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Abstract

Sustained observations allow for the tracking of change in oceanography and

ecosystems, however, these are rare, particularly for the Southern Hemisphere. To

address this in part, the Australian Integrated Marine Observing System (IMOS)

implemented a network of nine National Reference Stations (NRS). The network

builds on one long-term location, where monthly water sampling has been

sustained since the 1940s and two others that commenced in the 1950s. In-situ

continuously moored sensors and an enhanced monthly water sampling regime

now collect more than 50 data streams. Building on sampling for temperature,

salinity and nutrients, the network now observes dissolved oxygen, carbon,

turbidity, currents, chlorophyll a and both phytoplankton and zooplankton.

Additional parameters for studies of ocean acidification and bio-optics are collected

at a sub-set of sites and all data is made freely and publically available. Our

preliminary results demonstrate increased utility to observe extreme events, such

as marine heat waves and coastal flooding; rare events, such as plankton blooms;

and have, for the first time, allowed for consistent continental scale sampling and

analysis of coastal zooplankton and phytoplankton communities. Independent

water sampling allows for cross validation of the deployed sensors for quality

control of data that now continuously tracks daily, seasonal and annual variation.
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The NRS will provide multi-decadal time series, against which more spatially

replicated short-term studies can be referenced, models and remote sensing

products validated, and improvements made to our understanding of how large-

scale, long-term change and variability in the global ocean are affecting Australia’s

coastal seas and ecosystems. The NRS network provides an example of how a

continental scaled observing systems can be developed to collect observations that

integrate across physics, chemistry and biology.

Introduction

Human activities are intricately linked to coastal marine systems both directly and

indirectly [1]. Multiple drivers such as climate, pollution and exploitation that

vary in intensity and both spatial and temporal distributions are played out in the

coastal sphere [2] and changes to coastal systems have flow-on effects. These

including increased susceptibility of coastal communities to sea level change and

floods, loss of ecosystem services and erosion [3].

To detect and predict these impacts, the Global Ocean Observing System

(GOOS) advocates sustained, routine and reliable observations on local, regional

and global scales [4], to define short-term variability through longer-term change

in system and ecosystem response [5]. These observations should be collected in a

way that allow the provision of information on time scales required for informed

decision making by local, regional and national management agencies [6].

The increased understanding of the role of the oceans in determining the global

climate system has been accompanied by a growing realisation that, in

comparison to terrestrial systems, sustained (. 10 yr) marine observations,

particularly in the Southern Hemisphere, are sparse [5, 7]. Offshore physical

oceanography has been well served by new technology and internationally

integrated platforms such as the Array for Real-time Geostrophic Oceanography

(ARGO) [8, 9]. Broad scale observing of coastal seas and sustained biological

observations, however, are still relatively data poor [10].

There are considerable challenges in achieving observations in coastal seas.

Satellite remote sensors for ocean properties can degrade in their spatial and

optical resolution close to land masses, requiring in situ validation and

characterization. In situ systems, however, need to be robust to meet challenges

associated with the dynamic nature of the coastal environment; such as high wave

energy, turbidity, fouling and environmental extremes. There are also many

challenges associated with the integration of data required for regional and

national syntheses. These include access and management of data, development of

pathways to promote collaboration and ongoing support for the continued

collection of those data.

In Australia, logistics present additional challenges in the establishment of

sustained observing. Australia has the third largest ocean territory in the world

IMOS National Reference Stations

PLOS ONE | DOI:10.1371/journal.pone.0113652 December 17, 2014 2 / 28



and a continental coastline of 36,000 km, which increases to 60,000 km when the

nation’s numerous offshore islands are also considered [11]. As well, though the

geographic size of Australia is similar to that of the continental United States of

America, Australia’s population, at approximately 23 million people [12], is an

order of magnitude smaller.

Considering these constraints, a national and co-ordinated approach was

adopted by Australian federal and state governments to address a general lack of

long-term and geographically comprehensive oceanographic monitoring. In 2007,

the Integrated Marine Observing System (IMOS) was established under an

unprecedented partnership between Australia’s major marine research institutes

[13]. IMOS has been designed in line with GOOS principles [14] and includes

linked global (ocean basin/climate) and coastal components. Guided by these

principles, researchers contributing to IMOS are organized into six science nodes

consisting of a blue water and climate observing node and five regional coastal

nodes (Fig. 1). The nodes (which have in excess of 600 members in total) have

developed science plans (Available at www.imos.org.au/nodes) aimed at

addressing five major research themes: 1) multi-decadal ocean change; 2) climate

variability and weather extremes; 3) major boundary currents and inter-basin

flows; 4) continental shelf processes and 5) biological responses. The science plans

are implemented by ten facilities that deploy equipment and deliver data to an

eleventh facility, the Electronic Marine Information Institute (eMII), which

archives and facilitating public access to data and metadata. The Australian

National Mooring Network (ANMN) is the largest of the IMOS facilities and

maintains a network of National Reference Stations (NRS) and associated regional

moored sensor arrays that monitor Australia’s coast and continental shelf

oceanography [15].

Prior to the advent of IMOS, long-term observation in Australia reflected the

global trend of rare and failed programs [16, 17]. Of 42 national coastal stations

operated between 1942 to the present day (Source: CSIRO Marlin database) only

four with greater than 20 years data are still operational: two at Port Hacking in

New South Wales at 50 m and 100 m (established in 1942 and 1953, respectively),

one at Maria Island on Tasmania’s east coast (established in 1944) and one at

Rottnest Island in Western Australia (established in 1951) (Fig. 1). Data collected

at these stations commenced with salinity and temperature and evolved to include

nutrients (silicate, nitrates/nitrites, phosphate) and dissolved oxygen at Maria [18]

and are considered globally significant, as there are few other multi-decadal time

series in coastal areas of the Southern Hemisphere. Datasets generated by these

long term stations have been used to identify climate change signals in Australia’s

two principle boundary currents, the East Australian Current (EAC) [19] and the

Leeuwin Current [20]. The time-series data provided by the stations have also

been used as references to understanding changes in biological systems associated

with these currents, such as latitudinal shifts in temperate fish and kelp

distributions [21, 22] and long term changes in phytoplankton growth rates and

biomass [18].
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The expanded NRS network commenced its roll-out in 2008 and was designed

to build upon the existing time-series stations, to ensure their maintenance and to

expand to cover other marine provinces around Australia’s coastal seas. The aim

of this paper is to document the rationale, methods, logistics, data collection, and

configuration of the NRS and provide key examples of data to demonstrate

enhanced utility and highlight the science opportunities that this free and open

access system affords. The NRS provides a modus operandi or a blueprint for

future continental or other large-scale coastal observing systems globally, helping

to standardize observing efforts and optimize the use of resources.

