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The objective of the ecosystem approach to fisheries management is to sustain healthy marine ecosystems and the fisheries they support.
One of the earliest implementations was in the Southern Ocean, where decision rules and stock reference points were developed for manag-
ing the Antarctic krill fishery, together with an ecosystem-monitoring programme intended to aid management decisions. This latter compo-
nent has not been incorporated directly into management, so here, we consider variability in the krill fishery at South Georgia, relating it to
physical and biological monitoring indices, finding sea surface temperature to be a key correlate with both annual catch and long-term bio-
logical indices. Some indices from krill predators showed significant positive relationships with krill harvesting in the preceding winter, pre-
sumably indicative of the importance of winter foraging conditions. We explore how ecological structure affects results, examining two
monitoring sites 100 km apart. Results suggest different biological conditions at the two sites, probably reflecting different scales of ecosystem
operation, emphasizing that an appreciation of scale will enhance krill fishery management. Finally, in reviewing different drivers of ecological
change, we identify important additional monitoring that would help better reflect ecosystem status, improve the utility of CEMP, providing
information necessary for the ecosystem approach at South Georgia.

Keywords: Antarctic krill, CCAMLR, ecosystem approach to fisheries management, ecosystem change, ecosystem monitoring, ecosystem
variability, environment drivers, South Georgia

Introduction
To move beyond single-species fisheries management, the ecosys-

tem approach [Early on, Garcia et al. (2003) recognized that the

lexicon of terms associated with the ecosystem approach was not

universally defined but was progressively evolving (see also

Trochta et al., 2018). Now, as the terminology matures, we follow

definitions used by Patrick and Link (2015), who define the eco-

system approach (typically for a single species) as having a stock

focus in order to enhance understanding about fishery dynamics

ensuring stock-focused management decisions are better

informed through the inclusion of ecosystem factors (see also

Link and Browman, 2014).] incorporates ecosystem considera-

tions to ensure sustainable utilization of marine resources (e.g.

Garcia et al., 2003; Pikitch et al., 2004). The approach is now

widely used across a growing number of states and a wide range

of fisheries, recognizing local context, definitions, and meaning

(e.g. Pitcher et al., 2009). Considerations of the ecosystem ap-

proach are of particular interest for all fisheries, but increasingly

in relation to fisheries for forage species where competition with

dependent predators is a major concern (e.g. Cury et al., 2011;
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Pikitch et al., 2014, 2018; Hilborn et al., 2017; Sydeman et al.,

2017). One of the earliest attempts at developing the approach

was in the Southern Ocean in the early 1980s, when at that time it

was an entirely new concept for any management convention

(Agnew, 1997). The approach became enshrined in Southern

Ocean management, such that the Commission for the

Conservation of Antarctic Marine Living Resources (CCAMLR)

agreed to limit harvesting in order to maintain ecological rela-

tionships and prevent changes to the marine ecosystem that

might result from fishing, and which might take longer than two

or three decades to reverse.

CCAMLR is the major governance structure for managing

Southern Ocean fisheries, providing opportunities for stakeholder

engagement amongst the 26 Members, and with Observers.

CCAMLR’s Scientific Committee and its subsidiary Working

Groups provide opportunities for management debate, including

about relevant ecosystem processes. CCAMLR utilizes the precau-

tionary approach using the best available data. Fisheries are each

the subject of a detailed fishery report. CCAMLR’s Commission

agrees Conservation Measures that impose legally binding quotas,

management measures, and other fishery-related requirements

based on the Scientific Committee’s advice on stock attributes, de-

cision rules and reference points, and ecosystem considerations.

The implementation of the ecosystem approach, in particular

for the harvesting of Antarctic krill (Euphausia superba), a key

forage species in the Southern Ocean, required CCAMLR to de-

velop novel techniques and new ideas. Key was the development

of a yield model that considers the status of the krill stock includ-

ing growth, recruitment, and mortality, etc., and which for a

number of decades, has been successfully combined with precau-

tionary decision rules and stock reference points (Constable,

2001, 2011; Constable et al., 2000). CCAMLR also implemented

an Ecosystem Monitoring Programme (CEMP) with the express

aim of detecting ecosystem change and determining whether ob-

served changes are due to natural environmental events, or fish-

ing (Agnew, 1997).

