The

diurnal melt signal can be seen in all simulations, but the amplitude

of this cycle is greater for the G2-Q2-P3 reference run. This results

in a larger downward head gradient (Figure 8(b)) and an enhanced

river channel infiltration flux (Figure 8(c)). It is the loss of this diur-

nal melt signal for the G2-Q2-P3 scenario that explains the large

reduction in projected river recharge during the melt season for the

2080s.

4 | DISCUSSION

From the results of this study, four key findings are identified and dis-

cussed below in the context of groundwater resources in glacierised

basins, methodological limitations and future research needs.

F IGURE 7 Intra-annual distribution
plots of simulated river recharge (a). Note,
the dashed yellow line indicated with an
arrow shows the reference simulation for
the G2-Q2-P3 scenario. Also shown are
the changes in length of loosing river (b),
river recharge (c) and specific river
recharge (d) between the reference and
2080s periods

F IGURE 8 Simulated river stage (a),
river stage minus groundwater head
(b) and river channel infiltration (c) time
series for a single MODFLOW-NWT river
node 1 km downstream of the upstream
model boundary for 3 days during July
2013 for the reference runs of all
scenarios
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4.1 | The Virkisá River is a significant source of
proglacial groundwater recharge

The contribution of meltwater channel infiltration to groundwater

recharge in proglacial aquifers has rarely been quantified (see Liljedahl

et al., 2017; Ó Dochartaigh et al., 2019, for two notable exceptions)

and, to our knowledge, only the study of Somers et al. (2019) has cal-

culated the relative significance of this (�2% of total recharge). The

integrated modelling approach used in this study estimates that

between 1991 and 2015, the Virkisá River contributed 13%–17% of

total recharge to the groundwater catchment. The river is, therefore, a

significant source of groundwater recharge in the Virkisá groundwater

catchment. Furthermore, the relative contribution of river channel

infiltration to total groundwater recharge is projected to rise to 14%–

20% by the 2080s based on the five scenarios evaluated. This is due

to a trend of reduced precipitation, reduced diffuse recharge, falling

groundwater levels, and increase in the length of the losing section of

the river outside of the melt season when river recharge fluxes have

been historically small.

It is important to emphasise that this study only evaluates a small

sub-catchment of the much larger Skeiðarársandur aquifer which

covers approximately 1300 km2. If the model domain were expanded

to include the entire aquifer with its hundreds of meltwater channels,

the relative importance of river recharge would likely change. A key

priority now should be to investigate the significance of glacier-fed

river recharge for other proglacial aquifers at different scales. The

adoption of integrated modelling approaches underpinned by good

observation and site characterisation data are useful tools for these

investigations.

4.2 | Glacier retreat could inhibit river recharge

All five scenarios evaluated in this study simulated reductions in mean

runoff to the Virkisá River in the 2080s due to glacier retreat. How-

ever, the corresponding groundwater model simulations did not pro-

vide any clear evidence that changes in mean runoff inhibits future

river recharge. The two principal mechanisms by which a reduction in

mean river flow could inhibit river recharge is through lowering the

downward head gradient at the river-aquifer interface and through

reducing the area of active river bed in hydraulic connection with the

aquifer. The simplified river geometry adopted in this study (single

rectangular channel) means that only the former could be investi-

gated. However, the geometry of the Virkisá River is highly dynamic

with frequent activation and deactivation of channels which could

lead to significant changes in active river bed area. It is, therefore,

important to highlight that the apparent insensitivity of river recharge

to projected reductions in river flow could be partly explained by the

limitations of the river model.

Even without the ability to fully evaluate the impact of reduced

river runoff on river recharge, this study did show that the flattening

of diurnal flow variations in the runoff hydrograph due to the loss of

daily glacier melt cycling could inhibit river recharge. The diurnal melt

cycle can induce a downward head gradient at the river-aquifer inter-

face that drives river recharge inputs to the aquifer. For one of the

scenarios, the loss of this cycling reduced summer river recharge

fluxes by up to 29%. This is the first study to demonstrate this mecha-

nism of glacier retreat impact on groundwater recharge. It is hypo-

thesised here, that this mechanism is relevant to the vulnerability of

other proglacial aquifers and therefore requires further investigation.

Crucial to these investigations will be implementing monitoring and

numerical modelling approaches that consider sub-daily (ideally

hourly) fluctuations in key hydrological variables.

4.3 | Groundwater storage dynamics are resilient
to changes in river recharge

The simulations showed that groundwater storage dynamics in the

Virkisá groundwater catchment are driven by changes in diffuse

recharge and are largely resilient to changes in river recharge. The

drier scenarios with reduced sandur precipitation consistently simu-

lated lower groundwater levels in the 2080s while shifts in the timing

of groundwater storage seasonality were controlled by changes in the

magnitude of diffuse recharge during the main recharge season. This

finding is perhaps to be expected, given that the sandur is situated in

a temperate environment and receives precipitation year-round which

makes up the majority of groundwater recharge. However, numerical

modelling studies in semi-arid mountain aquifers have found ground-

water storage dynamics to be most sensitive to river flow dynamics

(Allen, Mackie, & Wei, 2004; Huntington & Niswonger, 2012; Scibek

et al., 2007). The primary drivers of proglacial groundwater storage

dynamics are, therefore, likely to be strongly influenced by key envi-

ronmental factors such as the prevailing climate. The findings from

this study are most relevant to glacierised catchments situated in tem-

perate environments.