Methods

The scientific rationale

The rationale of the NRS is to: 1) provide a multi-disciplinary and integrated suite

of time-series observations for reference by more spatially-distributed and

intensive shorter-term studies; 2) to establish a coastal information infrastructure

through the development of national data standards; and 3) make available in-situ

measures for the validation of modeling activities and coastal remote sensing.

Regionally, individual NRS act as focal points for the integration of datasets

collected by other IMOS operations such as the continental shelf mooring arrays

of the ANMN, ships of opportunity, ocean gliders, autonomous underwater

vehicles, ocean radar and animal-borne tags, to allow for the investigation of

linkages between coastal and offshore environmental systems and processes.

Fig. 1. Locations of the nine National Reference Stations in relation to the five coastal IMOS node
regions and the five general environmental planning regions; a: long term site; b. site with telemetry.

doi:10.1371/journal.pone.0113652.g001
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Location and number of stations in the network

For the purposes of NRS planning and implementation, ‘coastal ocean’ was

defined as waters from the high tide mark to the shelf break (,200 m isobath).

Taking into account the location of the existing historical stations, selection of the

number and location of additional stations required to form the expanded NRS

network was based on four criteria: 1) the location of principal currents in the

Australian coastal region; 2) the distribution of Australian coastal phytoplankton

provinces; 3) information requirements for monitoring a national network of

marine reserves; and 4) regions of priority for each of the six IMOS science nodes.

Principal currents of the Australian coastal region

Australia is the only continent with two poleward-flowing boundary currents

transporting tropical waters along both the east and west coasts (Fig. 2). The East

Australian Current (EAC) carries water south from the tropical Coral Sea along

the east coast of Australia into the Tasman Sea, dominating waters between 18˚ S

and 35˚S. As the EAC moves south, it separates from the coast between 30.7 S and

32.4 S around 50% of the time; however, it can separate anywhere between 28 S

and 38 S, with upper layers flowing eastwards to form the Tasman Front and

deeper layers spawning warm-core eddies that continue to move south as the EAC

extension [23, 24]. The Leeuwin Current originates from the Timor Through

Flow, flowing south from the North West Cape of Western Australia, and then

east along the continents southern coast for a distance of up to 5500 km [25].

Both current systems are seasonally influenced, with the EAC extending further

into southern waters along the eastern Tasmanian coast in summer [23] and the

Leeuwin Current extending further eastwards to flow across the Great Australian

Bight (GAB) and then southward along the west coast of Tasmania in winter [25].

Phytoplankton provinces

There are strong latitudinal gradients in phytoplankton around Australia with

tropical communities dominated by small cyanobacteria such as Prochlorococcus

and Synechococcus with increasing abundances of nano and microplankton further

south [26]. Australia has six phytoplankton provinces based on dinoflagellate

associations with specific water masses and other marine microalgal species

communities that are repeatedly found in certain locations [27]. These include: 1)

the diatom dominated shelf waters of north-west Australia [28], the Gulf of

Carpentaria [29], Arafura and Timor Seas; 2) tropical oceanic waters with a

predominately dinoflagellate community including Histioneis and Ornithocercus

[30, 31], with these neritic communities containing tropical diatoms, cyanobac-

teria and dinoflagellates carried southwards by the Leeuwin Current and EAC; 3)

the fast-growing nanoplankton diatom dominated shallow waters of the Great

Barrier Reef lagoon [32]; 4) the productive temperate neritic coastal waters of

New South Wales, Tasmania, Victoria and South Australia with a stronger

seasonal progression from diatoms to dinoflagellates such as Ceratium and

Dinophysis and Noctiluca [33]; 5) a highly variable oceanic transition zone which

sits in-between the temperate and tropical phytoplankton communities [34] and;

IMOS National Reference Stations

PLOS ONE | DOI:10.1371/journal.pone.0113652 December 17, 2014 5 / 28



6) a sub-Antarctic phytoplankton province along the sub tropical front that

supports a significant coccolithophorid bloom in summer [35] dominated by

Emiliania huxleyi in this colder and deeply mixed water mass [36].

Australia’s network of Marine Reserves

In 1998, the Commonwealth and state and territory governments committed to

the creation of a National Representative System of Marine Protected Areas. Six

interconnected marine regions around the continent have built upon existing state

and federal plans, such as the Great Barrier Reef Marine Park (GBRMP), resulting

in a comprehensive network of proposed marine reserves [37]. Within three

nautical miles of the coast these reserves are generally state controlled, with the

exception of some coastal regions in the GBRMP. Reserves situated beyond 3 nm

from the coast out to the 200 nm exclusive economic zone are predominately

controlled by the Commonwealth government. Sustained observing has been

identified as critical for ongoing planning, research and monitoring within the

management plans of the proposed marine reserve networks [37].

Fig. 2. The major oceanic currents in the Australian region. Adapted from [13].

doi:10.1371/journal.pone.0113652.g002
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Regions of priority for the IMOS nodes

The science plans for each of the six IMOS nodes identified a number of key

research themes (available at www.imos.org.au/nodes). Research conducted under

the blue water and climate observing node is primarily focused on oceanography

at continental to global scales, and in particular, on climate forcing and variability,

multi-decadal change and linkages between offshore and coastal processes.

Research conducted under each of the regional nodes investigates the relation-

ships between physical, chemical and biological processes at Australian state or

multi-state scales and between local oceanographic processes and regional climate

phenomena such as the El Niño–Southern Oscillation (ENSO). These include

describing the EAC and Leeuwin Current and their eddy fields (Fig. 2),

continental shelf processes and biological responses to these systems, as well as the

highly tidally influenced coastal waters of Australia’s north. For instance, the

complex coastal oceanography of the south-east region has been identified as an

area of significantly warming ocean temperatures [38] and unprecedented warm

sea surface temperature anomalies on the west coast of Australia, the Ningaloo

Niño, has also recently been described [39]. Characterizing and understanding the

oceanography and ecosystems within these regions are of high priority for the

regional nodes.