CEMP focusses on high-trophic level species, primarily sea-

birds and marine mammals, as these are believed to integrate eco-

system variability (e.g. Boyd and Murray, 2001), with predator

performance reflecting ecosystem status throughout the year (e.g.

Trathan et al., 2006; Boersma, 2008; Cury et al., 2011), contrast-

ing with shipboard measurements that generally only provide a

temporal snapshot of the ecosystem. Based on such assumptions,

Bengston (1984) and Green-Hammond et al. (1984) developed

the objectives of CEMP but recognized that monitoring of all spe-

cies was not practical (Bengston, 1984). Consequently, CCAMLR

identified a suite of indicator species that now form the core of

CEMP. CEMP does not consider pelagic predators such as finfish

or whales, and all monitoring metrics are land-based. As such,

the CEMP standard methods (CCAMLR, 2014) mostly relate to

performance parameters for krill-eating penguins, albatrosses,

and seals.

CCAMLR has generally considered CEMP to be an extremely

powerful tool for understanding and managing the Antarctic ma-

rine ecosystem (Agnew, 1997). This is because harvesting could

lead to competition for krill, a key trophic link, or to disturbance

of krill swarms, thereby leading to impacts on krill-dependent

predators. However, identifying positive or negative impacts on

predators beyond a reasonable doubt requires statistical power,

and this may only become evident over long timescales (e.g.

Henson et al., 2016). In 2003, CCAMLR recognized that at

current harvesting levels, with the existing design of CEMP moni-

toring, and with the data duration available, it was unlikely that

managers could distinguish between ecosystem changes resulting

from harvesting, and changes due to environmental variability,

whether physical or biological (CCAMLR, 2003). Moreover,

CCAMLR also recognized that with the existing design of moni-

toring, it might never be possible to distinguish between these dif-

ferent and potentially confounding causal factors (CCAMLR,

2003).

CEMP has provided data and understanding in support of var-

ious management measures; however, CCAMLR has never incor-

porated CEMP directly into management processes. Importantly,

CCAMLR has not used CEMP to set objectives for predator pop-

ulations (Constable, 2011). The development of CEMP has

proved challenging. Perhaps, partly because of low fishery de-

mand for krill products; partly because of the large spatial scales

of the region fished (the krill fishery operates across the Scotia

Sea, from the west Antarctic Peninsula to South Georgia; Figure

1); and, partly because of the complexity of ecosystem interac-

tions, including foodweb connections with numerous predators

dependent upon krill. Indeed, the data currently available from

monitoring krill and its predators and for determining the abun-

dance of predator populations remain insufficient to reduce large

uncertainties, and hence identify potential fishery impacts on the

ecosystem; moreover, given existing research activities, these

uncertainties are unlikely to be resolved quickly (Constable,

2011).

The role of indicators (of both the stock and the ecosystem) is

central to a decision framework in the ecosystem approach (Link,

2005), as they permit assessment of the status of a system and be-

cause they can form the basis for developing or testing both em-

pirical and theoretical reference and/or limit values (e.g.

Sainsbury and Sumaila, 2001). The challenge is to establish eco-

system control rules that prescribe particular management actions

if the indicator-based thresholds are exceeded (Sainsbury and

Sumaila, 2001). CCAMLR has already developed stock reference

and limit values, and a set of CEMP indices, but has no clarity

about whether CEMP indices provide robust indicators for man-

agement, or how they might react as krill catches approach the

CCAMLR reference points.

Recently, CCAMLR has sought to reduce perceived ecosystem

risks across the southwest Atlantic (Figure 1), by spatially allocat-

ing catch in a manner that not only minimizes risks to predators,

but also to the krill stock itself and to the fishery (CCAMLR,

2019a). The revised CCAMLR approach now under development

focuses on three priority elements:

(i) Regular updates of biomass estimates for krill, initially at

the Subarea scale, but potentially at multiple scales;

(ii) A stock assessment to estimate precautionary krill harvest

rates; and

(iii) A risk assessment framework to inform the spatial allocation

of krill catch.

Part of the impetus for CCAMLR to develop the new manage-

ment framework was the recognition that krill catches have be-

come increasingly concentrated (e.g. CCAMLR, 2016), with

vessels now repeatedly visiting a small number of fishing hot-

spots. Management at these smaller scales has important implica-

tions for data collection to inform management decisions.

