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Sticky dead microbes: Rapid abiotic retention of microbial necromass in soil 
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A B S T R A C T   

Microbial necromass dominates soil organic matter. Recent research on necromass and soil carbon storage has 
focused on necromass production and stabilization mechanisms but not on the mechanisms of necromass 
retention. We present evidence from soil incubations with stable-isotope labeled necromass that abiotic 
adsorption may be more important than biotic immobilization for short-term necromass retention. We demon
strate that necromass adsorbs not only to mineral surfaces, but may also interact with other necromass. 
Furthermore, necromass cell chemistry alters necromass-necromass interaction, with more bacterial tracer 
retained when there is yeast necromass present. These findings suggest that the adsorption and abiotic inter
action of microbial necromass and its functional properties, beyond chemical stability, deserve further investi
gation in the context of soil carbon sequestration.   

1. Main text 

Soil organic matter (SOM) is a key indicator for healthy soil and 
sustainable agriculture (Paustian et al., 2016). Research into SOM sta
bility has traditionally focused on the quality and quantity of plant in
puts to soil (Lehmann and Kleber, 2015), however, recent research 
reveals that SOM is dominated by dead microbial products and residues 
(hereafter, ‘necromass’ (Kallenbach et al., 2015; Liang et al., 2019, 
2011)). The persistence of necromass in soil may be promoted via nec
romass uptake and immobilization into microbial biomass, but retention 
ultimately relies on microaggregate formation via adsorption to soil 
mineral surfaces. In actuality, both biotic (microbial immobilization) 
and abiotic retention (adsorption and molecular interaction) may 
co-occur but the relative importance of these short-term processes has 
not been assessed (Fig. 1). 

Necromass has been visualized on mineral surfaces (Kleber et al., 
2011), supporting the paradigm that accumulation of stable SOM is 
dominated by organic-mineral adsorption, and is limited by mineral 
surface area (McNally et al., 2017). However, necromass is not detected 
as a smooth coverage on mineral surfaces, but clumpy (Dignac et al., 
2017; Vogel et al., 2014), suggesting that SOM stabilization may also 
involve organic-organic interactions, or necromass adhering to other 

necromass and organic matter for example by ionic interactions, 
hydrogen bridges, van der Waals forces, and (partial) entrapment 
(Schweizer et al., 2018; Vogel et al., 2014) (Fig. 1). Understanding the 
relative importance of these two abiotic adsorption processes will be 
critical for predicting upper limits of SOM persistence. 

The chemistry of microbial necromass has been assumed unimpor
tant as a regulator of SOM storage, because its chemical composition is 
more similar than diverse plant inputs (Liang et al., 2017). Previous 
research on necromass chemistry and persistence has focused on its 
stability and emphasized chitin retention (Fernandez et al., 2016; 
Schreiner et al., 2014). However, cell chemistry can alter rates of 
cell-cell adhesion (Dufrêne, 2015) and organic-mineral adsorption rates 
(Meissner et al., 2015), particularly for N-rich necromass (Kopittke 
et al., 2017). Gram-positive bacterial envelopes have a thick cross-linked 
peptidoglycan layer outside the lipid membrane, whereas a 
Gram-negative cell envelope has an inner and outer lipid membrane 
enclosing a thinner peptidoglycan layer in the periplasm. Fungal cell 
walls are highly heterogeneous; yeast cell walls, for example, are 
composed of layered mannan, β-glucans and chitin outside a lipid 
membrane. Therefore, cell-membrane functional groups with a high 
N-content, such as peptidoglycan-rich Gram-positive bacteria, may be 
favored for organic-organic interaction, relative to Gram-negative 
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bacteria or fungi. Given the potential for broad shifts in microbial 
community composition as a result of global change, land use change or 
even seasonality (Buckeridge et al., 2013; Ramirez et al., 2012), nec
romass cell chemistry may influence SOM stabilization at ecosystem 
scales. 

We investigated the importance of biotic and abiotic necromass 
retention in grassland soil and the influence of necromass chemistry on 
this retention in short-term laboratory incubations. We hypothesized: 
H1. both biotic and abiotic necromass retention occur, and that biotic 
retention is more important; H2. more necromass is retained in soil with 
higher background concentrations of necromass (implying organic- 
organic adhesion); and H3. abiotic retention would be higher for 
Gram-positive bacterial membranes (implying cell chemistry is impor
tant). We tested these hypotheses with short-term (3-d) laboratory in
cubations of clay-loam agricultural pasture soil; the duration was chosen 
to limit biotic processing of rapid abiotic interactions. Detailed methods 
are available in supplementary methods. Soil was assigned to live and 
sterile treatments with enhanced background necromass (~5.5 mg C 
and ~1.5 mg N g− 1 soil fwt) from three soil microbial functional groups 
(Gram-negative (Escherichia coli) and Gram-positive bacteria (Micro
coccus luteus) and yeast (Saccharomyces cerevisiae)), and incubated with a 
no-addition control. We also added a small amount of isotopic tracer 
necromass consisting of 13C15N labeled (10 atm%) E.coli necromass 
(0.050 mg C and 0.016 mg N g− 1 soil fwt) to all treatments; the dual 
label was used to aid assessment of biotic vs. abiotic retention. Head
space CO2 and N2O samples were collected throughout the 3-day incu
bation. At the end of the incubation, we used the chloroform-direct- 
extraction method (Fierer et al., 2003) to estimate microbial biomass 
immobilization of the tracer (measured in all, detected only in live soils), 
and the balance between immobilization and loss as CO2 was used to 
calculate carbon use efficiency of the live microbes. The C, N, δ13C and 

δ15N of the post-extraction soils (i.e. removing any free or loosely-bound 
C or N) was used to assess total retention (assumed biotic + abiotic in the 
live soils and abiotic only in the sterile soils), and mixed models were 
used to assess the statistical significance (α = 0.05) of our results. 