Additional NRS

Based on the above criteria, Australia’s coastal waters can be subdivided into five

distinct environmental regions: 1) The tropical north, characterized by broad,

shallow seas, strong tidal influences, high sediment loading and influenced by the

Holloway Current; 2) The Great Barrier Reef (GBR) lagoon, which is influenced

by the EAC and Hiri Current; 3) The south-east, extending from the sub-tropics

to the cool temperate waters of Tasmania, characterized by a narrow shelf

dominated by the EAC; 4) The central south including the broader shelf areas of

the GAB and influenced by the Leeuwin and Flinders Currents and periodic

upwelling; and 5) the south-west characterized by a narrow continental shelf

dominated by the Leeuwin Current (Fig. 1 and 2).

Each of the five areas were identified as requiring at least one NRS and multiple

NRS sites if required by scale to ensure that all major current systems, each

phytoplankton province, marine reserve network region and IMOS regional

coastal node were able to be sampled. A further six sites were identified to

complement the existing sites, thus creating the NRS network. These included

Darwin in the tropical north, Yongala in the GBR lagoon, North Stradbroke

Island in the sub-tropical east, Kangaroo Island in the central south, Esperance in

the south-west and Ningaloo Reef in the north-west (Table 1, Fig. 1). The

oceanographic features of each of these sites are described in supplementary

material.

The sampling program

Water and plankton sampling were conducted under permit # QS2010/MAN111a

IMOS National Reference Stations
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(Marine Parks Act 2004) and under permit #95170 (Fisheries Act 1994). Other

field work permits were obtained from: CSIRO Oceans and Atmosphere, GPO

Box 1538, Hobart, Tasmania 7001, Australia, CSIRO Oceans and Atmosphere, 41

Boggo Rd, Dutton Park, Queensland, 4102, Australia Centre for Applications in

Natural Resource Mathematics, University of Queensland, St. Lucia, Queensland

4072, Australia Australian Institute of Marine Science, PMB #3 Townsville MC,

Queensland 4810, Australia School of Mathematics, University of New South

Wales, Sydney, New South Wales 2052, Australia South Australian Research and

Development Institute, PO Box 120 Henley Beach, South Australia 5022,

Australia.

The sampling program for the NRS was designed on five requirements: 1)

expansion of the predominately physical dataset of the historical sites to an

integrated suite of physical, chemical and biological oceanographic parameters; 2)

an increased rate of sampling to allow resolution of daily cycles, capture of rare

events and improved statistical power to detect change over time; 3) continuous

deployment of in-situ sensors, which are not affected by adverse weather that

prevents field work; 4) collection of species level information for both

Table 1. Features of the nine National Reference Stations.

Yongala

Nth
Stradbroke
Is Pt Hacking Maria Is Kangaroo Is Esperance Rottnest Is Ningaloo Darwin

Year deployed 2007 2011 2009 2008 2008 2008 2008 2010 2009

Latitude ( S̊) 19 1̊8.5 27 2̊0.5 34 0̊5.0 42 3̊5.8 35 4̊9.9 33 5̊6.0 32 0̊0.0 21 5̊2.0 12 2̊4.0

Longitude ( E̊) 147 3̊7.1 153 3̊3.73 151 1̊5.0 148 1̊4.0 136 2̊6.8 121 5̊1.0 115 2̊5.0 113 5̊6.82 130 4̊6.1

IMOS node QLD QLD NSW TAS SA WA WA WA WA

Reserve net-
work

GBRMP TE TE SE SW SW SW NW N

Plankton pro-
vince

GBR GBR TN TN TN TO TO TS TS

Depth (m) 27 63 100 90 110 50 50 55 20

Operator AIMS CSIRO SIMS CSIRO SARDI CSIRO CSIRO AIMSa AIMS

No. services
(per yr)

2 3 6 3 3 3 3 2 2

No. samples
(per yr)

12 12 12 12 8 4 12 4 4

Telemetry Yes Yes No Yes No No No No Yes

Shelf pro-
cesses

C,M C,E,U C,E CZ C,U C,U C,E,U C,U C,M

Currents EAC EAC EAC EAC,ZC,LC LC,FC,LU,U LC LC LC,NC HC

aWater samples at Ningaloo are collected by CSIRO and AIMS. IMOS Node: QLD: Queensland; NSW: New South Wales; TAS: Tasmania; SA: South
Australia; WA: Western Australia. Marine Reserve Network: GBRMP: Great Barrier Reef Marine Park; TE: Temperate East; SE: South-East; SW: South-
West; NW: North-West; N; North. Phytoplankton provinces: GBR: Great Barrier Reef; TN: tropical neritic; TO: tropical oceanic; TS: tropical shelf. Institutes:
AIMS: Australian Institute of Marine Science; CSIRO: Commonwealth Scientific and Industrial Research Organisation; SARDI: South Australian Research
and Development Institute; SIMS: Sydney Institute of Marine Science. Shelf processes: C: currents; CZ: connection zone; E: eddies; M: monsoonal
influences; T: tidal influences; U: upwelling. Current systems: EAC: East Australian Current; FC: Flinders Current; HC: Holloway Current; LC: Leeuwin
Current; LUC: Leeuwin Undercurrent; NC: Ningaloo Current; ZC: Zeehan Current.

doi:10.1371/journal.pone.0113652.t001
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phytoplankton and zooplankton to determine ecosystem response to environ-

mental change; and 5) cross validation of data derived from sensors and water

sampling for quality control.

Continuous and robust data collections for many properties of the water

column are now possible via in-situ sensor systems. Some chemical parameters

and species-level data, however, are unable to be collected robustly via such

systems. As a result a sampling program consisting of moored and serviced sensor

packages coupled with regular vessel-based sampling and laboratory analysis was

instigated.

Moored sensors

The in-situ moored sensors of the NRS network comprise a number of

instruments deployed at all sites that measure a set of core parameters. Additional

sensors, identified by the science nodes to collect data for addressing specific

science questions, are deployed at a subset of sites (Fig. 3). Roll out of the network

has been phased, resulting in variation in commencement dates (Table 1).