2 P.N. Trathan et al.
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Assessments of krill fisheries management have considered

harvesting to be precautionary (Hill et al., 2016); however, as

catches increase and continue to concentrate in space and time,

indicators of ecosystem status will become increasingly important

for ensuring CCAMLR is meeting its obligations to maintain eco-

logical interactions. Here, we consider the management implica-

tions at one of the important hotspots for the krill fishery, South

Georgia, where catches are now increasing and becoming increas-

ingly aggregated.

Management at South Georgia incorporates all measures

agreed internationally through CCAMLR, as well as additional

domestic measures designed to reduce further risks to the krill-

based ecosystem. Local regulations include a seasonal prohibition

on krill fishing during the summer months when many krill pred-

ators are provisioning offspring, coupled with coastal no-take

fishery exclusion zones that protect near shore communities

throughout the year (Trathan et al., 2014).

Despite such precautions, risks may remain, particularly given

regional climate change, together with observed variability in lo-

cal oceanographic conditions (e.g. Trathan and Murphy, 2003;

Whitehouse et al., 2008). Further, biological change is also taking

place across the Scotia Sea with reported changes in krill abun-

dance and distribution (Atkinson et al., 2019, but see also Cox

et al., 2019). Similarly, the major mammalian and avian consum-

ers of krill at South Georgia are known to be changing (Boyd,

2002; Trathan et al., 2012; Zerbini et al., 2019), as are populations

of krill-eating finfish, as they recover from historical over-exploi-

tation (e.g. Kock, 1992; Kock and Jones, 2005; Belchier, 2013;

Hollyman et al., In Review). These changes in the physical envi-

ronment and in the populations of krill and its predators (whales,

seals, penguins, and finfish) now result in an increased urgency

for improved understanding about ecosystem status and relation-

ships between CEMP monitoring data and fishery harvest. Whilst

catches remained low in relation to both krill biomass

(CCAMLR, 2010) and predator demands (Boyd, 2002),

CCAMLR had time to develop its management approach; how-

ever, increasing catches now require that all available monitoring

indices are subject to detailed study.

Therefore, our primary goal for this article was to examine the

utility of CEMP at South Georgia, exploring available monitoring

data in relation to the annual catch of krill. In addition, we

sought to provide further insights into whether CEMP data also

show relationships with aspects of the changing environment.

A further goal for this article was to identify any additional data

necessary to help implement the three priority elements of

CCAMLR’s new strategy at South Georgia, in particular, to

Figure 1. The Scotia Sea showing the location and direction of flow for the major fronts in the Antarctic Circumpolar Current (ACC)—
Brown: Sub-Antarctic Front (SAF); Yellow: Antarctic Polar Front (APF); Red: Southern ACC Front (SACCF); Blue: Southern ACC
Boundary (SACCB). The locations of Bird Island and Maiviken are indicated. The krill fishery Small Scale Management Units are shown
(Hewitt et al., 2004), with South Georgia West (SGW), South Georgia East (SGE), and South Georgia Pelagic (SGPA) identified.
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identify important data that would enhance the utility of CEMP

to better reflect ecosystem status. Finally, some key management

data are not currently available for South Georgia but are vital for

continued precautionary management; developing a broad scope

for a fisheries risk assessment (e.g. Sainsbury and Sumaila, 2001)

should help identify key missing data that will enhance sustain-

able management.

Methods
A comprehensive assessment of the krill fishery at South Georgia,

and at other fishery hotspots, requires a considerable body of

work. Background information that underpins our initial analysis

in respect of physical variability, biological variability, and krill

fishery catch variability are included in Supplementary Material

SA–SC, respectively.

Statistical analyses
We used R version 3.2.2 (2015-08-14; The R Foundation for

Statistical Computing Platform: i386-w64-mingw32/i386 [32-

bit]) and RStudio (version 1.0.136; RStudio, Inc.) to develop sta-

tistical analyses. We used ArcGIS (ESRI version 10.4.1) for all

spatial analyses.

Variability in the krill fishery
CCAMLR collates reports of krill catch and effort from the com-

mercial fishery, with data available upon request from the

CCAMLR Secretariat. The spatial resolution of early records is less

precise than of later data; early records combine data spatially (e.g.