It is also important to highlight that the simulations presented in

this study represent an areal average over the groundwater catchment

and therefore do not capture some of the spatial variability that might

be expected. Ó Dochartaigh et al. (2019) showed that the groundwa-

ter level records from the piezometers closest to the river (U1, M1

and L1 in Figure 2) show a strong signal resembling the river stage

dynamics. Accordingly, regions closer to the river are expected to be

more influenced by changes in river flow dynamics.

4.4 | Groundwater will provide limited buffering of
proglacial river runoff under climate change

The reference period simulations estimated that groundwater has

contributed up to 15% of 30-day average flow in the Virkisá River

outside of melt season. This is at the lower end of the estimate based

on stable isotope analysis of water samples (MacDonald et al., 2016),

but still demonstrates the historical importance of groundwater in

buffering river flow outside of the melt season. In the 2080s, ground-

water is projected to contribute up to 3%–8% of 30-day average river
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flow outside of the melt season due to simulated lowering of the

water table and increased meltwater and rainfall-runoff in the winter

months. During the melt season, groundwater will continue to con-

tribute 1%–3% of river flow despite significant reductions in meltwa-

ter runoff inputs. Groundwater will, therefore, continue to provide

limited buffering of river flows throughout the year, although, will

contribute proportionally less to river flows outside of the melt sea-

son. The proportional reduction in groundwater contribution to river

flow in the proglacial region could have implications for the ecological

health of the river (Khamis et al., 2016). However, it should be

emphasised, that these results are only relevant for the proglacial

region considered in this study. If, for example, the length of the

groundwater catchment were extended to include additional down-

stream regions of the Virkisá River, one would expect the contribution

and buffering from groundwater to increase.

5 | CONCLUSIONS

Through implementing an integrated numerical modelling framework

to represent the climate-glacier-groundwater response cascade in a

well-characterised catchment, this study has provided a rare analysis

of the importance of groundwater as a component of water cycling in

the foreland regions of glacierised mountain river basins. The simula-

tions have demonstrated that the glacier-fed Virkisá River is a signifi-

cant source of proglacial groundwater recharge and that these

recharge fluxes could change due to climate change and glacier

retreat. The simulations also replicate observational studies of base-

flow to the river, thereby further emphasising the historical impor-

tance of baseflow in sustaining river flow outside of the melt season.

The findings indicate that groundwater will continue to provide lim-

ited buffering of river flows over the 21st century, but that this buff-

ering is sensitive to changes in groundwater storage dynamics, which

are mainly driven by future patterns of diffuse recharge. Our under-

standing of water cycling in proglacial aquifers remains limited and it

is likely that groundwater storage dynamics for catchments with dif-

ferent climate regimes will respond to climate change and glacier

retreat differently. It is imperative that future research of these sys-

tems is undertaken in other parts of the world, particularly given the

potential socio-economic and environmental importance of proglacial

aquifers. Integrated modelling approaches and high quality observa-

tion data should underpin this research.
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APPENDIX A.

GROUNDWATER MODEL PARAMETER IDENTIFIABILITY

Figure A1(a) shows the frequency histogram and cumulative fre-

quency diagram of the RMSE scores from the 4398 successful Monte

Carlo calibration runs. Figure A1(b–d) show the range (light blue lines)

and mean (dashed blue line) of the calibration parameters for all model

runs under each point of the cumulative frequency diagram. As the

RMSE threshold is reduced, Kh converges toward a value of approxi-

mately 4 m d−1. The yellow line shows the convergence ratio: The

proportion by which the calibration parameter range is reduced. For

the most efficient models (left-most point on the yellow line), the Kh

parameter range is reduced by 93% of the original calibration range

size indicating high sensitivity and identifiability. The calibrated Kh

value was 3.3 m d−1

The convergence ratio only reaches 57% for κ (Figure A1(c)) indi-

cating that it is less identifiable than Kh. Even so, the parameter still

converges toward a value >0.5 and the calibrated κ is 0.98 indicating

an aquifer lithology that is approximately isotropic. The calibrated Sy

is 0.15, but the convergence ratio only reaches 4% (Figure A1(d))

indicating that this parameter is not identifiable. This is likely

because inter-piezometer groundwater level variability is much

larger than variations in groundwater levels at individual piezome-

ters. Accordingly, the calibration of hydraulic model parameters to all

of the groundwater level time series data simultaneously likely ren-

ders Sy insensitive. To investigate this further, an additional experi-

ment was undertaken whereby the model was calibrated to each

piezometer individually. It was found that, except for the U1 and U2

piezometers, which are situated close to the river and therefore con-

trolled primarily by river dynamics, Sy showed to be more sensitive

with the convergence ratio ranging from 27% to 99% with a mean of

73% and the calibrated Sy ranging from 11% to 25% with a mean of

15%. Given that the Sy obtained when taking the average of the cali-

bration values at all sensitive piezometers is in agreement with the

value obtained from the initial Monte Carlo calibration and that this

is in the representative porosity range (10%–20%) for proglacial fans

and sandur aquifers (Parriaux & Nicoud, 1990), an Sy of 0.15 was

deemed justifiable.

Figure A1(e–h) show equivalent convergence plots for the mean

simulated state variables as the RMSE threshold is reduced. All state

variables give a convergence ratio ≥89% indicating that the model

behaviour is well constrained by the calibration procedure.
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F IGURE A1 Frequency histogram (blue bars) and cumulative frequency diagram (black line) of RMSE scores obtained from successful Monte
Carlo calibration runs (a). Also shown is the range (light blue lines), mean (dashed blue line) and convergence ratio (yellow line) of the calibration
parameters (b–d) and model state variables (e–h) for all model runs under each point of the cumulative frequency diagram
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