Core parameters

The high temporal resolution data (Table S1 in S2 File) collected at each NRS site

are mostly generated by paired - shallow and deep deployed - Water Quality

Monitors (WQM; Wetlabs, Philomath, USA) and a bottom mounted Acoustic

Doppler Current Profiler (ADCP; Teledyne RDI, Poway, USA). Each WQM

consists of a pumped conductivity, temperature and depth (CTD) sampler (SBE

MicroCAT, Seabird, Seattle, WA, USA), oxygen sensor (SBE 43, Seabird, Seattle,

WA, USA) and a combined flourometer and turbidity sensor (FLNTU; EcoPuk,

Wetlabs, Philomath, USA). The fluorescence excitation wavelength of the EcoPuk

in the WQM is 470 nm while the emission wavelength is 695 nm. For the

turbidity measure the EcoPuk’s wavelength is 700 nm. A variation in

instrumentation occurs at Kangaroo Island, where the near surface sensor package

consists of a NXIC CTD (Falmouth Scientific, Cataumet, MA, USA) with an

Optode oxygen sensor (Aanderraa, Bergen, Norway) and an EcoPuk FLNTU. A

Photosynthetically Active Radiation (PAR) sensor (QSP-2100, Biospherical, San

Diego, USA) is also mounted on the Kangaroo Island mooring near the FLNTU at

40 m depth (Fig. 3).

Water column current velocity and direction are measured using bottom-

mounted and upward-looking 300 KHz ADCPs at all sites, except Yongala and

Darwin, where 600 KHz ADCPs are deployed (Table S1 in S2 File). These higher

frequency ADCPs are better suited to resolving the shallower water and fast tidal

patterns of these two sites and are used to infer multi-directional internal waves.

ADCPs are deployed either as separate sub-surface moorings (NRS ROT, NIN,

ESP, KAI, PH) or landers (MAI, YON, DAR, NSI) to avoid interactions with

mooring lines. Optical sensors are placed in-line with the mooring wire, as they

are designed to take point samples; though the actual sampling volume of the

EcoPuks is not characterized by the manufacture. For the FL signal, interactions

with the mooring wire or cage will only occur with fouling as the sensor registers

IMOS National Reference Stations
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fluorescence. The NTU signal, however, has a greater possibility of wire

interactions. We analyzed this data for MAR stations and found only a small

number of points, less than 1%, showed any possible interaction with the wire

(data available on-line).

The frequency of sampling by the sensors is standardized across the network.

Data is collected from sub-surface sensors at one-second intervals across one

minute of continual burst sampling every 15 minutes. Data are logged internally

and data delivery is delayed until moorings are serviced. The moorings servicing

interval seeks to maintain high quality data sets. Local conditions (e.g. degree of

bio-fouling) determine the servicing periods, which vary from monthly at the Port

Hacking site to six monthly at Yongala (Table 1). At those sites with telemetry

capabilities (see next section) a value is calculated for parameters across each burst

to provide data averages in near real time.

Additional sensors and telemetry

Meteorological data are available for all NRS sites; weather stations (WXT520,

Vaisala, Helsinki, Finland) capable of measuring barometric pressure, wind speed,

wind direction, air temperature, liquid precipitation and relative humidity along

Fig. 3. Schematic representations of the moored sensor design for each of the National Reference Stations. Note, not all instruments are deployed
onto single mooring lines.

doi:10.1371/journal.pone.0113652.g003
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with a surface temperature sensor (SBE 39, Seabird, Seattle, WA, USA) have been

deployed in a surface float sensor package at Maria Island, Darwin, Yongala and

North Stradbroke Island (Table S2 in S2 File). Complimentary meteorology data

are available at the Port Hacking, Kangaroo Island, Esperance and Rottnest Island

sites via Australian Bureau of Meteorology stations located in close proximity to

the NRS sites, or in the case of the Ningaloo station, a nearby automatic weather

station maintained by the Australian Institute of Marine Science (AIMS). Motion

reference units (3DMGE1, Microstrain, Williston, USA) capable of recording

wave height are also deployed at Maria Island and North Stradbroke Island.

Samples from the weather station and MRU sensors are telemetered and comprise

5 minutes of data acquisition each hour, which is then summarized into averages.

Individual samples are taken at rates of 5 Hz for the MRU sensors and then

Fourier transformed into a data package of acceleration magnitudes.

The surface float electronic packages deployed at Maria Island, Darwin, Yongala

and North Stradbroke Island also allow for telemetry of near real-time data for

SST, along with sub-surface sensor data from the WQMs on an hourly basis.

Transmission of data was originally via satellite telephone, but more recently this

has been transferred to a system that first attempts to send data via mobile phone

before defaulting to the satellite system for those stations, (Maria Island, North

Stradbroke Island and Darwin) which are within range of mobile telephone cell

towers.

The NRS also provides capability for the monitoring of carbon dioxide and

ocean acidification [40]. Sensors for measuring CO2 (Battelle pCO2, Battelle,

Columbus, OH, USA), oxygen (Oxygen Optode, Aanderaa, Bergen, Norway) and

salinity and temperature (SBE 16 +, Seabird, Seattle, WA, USA) have been

deployed at the Maria Island, Kangaroo Island and Yongala stations (Table S3 in

S2 File), with data telemetered via an independent rudics system.