0.5� lat � 1.0� long) and temporally (e.g. 5-day or 10-day), whilst

later data are at the resolution of the individual haul. The data we

used included haul-by-haul data until the end of the 2017/2018

fishing season (CCAMLR C1 Catch and Effort Data 2019).

Throughout, we refer to each CCAMLR fishing season, December

to November, by the year of the end date, thus 2018¼ 2017/2018.

We used ArcGIS to sum all hauls for catch (tonnes) and effort

(hours fished). We considered all hauls from all CCAMLR

Members, whether conventional mid-water trawls, or those using

the continuous fishing system (Nicol et al., 2012). To document

krill fishing activity at South Georgia, we considered the period

from the 1980 fishing season, with a greater focus on the years of

overlap with krill-dependant predator monitoring (especially

since 2009).

In addition, we undertook analyses of annual catch in relation

to various physical and biological monitoring indices. For these

analyses, we focused upon the most recent years (from 2006 on-

wards; see Supplementary Material SC) as the fishery had by that

time settled into a regular pattern of operation. In exploring

whether physical indices are related to catch variability (c.f.

Fedulov et al., 1996), we considered the Southern Oscillation

Index (SOI), the El Ni~no-Southern Oscillation (ENSO), the

Southern Annular Mode (SAM), and local sea surface tempera-

ture (SST); these analyses, methods, and results are described in

Supplementary Material SC.

CEMP data
Monitoring of various predator indices (e.g. penguin arrival

weight, fledging weight, and breeding success; see Supplementary

Material SB) takes place at Bird Island, South Georgia (Figure 1)

where data on four krill-eating CEMP species are collected;

black-browed albatross (Thalassarche melanophrys), gentoo

penguins (Pygoscelis papua), macaroni penguins (Eudyptes chryso-

lophus), and Antarctic fur seals (Arctocephalus gazella). Other

predator species are also monitored at Bird Island but are not

part of CEMP. Here, we focus on the three diving CEMP species

as these are most heavily constrained during the summer breed-

ing season; these species are limited in their foraging range, unlike

black-browed albatross that can forage far beyond the South

Georgia archipelago. Moreover, black-browed albatross popula-

tion declines are ongoing and largely influenced by mortality in

long-line fisheries (Pardo et al., 2017).

Gentoo penguins and Antarctic fur seals are also monitored at

a second site at South Georgia, Maiviken (Figure 1), but data are

of shorter duration. All CEMP data are short by meteorological

standards, where climatological standards indicate the need for

averages of climatological data computed for consecutive periods

of 30 years (www.wmo.int/datastat/wmodata_en.html; accessed

10 May 2021). Throughout, we refer to each penguin or seal

breeding season by the year that offspring become independent,

thus 2018¼ 2017/2018.

There are nine other CEMP sites across the Scotia Sea, includ-

ing at the Antarctic Peninsula and the South Orkney Islands. The

maximum number of monitored CEMP species at any of these

sites is three, either three penguin species, or two penguin species

plus Antarctic fur seals. CEMP monitoring at South Georgia is

therefore representative of all other sites near to krill fishing areas.

To explore long-term variability in the predator monitoring in-

dices from Bird Island, we carried out multivariate analyses of the

CEMP data, relating the output to known drivers of ecosystem

variability. We considered SOI, ENSO, SAM, as well as local SST

(e.g. Trathan and Murphy, 2003; Trathan et al., 2006; Whitehouse

et al., 2008; Fielding et al., 2014). In addition, we also related the

output from the multivariate analyses to local extraction by the

commercial krill fishery (Trathan et al., 1998). These analyses and

results are reported in Supplementary Material SB.

We also evaluated differences in predator monitoring indices be-

tween Bird Island and Maiviken, using regression to detect whether

there were consistent trends between the two sites. These analyses

and results are also described in Supplementary Material SB.

Monitoring of gentoo penguins began at Bird Island in the

early 1980s. Breeding phenology is determined each year across

two colonies, based on the date that the first egg appears and the

date by when 75% of monitored nests have eggs. In our analyses,

we related these dates to the number of days before or after 1

October. Based on this chronology, the timing of all other moni-

toring indices are determined. Indices include the number of

nests, chicks hatched, breeding success (chicks fledged per nest),

and chick fledging weight. Monitoring of gentoo penguins at

Maiviken, �100 km to the southeast of Bird Island, began in the

2009 breeding season, with more complete monitoring from the

following year. Methods are the same as at Bird Island, but using

just one chronology colony.