Retention of C from the tracer necromass was lower in live vs. sterile 
soils (P = 0.006), rejecting H1 and indicating that short-term retention 
of necromass C was dominated (>70%) by abiotic processes (Fig. 2a). 
Our results, however, cannot confirm that biotic processes are unim
portant for persistent SOM-C accrual. Our controlled environment in
cubation may have overestimated the importance of abiotic processes: in 
a more dynamic, natural system with active plant-microbial in
teractions, live microbial immobilization of necromass-C and plant and 
microbial uptake/immobilization of necromass-N is potentially critical 
to retention. Furthermore, our lab-grown, single-culture additions only 
approximate the retention of chemically and taxonomically-complex 
native necromass. Nonetheless, our results illustrate an important 
short-term effect of abiotic C retention in soil. 

The lower retention of 13C in live vs. sterile soils was not predicted 
and we suspected this was either a side-effect of sterilization, or CO2 loss 
from microbial activity. We discounted the sterilization effect, because 
we did not see a parallel lower retention of necromass-15N in live 
compared to dead soils (Fig. 2b). This, combined with no change in C:N 
ratio of tracer retention in sterile soils and a drop in C:N ratio of 
retention in live soils (P < 0.001, data not shown) equates with live 
microbial processing of C, associated with immobilization/loss of 
4–10% of the total C added, as extractable biomass or CO2 (Fig. 3a and 
b). Losses of N2O from the labeled necromass were comparable to CO2 
(<2%, Fig. 3c) but we presume that N uptake to microbial biomass (not 
measured) would be lower than C, reflecting the lower N demand for 
growth in these N-rich pasture soils. C-starvation during incubation may 
have resulted in use of necromass-C for maintenance, reflected in a low 
substrate use efficiency (CUE) (Fig. 3d). 

Higher C and N was retained in live and sterile soils with enhanced 
background necromass compared to controls (~10–40% higher, Fig. 2a 
and b), supporting the hypothesis (H2) that necromass may be adhering 
to necromass. Organic-organic adhesion has been suggested previously 
based on isotopic and visual evidence in laboratory and long-term field 
studies (Schweizer et al., 2018). We did not observe higher C and N 
retention in soils with enhanced peptidoglycan (M. luteus) necromass, 
rejecting H3, that abiotic retention would be higher for Gram-positive 
bacterial membranes. However, we provide novel evidence that the 
retention of C and N from the necromass tracer was higher in live and 
dead soils augmented with S. cerevisiae necromass (C: P < 0.001; N: P =
0.03). This higher microbial C and N retention in S. cerevisiae-amended 
soils does not appear to be a biotic process, because the CUE of the tracer 
necromass in live soils did not differ between background necromass 
types (Fig. 3d) (despite all enhanced background necromass treatments 
being lower than the no-addition control, which was presumably a 
response to higher substrate concentration relative to the control (Geyer 
et al., 2019)). Instead, this enhanced retention of the tracer necromass in 
the presence of S. cerevisiae necromass may be indicative of faster or 
stronger interaction between the complex morphogenesis of the 
Gram-negative outer cell membrane and yeast cell walls, such as occur 
in live microbial communities (Dufrêne, 2015). Further 
compound-specific research is required to understand if the properties of 
yeast necromass extend to other fungal necromass generally and to 
specific bacterial membrane and fungal cell wall compounds. Regard
less, this result indicates that cell chemistry contributes to an adhesion 
mechanism that promotes necromass stability in soil. 

We conclude that abiotic processes are important for short-term 
retention of necromass-C and N in soils and require greater emphasis 
in studies investigating SOM stability. Our results indicate that organic- 
organic interactions promote retention of C and N and contribute novel 
evidence that this mechanism is regulated by cell chemistry. If this short- 
term abiotic retention occurs in situ and persists, then microbial com
munity structure and possibly the fungal:bacterial ratio, may influence C 

Fig. 1. Schematic diagram of microbial necromass fate in mineral soils. In this 
diagram, necromass is presented as a substrate for microbes, similar to plant 
inputs (litter or exudates). Microbes can acquire unassociated or mineral- 
associated necromass for substrate. Immobilization includes recycling of nec
romass by microbes into new biomass, and eventually necromass, with poten
tial for some loss as CO2. Stabilization is assumed to be through adsorption to 
mineral surfaces (‘organic-mineral’), especially on fine silts and clays. In this 
study we hypothesize that this process is not limited to mineral surface avail
ability (‘organic-mineral’), but that necromass also adheres to necromass 
(‘organic-organic’), promoting retention, and that this organic-organic process 
may be influenced by necromass cell chemistry. 
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and N stabilization through variations in community cell chemistry. 
Field additions of isotopically-labeled necromass from different taxa, in 
different soils), would be valuable for investigating the long-term 
importance of these mechanisms. These findings suggest that abiotic 
adsorption and interaction of microbial necromass and its functional 
properties beyond chemical stability (i.e. cell molecular property, ag
gregations, and morphology), deserve further investigation in the 
context of soil carbon sequestration. 
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soil formation after glacial retreat shaped by spatial patterns of organic matter 
accrual in microaggregates. Global Change Biology 24, 1637–1650. https://doi.org/ 
10.1111/gcb.14014. 
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