Many stations have other, additional sensors which log data to be provided in a

delayed mode. Stations at Maria Island, Rottnest Island, Port Hacking and North

Stradbroke Island have an additional FLNTU (Ecotriplet B, Wetlabs Philomath,

USA), which were first deployed between 2012 and 2013, and are capable of

measuring blue, green and coloured dissolved organic matter (CDOM)

wavelengths (Fig. 3, Table S3 in S2 File). These are co-located and complement

the wavelength of the standard EcoPuk FLNTU on the WQMs. For the

Ecotriplet’s two scattering band wavelengths, blue was set at 470 nm, while green

at 532 nm. For the CDOM florescence the excitation wavelength was set at

370 nm and emission at 470 nm. Another Ecotriplet B is planned to be deployed

at the Yongala NRS, as are PAR sensors for the Maria Island station. Combined

bio-optical observations from these sites will be used for observing particle and

phytoplankton dynamics, modelling of the underwater light climate for primary

production, and identifying proxies linking optical observations to biogeochem-

ical properties. Additional salinity and temperature sensors have been placed on

the Kangaroo Island, Port Hacking, Ningaloo, Rottnest Island, Esperance and

North Stradbroke Island stations to better resolve local physical water column

properties (Fig. 3, Table S3 in S2 File).
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Vessel-based sampling

The long-term water sampling program, established at the historical sampling

sites, has been expanded into a more comprehensive program (Table S4 in S2

File). The program generally replicates the monthly time scale of the historic

sampling frequencies at Port Hacking, Maria and Rottnest Islands, as this has

proved to be sufficient to detect multi-decadal change [18]. However, local

conditions and logistical constraints required reduced sampling at some sites. Due

to the extreme nature of the tides at the Darwin station, sampling was reduced to

four times a year but spread across the tidal cycle. This quarterly sampling was

designed to capture the variability in sediment and nutrient loads across dry and

wet seasons and spring and neap tides. Samples at Kangaroo Island are collected

eight times a year due to limited availability of research vessels, and four sampling

times occurred at Ningaloo and Esperance to coincide with remote field trips to

service the moorings and the seasons.

Detailed documentation of the vessel-based sampling methods are provided in

an NRS Biogeochemical operations handbook and NRS standardized profiling

CTD cast procedures which are published on the IMOS website (imos.org.au/

anmndocuments). Briefly, sampling comprises: 1) vertical profiling sensor

measurements of conductivity (salinity), temperature and depth, oxygen,

fluorometry and turbidity; 2) Niskin bottle samples at discrete 10 m intervals for

measurements of total dissolved inorganic carbon, alkalinity and nutrients; 3) a

combined water column sample from all Niskin bottles for phytoplankton and

pigments; 4) zooplankton samples from a plankton drop net; 5) and additional

Niskin bottle water samples taken adjacent to moored instruments to allow for

cross validation and characterization of data collected by the moored sensors; and

6) measurement of turbidity with a Secchi disk.

Sampling at each of the sites is conducted by staff from the nearest partner

institute. Numbers of samples planned to be taken at each of the nine sites are

provides in Table 1. Actual biogeochemical water and plankton samples taken,

which includes gaps and timings, from the interception of the expanded sampling

program to submission of the manuscript are provided in Fig. 4.

Laboratory analysis

Samples of similar suites of parameters are freighted to centralized laboratories for

analysis by specialized teams of technicians and scientists. Three different

laboratories at CSIRO’s Oceans and Atmosphere (OA) Flagship in Tasmania

conduct analysis on hydrochemistry, plankton pigments and carbon respectively.

Tropical and temperate phytoplankton and zooplankton samples are processed at

the OA laboratories in Queensland, while cool temperate phytoplankton samples

are processed at the Australian Antarctic Division in Tasmania. Pico-plankton

analysis is undertaken by the Australian Microscopy and Microanalysis Research

Facility at the University of Western Australia.
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Results

The expanded NRS system has increased the extent of sampling: extending

stations into the tropics, the number of parameters measured from ten to more

than 50 and, through placement of moored sensors, increased the frequency of

sampling of some parameters by up to five orders of magnitude. Temperature and

salinity, which were historically measured using manual methods at a maximum

of three times per season are now measured by in-situ sensors up to 480,000 times

per season. Data collected now includes not only physical and chemical

parameters, but also biological indicators at two trophic levels.

Applications

Measurements provided by the moored sensors of the NRS allows for continuous

monitoring of episodic events, which are common in coastal oceanography [1]. As

an example, salinity and turbidity sensors at the North Stradbroke Island NRS

were deployed during large scale flooding events in 2010-11 [41, 42]. As freshwater

carrying flood debris and sediments moved out of coastal catchments, the stations

20 m CTD sensor detected an increased variability in surface salinity (Fig. 5a)

while the sensor deployed near the sea floor detected an increase in turbidity

(Fig. 5b). Due to the weather conditions across this period, it would have been

unsafe to have collected data from a small boat and monthly sampling would also

not have captured the variability of the salinity changes and turbidity plumes

across scales of hours, days to weeks.

The NRS network has, for the first time, provided descriptions of the relative

concentrations of phytoplankton pigment types (Fig. 6a) and zooplankton species

(Fig. 6b) across all of the currently defined phytoplankton provinces, with the

exception of the sub-Antarctic province, identified around Australia. While

connectivity is reflected in the pigments (Fig. 6a), cell counts and analysis by flow

cytometry, there is also considerable evidence of strong latitudinal gradients. For

example, down the east coast of Australia from the NRS at Yongala (,19 S̊ and

Fig. 4. Numbers and timings of biogeochemical water and plankton samples taken on site at all stations from the interception of the expanded
sampling program.

doi:10.1371/journal.pone.0113652.g004
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148 E̊) where zeaxanthin was 52% of total chlorophyll a to just 3% at Maria Island

some 24 S̊ further south (,43 S̊ and 148 E̊). This trend is consistent with, albeit

somewhat faster than, the 1.3% decrease in all picoplankton abundance per degree

of latitude previously reported [33]. In the tropics phytoplankton tend to be

dominated by di-vinyl chlorophyll a and zeaxanthin, markers for the

picoplanktors Prochlorococcus and Synechococcus, respectively.

For the zooplankton, the Copepods (calanoids, cycopoids and harpacticoids)

dominate the community, constituting 45–70% of the observed abundance across

the network (Fig. 6b). The southernmost NRS of Maria Island, which is located in

the relatively cool and productive Tasman Sea, has the greatest proportion of

copepods. Cladocerans are generally a coastal group and are found in high

numbers in waters of southern Australia, including Port Hacking, Rottnest and

Fig. 5. Time-series of salinity (A) and turbidity (B) measurements collected at the North Stradbroke Island station during a flood. The event was
related to a controlled release of water from a large dam following rain across an already saturated catchment, which commenced on the 1st January 2011
(1), and continued to the10th. Peak rainfall occurred on the 7th (2), and water released from the dam late on the 11th (23:30) (3). Major flooding occurred
across Brisbane city from the 12–14th (4), and peak turbidity of the plume disgorging to NRS NSI, which is , 41km distant from the river mouth, was
observed on the 16th (5).

doi:10.1371/journal.pone.0113652.g005
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Kangaroo Island NRS. Mollusc larvae were found at the Ningaloo and Yongala

NRS, which are both adjacent to coral barrier reefs. Appendicularians, which feed

on bacteria and picophytoplankton, are most common (,15%) along the east

coast, less common on the south coast, and absent or rare on the west coast.