As part of our comparison between sites, we also considered

Antarctic fur seal pup mass gain. At the Bird Island special seal

study beach, fur seal breeding phenology is determined each year

(Doidge et al., 1984; Forcada et al., 2005; Forcada and Hoffman,

2014). Based on this, a random selection of pup weights are

recorded from nearby Freshwater Bay; this takes place annually in

January, February, and March, at standard times beginning one

month after peak pupping. On each occasion, more than 100

pups are weighed (male pups tend to be heavier, so samples in-

clude approximately equal sex ratios), with approximately half

4 P.N. Trathan et al.
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taken from the beach and half from the surrounding tussac grass.

At Maiviken, peak pupping is also determined, with pups also

weighed in January, February, and March. To explore variability

in pup mass between sites, we created box plots for each site for

each year and evaluated differences between Bird Island and

Maiviken with an analysis of variance. To explore possible envi-

ronmental relationships with different parts of the seasonal cycle

leading up to the breeding season, we compared pup mass with

indices of SST from the closest area of the ocean (see

Supplementary Material SA for SST data sources).

Results
Variability in the krill fishery
The krill fishery at South Georgia is currently a winter-only fish-

ery, though in earlier years it also operated during the summer.

The switch to winter occurred in 1990; initially through vessel

choice, but later under domestic legislation that prohibited krill

fishing during the predator summer breeding season. Although

never achieved, the current CCAMLR allowable catch limit for

the Subarea (South Georgia lies with FAO Subarea 48.3) is

279000 t; this was first set in 2009. The level of harvest varies in-

ter-annually (Figures 2 and 3), with the highest-ever catch in the

1987 fishing season, when 312134 t was taken.

Early exploitation occurred across a broad region to the north of

South Georgia, including oceanic offshore areas. However, harvest-

ing rapidly aggregated in preferred areas, focussing along the north-

ern shelf (Figure 2). The spatial distribution of catches varies

between years and over longer time scales, with lower catches to the

north of Bird Island in recent years (Figure 2). Of the total catch at

South Georgia between 2002 and 2018, more than 76% (559964 t)

was taken to the northeast of Maiviken, with only 24% (175725 t)

taken to the west (Figure 2). Currently, the preferred area of opera-

tion is close to the northern shelf edge, over a series of submarine

banks and gullies (see Trathan et al., 1998) with a preference for the

edge of the banks and gullies in water depths of 180 to 280 m

(Figure 2; Supplementary Figure S14). More than 63% of catches

have come from within this depth stratum since the fishery began.

From 1991, when the catch was 87898 t, until 2020 when the

catch was 115268 t, catches have remained below 75500 t. Since

1991, the lowest catches were in 1993 (13776 t), 1999 (0 t), 2000

(19346 t), 2006 (14901 t), 2009 (1 t), 2010 (8834 t) and 2017

(18558 t). Annual catches (t) relate to effort (h) in a linear man-

ner, for both traditional mid-water trawls and for the continuous

fishing method (Supplementary Figure S15). In years when the

annual catch was high, catches from both traditional mid-water

trawls and from the continuous fishing method increased

(Supplementary Figure S16).

Figure 2. Distribution of winter krill catches at South Georgia; shown in red is the location of the Southern ACC Front (Figure 1). (a)
2001–2003; (b) 2004–2006; (c) 2007–2009; (d) 2010–2012; (e) 2013–2015; (f) 2016–2018; (g) Proportion of catches in pelagic (SGPA), western
(SGW), and eastern (SGE) waters (see Figure 1 and Hewitt et al., 2004).
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Analyses for the full duration of the catch history showed no

relationships between annual catch and SST; this was the case for

temperatures for any month in the preceding year from either the

west or east of South Georgia (maximum Pearson correlation co-

efficient was �0.2). However, some of the years with low catches

occurred just before or just after warmer ocean conditions; for

example, mid-late 1993, early 2000, mid-2006, early 2009, late

2010, and late 2017. In these years, catch (<20000 t) was low. In

contrast, analyses of annual catches from 2006 onwards did reveal

a significant relationship with SST during the early part of the

fishing season (F¼ 5.258, df ¼ 1, 13, Adj R2 ¼ 0.233, p< 0.039;

Figure 4; see also Supplementary Figure S17).