Principle component analysis (PCA) and permutational analysis of variance

(pMANOVA) for phytoplankton taxa as well the copepods (Fig. 7) also

demonstrates how these communities separate over the continental scale of

sampling. The final community matrices included 136 samples and 291 taxa for

phytoplankton and 244 samples and 183 species for copepods. The community

matrices were transformed with the fourth-root transformation and then with the

Hellinger transformation [43]. Variation in species composition was summarised

using transformation-based PCA (Legendre 2012). Differences among stations

were examined with pMANOVA. Variation between pairs of stations was

examined with pairwise pMANOVA. Pairwise p values were adjusted for multiple

comparisons using the Holm method and visual inspection of pairwise RDAs was

also performed to check that the results were reasonable. We note that our

pMANOVA tests were unbalanced with respect to station, year and season, hence

the individual pairwise tests will be less robust than general trends. Analyses were

performed with an R package [44].

For phytoplankton, the first two PCA axes accounted for 12% and 6% of the

variance in species composition respectively. The first axis tended to order

stations from south to north (Fig. 7a) and is in reasonable agreement with our

understanding of how the plankton community is structured [27]. There is a

general north-south gradient on the first axis with large overlaps between the

temperate stations (Fig. 7a). This most likely reflects the connectivity between

these provinces by the major pole ward flowing current systems. Overall, station

explained a significant proportion of the variation in species composition (R2 5

24%, p ,0.0001). Pairwise pMANOVA tests indicated that the clearest separations

were between the most northern and southern stations (Fig. 7b). Darwin stands

out as being clearly separated from all other stations (Fig. 7b). All pairs of stations

were significantly different (adjusted p values are all less than 0.05).

For copepods, the first two PCA axes accounted for 14% and 7% of the variance

in species composition respectively. The first axis tended to order stations from

south to north and the second axis separated the south-western stations (Rottnest

and Esperance) from the other temperate and subtropical stations (Fig. 7c). So we

have separation in community structure between the cool temperate waters in the

South at the Maria Island NRS and all other stations, as well as longitudinal

division between the western stations at Rottnest and Esperance and at the

tropical stations of Darwin and Yongala NRS, with the tropical north-west

Ningaloo NRS bridging these stations (Fig. 7). There was also a central group of

Fig. 6. Average phytoplankton pigments normalized to chlorophyll a at all national reference stations
sampled between February 2009 and December 2010 (n 5 190) (A). Major functional groups of
zooplankton sampled with a 100 mm drop net across the NRS network (B).

doi:10.1371/journal.pone.0113652.g006
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stations in the PCA comprising the North Stradbroke Island, Port Hacking and

Kangaroo Island NRS, which are located in the South and East temperate and

subtropical zones. Overall, station explained a significant proportion of the

variation in species composition (R2 5 37%, p ,0.0001). Pairwise pMANOVA

tests indicated that the clearest separations were between the most northern and

southern stations (Fig. 7d). Even more so than phytoplankton all pairs of stations

were highly significantly different (adjusted p values all less than 0.01).

In recent years, the research community has benefitted from increased

availability of observations from bio-optical sensors of variables with both

biogeochemical and ecosystem relevance. These include fluorescence proxies for

Chlorophyll a, and optical backscattering or attenuation coefficients, which are

used as proxies for particulate organic carbon and coloured dissolved organic

Fig. 7. PCA sample scores (A, C) and heatmaps of R2 values from pairwise pMANOVA tests (B, D) for phytoplankton (A, B) and copepods (C, D). In
the PCA plots, samples are coloured by station. The R2 values in the heatmaps provide a measure of how distinctly the samples from each station are
separated from those of each other station. For clarity, the stations in the heatmaps have been sorted by the median sample scores from RDAs constrained
by station.

doi:10.1371/journal.pone.0113652.g007
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matter (CDOM) [45]. By providing continuous FLNTU measurements at two

depths at each of the NRS sites, examples of rare, episodic and short lived

phenomenon, such as algal blooms within the water column can now be made

(Fig. 8). Determining if these are real events or artifacts of bio-fouling is assisted

by the continuous deployment of dual depth stratified sensors. Actual blooms are

discreet and short lived, while fouling artifacts are continuous till servicing of the

mooring. Fouling also tends to pre-dominantly occur at the shallow (20 m) rather

than deep (90 m) sensor. Hence, detection of peaks in the Chlorophyll a proxy at

both sensors, which is facilitated by seasonal full water column mixing at the

Maria NRS site, provides another piece of evidence that this is an actual bloom.

As the historical data collection methods of monthly sampling have continued

as part of the expanded program, there is opportunities to cross validate in-situ

sensor data with this independently collected point data, for quality control

purposes. For example, at the Maria Island NRS, salinity and temperature at 20 m

measured by the moored CTD sensor compared well with monthly bottle

sampling and CTD cast data (Fig. 9a). The 20 m temperature signal also

compares well to a multi-day composite gridded and interpolated satellite sea

temperature product [46] (Fig. 9b). The Maria Island NRS is approximately

7.5km off shore from Maria Island which is itself separated by 4 km from the

mainland of Tasmania. The satellite temperature product was based on a 4 km

resolution with the closest pixel to the Maria NRS used for comparison; so there is

a small risk of contamination by the pixels proximity to land. However, the

satellite plot showed good agreement with the two in-situ measures and thus

provides information on both seasonal and inter annual variation, including

multi-degree differences in summer temperatures between the 2009 and 2010

years.

Challenges and solutions

As might be expected with any continental-scale monitoring program, numerous

operational challenges were faced during development.

Instruments and sampling

Time series of oceanographic parameters at the historical stations was, in the past,

solely based on monthly small boat sampling excursions. This sampling rate

however, was termed ‘pseudo-monthly’ [38], as many months went un-sampled

due to bad weather. As can be seen from the continued and expanded

biogeochemical sampling (Fig. 4) this issue has continued. With the deployment

of in-situ instruments at the sites, we have ameliorated this sampling frequency

problem somewhat, allowing for monitoring to continue even in inclement

conditions (e.g. Fig. 5). However, this approach posed new challenges. The scales

across which sensors sampled the environment in some cases had to be adjusted

(e.g for high turbidity at the Darwin NRS) to ensure that sampling was adequate

for individual site conditions. Often instruments were either beta or early

production run versions, which required on-going consultations with the
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manufactures to ensure reliable data at relevant measurement scales could be

obtained.

Continuous collection of data throughout the year requires a pool of

instruments to swap into and out of the moorings. This required the

implementation of standard calibration methods for sensors like salinity and

temperature, and development of new calibration procedures for other sensors

like FLNTU to ensure precise and accuracy of the time series. To achieve this each

institute involved in the NRS supports a National Association of Testing

Authorities (NATA) certified calibration laboratory, which is operated by the

CSIRO. To test that calibration co-efficients have been correctly applied,

concatenation of all mooring deployment datasets into continuous time-series is

also required. In particular this allows for the checking for step changes in data

between individual sensors.

Data processing and Quality Control

For many of the parameters collected by the NRS, quality control processes and

data standards did not exist prior to the start of the project. For example, basic

broad scale identification guides for plankton were lacking. Sampling at the NRS

for plankton is now being used to develop national data standards. Unlike samples

taken by other methods, such as the continuous plankton recorder, zooplankton

samples from the NRS are usually undamaged and are being used as reference

material for the online atlas guide for Australian zooplankton [47]. Another guide,

Fig. 8. Time series of chlorophyll measured by the combined flourometer and turbidity sensor deployed at the Maria Island station during a
December 2009 bloom event.

doi:10.1371/journal.pone.0113652.g008
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for Australian tropical phytoplankton, is also in preparation using material

collected from the NRS (Gustaaf Hallegraeff pers. comms).

To maintain data standards for sampling, analysis and preparation and freight

of samples to the centralized processing laboratories, regular meetings and

training is coordinated from the CSIRO’s laboratories in Hobart Tasmania. Each

year talks and workshops are also held in Hobart as part of the annual QC summit

to table issues with instruments and sampling and to develop solutions. The

agendas, presentations and summary reports from the Summits are loaded onto

the IMOS website (imos.org.au/qc2013).

It soon became apparent that numerous QC standards and approaches are

available across the global community and that these needed to be synthesized

into an appropriate framework [48]. The program has invested substantial time

and effort into developing methodological tools for integrated biogeochemical

sampling systems, methods for extracting and processing profiling sensor data and

general data quality control standards for high frequency data (imos.org.au/

facility_manuals). As part of the broader ANMN facility a Matlab Toolbox

(code.google.com/p/imos-toolbox) was developed in conjunction with eMII that

allows for parsing of data from a wide variety of instruments and basic quality

control of data streams.

Fig. 9. Quality control comparison of (A) salinity at 20 m, measured by the moored CTD sensor
(continuous red line) and the monthly bottle sampling program (closed black circles) and (B) water
temperature at 20 m measured by the moored CTD sensor (continuous red line), the monthly sampling
program (closed black circles), and from a gridded and interpolated satellite sea surface temperature
product (blue line) at the Maria Island station.

doi:10.1371/journal.pone.0113652.g009
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Data management

Data from the NRS are uploaded to the eMII facility and made available to the

public through the Australian Ocean Data Network (AODN) (portal imos.aod-

n.org.au/webportal). Sensor data are stored using the network Common Data

Form (netCDF) system, a set of software libraries and machine-independent data

formats that support the creation, access, and sharing of array-oriented scientific

data. The Matlab toolbox is used to parse data into netCDF format with metadata

added from a deployment database. The toolbox is maintained and version

controlled by eMII, which distributed up-dates to the IMOS community as they

become available.

Historic data (1941 – 2008) are stored as.csv files, as are data from the water

sampling program. Though for ease of access, these have been consolidated into

an Oracle database which allows for data harvesting of multiple data types

simultaneously and concatenation of monthly sampling.

While a central data co-ordinator was useful during initial phases of the

networks establishment this proved problematic when large amounts of data

starting moving through the systems. Having all data go through a centralized

point, meant reasons for delays in data availability where obscured from the eMII

facility, which serves the data to the public. It was unknown whether the issue was

the clearing house, the samplers, laboratories or mooring service teams. We solved

this by moving the data upload processes to a distributed approach with each

team now independently transferring data directly to eMII. Delays are therefore

constrained to individual data streams or sites and are easily identifiable. Close

liaison between the ANMN Facility Leader and eMII has been critical to resolve

the numerous data workflow issues across the NRS.

Design, governance and resourcing

Given the broad nature of the community of researchers that were involved in the

establishment of the network and who are served by the data, some tension in the

design and approaches for data integration were inevitable. An NRS Scientific

Steering Committee comprised of researchers involved in the program was tasked

with the development of a rationale, design and implementation plan [49]

specifically aimed at detailing and resolving any design issues. In addition, as part

of the mooring network, yearly business plans and quarterly milestone reports for

the NRS have also been implemented. A variety of strategies have been developed

to maintain ongoing and close relationships between staff from the multiple

agencies involved in the NRS. These include regular meetings of network

developers, users and managers via a yearly business planning meeting as well as

the separate annual QC summit. These formal gathers draws together both leaders

and practitioners to identify problems and develop solutions. The facility leader

also provides a central point of leadership, and is based in close proximity to the

eMII data centre and the IMOS office.

As part of the NRS rationale and implementation plan [49] it was estimated
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depreciation. Ongoing consideration of design and resourcing of the NRS

network indicated that quarterly BGC sampling at the most remote NRS sites,

Ningaloo and Esperance, did not provide sufficient scientific value, relative to the

cost involved. Monthly BGC sampling was never affordable at these two remote

sites. The lower rate of sampling (i.e. quarterly) was instigated during

establishment of the NRS network, for cross validation of sensor data, sensor

characterization to local conditions and development of data standards such as

national guides for plankton identification. However quarterly BGC sampling

ceased at these two sites in 2013 (Fig. 4), and the mooring at the most remote site

(Esperance) was decommissioned in December 2013 (Fig. 3).