Figure 2. Continued.

1980 1990 2000 2010 2020

0
50

10
0

15
0

20
0

25
0

30
0

Fishing season [December to November; 2020=2019/20]

C
at

ch
 [t

 *
 1

00
0]

Figure 3. Annual krill catch (t� 103) at South Georgia; blue is total catch, red is catches made with traditional mid-water trawls, and black is
catches made with the continuous fishing system. Some early catches (before 1988) cannot be attributed in space or time. The local interim
catch limit is 279000 t.
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CEMP monitoring indices for gentoo penguins—
comparison between sites
The monitoring metrics for gentoo penguins at Bird Island and

Maiviken showed consistent significant relationships between

sites (Table 1), good years and poor years were consistent be-

tween sites with no lag. For chick fledging mass, no weights were

available in years with complete breeding failure and in general,

fledging mass was greater at Bird Island than at Maiviken.

Gentoo penguins experienced reduced reproductive perfor-

mance in 1990, 2004, and 2005 and major breeding failures (<0.5

chicks per nest) in 1991, 1994, 1998, 2009, and 2016 (Figure 5).

Some, but not all of these failures followed major warming events

(Figure 7); we found no significant relationships with SST.

The number of nests at Bird Island (linear regression

F¼ 13.05, df ¼ 1, 30, Adj R2 ¼ 0.280, p< 0.001) and at Maiviken

(linear regression F¼ 3.10, df ¼ 1, 10, Adj R2 ¼ 0.160, p¼ 0.109)

indicated a possible relationship with the krill catch level in the

preceding winter. Seasons of fewer nests followed less productive

fishing seasons, potentially indicative of carryover effects follow-

ing from winter-feeding conditions. No other gentoo penguin

monitoring indices showed a significant relationship with krill

catch.

CEMP monitoring indices for Antarctic fur seals—
comparison between sites
Variability in the numbers of fur seal males, females, and pups

showed no correlation between Bird Island and Maiviken (maxi-

mum Pearson correlation coefficients <0.57). The numbers at

Bird Island have been decreasing at a significant rate over the pe-

riod 2002 to 2020, whereas the numbers at Maiviken are either
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Figure 4. (a) Annual krill catches (t� 103) at South Georgia from 2006 onwards in relation to sea surface temperature averaged across May,
June, and July (see also Supplementary Figure S17). (b) Sea surface temperature trend in August over the period since 1995.

Table 1. Relationship between various gentoo penguin monitoring indices at Bird Island and at Maiviken.

Property Linear regression

Number of nests F¼ 10.72, df ¼ 1, 10, Adj R2 ¼ 0.469, p< 0.005
Date first egg appeared F¼ 36.64, df ¼ 1, 9, Adj R2 ¼ 0.781, p< 0.001
Date of peak egg laying F¼ 45.98, df ¼ 1, 9, Adj R2 ¼ 0. 818, p< 0.001
Number of chicks per nest F¼ 7.17, df ¼ 1, 10, Adj R2 ¼ 0.359, p< 0.023
Breeding success F¼ 27.46, df ¼ 1, 10, Adj R2 ¼ 0.359, p< 0.001
Chick fledging mass F¼ 8.27, df ¼ 1, 8, Adj R2 ¼ 0.447, p< 0.021
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Figure 5. Breeding success (chicks per nest) for gentoo penguins at Bird Island (1987–2020) and at Maiviken (2009–2020).
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stable or increasing (Supplementary Figures S9–S13). There was

considerable interannual variation and the linear regressions were

not statistically significant over the recent period since 2009.

However, a loess local polynomial regression with variability

bands set at 6 1 standard deviation (Supplementary Figure S11)

shows evidence of the continuing decrease at Bird Island and in-

crease at Maiviken since 2009, though the number of pups at

Maiviken was at its highest around 2016. Note that the decreases

reported here do not reflect a population demographic assess-

ment, as in Forcada and Hoffman (2014), rather simple decreases

in the numbers observed on the beach.