Discussion

The combination of moored instruments and repeated biogeochemical sampling

at known locations are the only viable strategy available, at the moment, for

developing spatially-explicit time series in relatively shallow continental shelf

waters. It is only through development of long-term datasets that trends such as

the coastal response to global climate change or other anthropogenic effects can be

separated from natural variability [50]. By combining in-situ sensors with more

traditional sampling methods, the NRS network is beginning to address some of

the gaps in biological oceanographic observations identified by the global research

community, such as continuous measurements of optical proxies for abundance

of phytoplankton as well as observations of community structures for both

phytoplankton and zooplankton [10]. The reference nature of the stations also

means they are long term sentinels that provide the context to climate driven

changes to biological communities, such as poleward shifts in critical sea

temperatures for larval mortality of invasive sea urchins [51]. The geographic

spread of the stations has also allowed them to play a broader role in helping to

track anomalous warming events from the North West to the South East of the

Australian continent [19, 38, 39].

Besides an increase in utility, by continuous sampling from the moored sensors,

the new NRS in-situ sensor array allow shorter term phenomenon to be

characterized. This include tides, eddies, stratification of the water column,

blooms of phytoplankton and associated changes to O2 and CO2 from

photosynthesis and respiration. Also, daily cycles are now able to be observed as

observations continue into the night, as are unusual or stochastic events. A

dramatic example of this was the timeline of variability in salinity and turbidity

observed in January 2011 at the North Stradbroke Island NRS (Fig. 5). This

corresponded directly with the 13th January floods of the adjacent Brisbane River

which resulted in extensive flooding of the city of Brisbane [41]. While these

floods occurred within the context of a strong La Niña event, which resulted in a

wide scale precipitation abnormality across Australia [42], this particular pulse of
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water is considered a ‘‘dam release flood’’ caused by a controlled release of water

from a major structure in the catchment, the Wivenhoe Dam [41].

The increased spatial and temporal frame and the greater number of parameters

sampled by the NRS that now includes biological sampling have expanded the

scope of the program. It is now similar to a number of other long term

monitoring programs, such as the Continuous Plankton Recorder survey, which

has monitored plankton on a monthly basis in the North Atlantic since 1946, and

has shown strong biogeographical shifts in all copepod assemblages, which are

related to both the increasing trend in Northern Hemisphere temperature and the

North Atlantic Oscillation [52]. Another similar multi-disciplinary program has

focused on the Western English Channel from 1888 to the present [53]. This

oceanographic and ecological research program is similar to the NRS in parameter

scope but has involved more intense sampled over smaller spatial scales (i.e.

English Channel vs. Australian continent). Like the historic NRS sites the

observations span significant periods of warming (1921–1961; 1985– present) and

cooling (1962–1980), however data collection has included more trophic levels

such as the inter-tidal zone and demersal fish. Changes observed over this period

in zooplankton, pelagic fish, and larval fish and the collapse of an important

herring fishery all appear to have climate as a forcing factor. These long-term data

also yield important insights of anthropogenic disturbances such as fisheries

exploitation and pollution and provided advances in diverse scientific disciplines

either generated from research or that undertaken alongside the long-term data

series.

Both of these studies demonstrated the potential long term benefits of our

continental scale NRS network for tracking the spatial and temporal variation in

physical events and the flow-on consequences to biological systems. Though many

of these British studies were terminated during organizational restructures in

1987–1988, there has since been a resurgence and expansion of sampling due to an

increase in interest in long-term environmental change. Like these international

sampling programs, we share common challenges in maintaining continuous data

streams across extended sampling, with the seemingly inevitable gaps appearing in

our databases (Fig. 4).

At a local or regional scale, coastal observing systems such as the Chesapeake

Bay Interpretive Buoy System (CBIBS) [54], provides a sister program to the NRS,

utilizing the same sensor technology. Like the CBIBS our in-situ sensor approach

is recent and we can only provide a short time-series based on our preliminary

data. The intensity of sampling means, however, that daily, monthly and annual

variation is now captured with high levels of precision and for some stations is

available in near real time. By combining water sampling with sensor data we also

have the ability to cross validate to check the quality of our data and to compare

to remote sensing (Fig. 9).

Considering the significant resources required for facilitating sustained and

integrated oceanography observations over the long term, additional modeling

work has been undertaken to test if the NRS network consists of the minimum

number of sites necessary to achieve the appropriate resolution for a national,
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multi-decadal time series. Modeling of the physical components collected by the

NRS array identified that in combination, the nine NRSs effectively monitor the

inter-annual variability of the continental shelf circulation in about 80% of the

region around Australia [55]. This, along with other studies that have used NRS

data in part to investigate oceanographic phenomena, such as the 2011 marine

heat wave in Western Australia [39], show at least for some parameters, the NRS

exceeds design expectations, monitoring and detecting large scale patterns, events

and anomalies rather than just local events. Though, our analysis of

phytoplankton and zooplankton indicate that the network has no redundancy for

these parameters, with all stations either significantly or highly significantly

different from each other for community composition.

Separate to these encouraging results, the stations primary role remains to

provide sustained and high quality diverse data sets against which other regional

studies can be referenced. Further analysis of observations and modeling studies,

however, needs to be undertaken - particularly for chemical and other biological

attributes - to confirm the adequacy of the network towards both achieving its

stated goals and its ability to answer broader science questions. The NRS network,

however, does not exist in isolation and draws real strength from being an integral

part of the wider IMOS observing system and being complimentary to other more

spatially explicit local studies.

Supporting Information

S1 File. Instructions for accessing raw data.
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S2 File. Supporting tables. Table S1. Summary of data collected by the moored

sensors of the National Reference Stations (NRS). Table S2. Summary of data

collected by the surface meteorology stations deployed at the Maria Island,

Darwin, Yongala and North Stradbroke Island National Reference Stations. Table

S3. Summary of data collected by additional acidification and bio-optical sensors

of the National Reference Stations. Table S4. Summary of data collected by the

biogeochemical sampling program of the National Reference Stations.
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