Antarctic fur seal pup mass indices from Bird Island and

Maiviken showed considerable variation (Figure 6). During each

of January, February, and March, there were statistically signifi-

cant differences between the two sites (Table 2). In January, pups

born at Bird Island were always on average smaller just after birth

than those born at Maiviken (Figure 6). However, average pup

mass apparently increased more rapidly at Bird Island than at

Maiviken, and in many years, pups at each site were on average

closer in mass by March (Figure 6). However, it is unclear

whether the apparent growth rate at Bird Island was the result of

differential mortality of smaller pups or better provisioning op-

portunities. In March, there were significant differences between

years (Table 2).

Years when the mean pup mass at Bird Island remained lower

than at Maiviken in March, included 2009, 2013, 2016, and 2018

(Figure 6). Pup mass at Bird Island was also low in January 1991

and 1994, but no comparable data exist for Maiviken. Some, but

not all years of low pup mass at Bird Island followed warmer

ocean temperatures; for example, in mid-late 1993, early 2009,

and late 2017 (Supplementary Figure S2). However, no detectable

warming was evident before other low pup mass events.

Cross-correlation analyses for pup weights at Bird Island and

local SST in the west (Supplementary Figure S1) showed a signifi-

cant negative correlation. A regression model with the greatest

level of significance (lowest p-value) using R library olsrr to add

and subtract monthly temperature series in a stepwise manner,

established August as the single most influential month. High

temperatures in the preceding August were associated with lower

pup weights in January over the period 1989–2020 (acf ¼ �0.39,

confidence limits assume white noise with p< 0.05, n¼ 32; linear

regression F¼ 5.959, df ¼ 1, 30, Adj R2 ¼ 0.138, p< 0.020). Pup

weights in February and March also showed similar negative cor-

relations with temperatures in the preceding August (respectively,

acf ¼ �0.47; linear regression F¼ 8.399, df ¼ 1, 30, Adj R2 ¼

0.193, p< 0.007, and acf ¼ �0.35; linear regression F¼ 3.967, df

¼ 1, 30, Adj R2 ¼ 0.087, p< 0.056). Cross-correlation analyses

for pup weights at Maiviken and SST (either in the west or the

east; Supplementary Figure S1) showed no significant

correlations.

Despite the consistent aggregation of krill catches and the

proximity of harvesting to Maiviken, no significant relationships

were evident between the magnitude of the catch and the num-

ber, or mass of fur seal pups at Maiviken in the following

January. However, relationships between the level of catch and

the number of pups did suggest that as catches increased, the

number of pups at Maiviken also increased (Catch: F¼ 3.898, df

¼ 1, 10, Adj R2 ¼ 0.209, p< 0.077). This suggests that the fishery

and fur seals may benefit from years with higher krill availability.

No significant relationships were evident between fur seals at Bird

Island, and catch levels.

CEMP data—ecosystem status
Results from a Principal Component Analysis (Supplementary

Material SB) highlight that CEMP data from Bird Island show long-

term change, with the most important changes related to indices that

better reflect winter conditions (Supplementary Figure S5).

To further explore temporal variability at South Georgia

(Figure 7), we plotted years with warmer ocean temperatures

(Supplementary Figures S2–S4), years with poor gentoo breeding

success (<0.5 chicks; Figure 5), years with low fur seal pup mass
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Figure 6. Antarctic fur seal pup weights in (a) January, (b) February, and (c) March at Bird Island (yellow) and Maiviken (green), South
Georgia for the breeding seasons between 2009 and 2020. See also Table 2.

Table 2. Analysis of variance of Antarctic fur seal pup weights in
January, February, and March at Bird Island and Maiviken, South
Georgia for the breeding seasons between 2009 and 2020.

df Sum Sq Mean Sq F p

January
Site 1 333 332.8 109.4 <0.001
Year 1 3 3.4 1.1
Residuals 2424 7375 3.0

February
Site 1 441 440.9 85.0 <0.001
Year 1 11 10.9 2.1
Residuals 2417 12545 5.2

March
Site 1 253 252.5 37.3 <0.001
Year 1 28 27.7 4.1 <0.050
Residuals 2404 16 280 6.8

See Figure 6.
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in February (<9.5 kg; Figure 6), and years with poor krill harvests

(<20000 t catch; Figure 3), to show their relative alignment. We

used a fixed harvest level of 20000 t per annum, as catch per unit

effort (CPUE) varied spatially (Supplementary Figure S14), as

well as temporally. In general, the results from gentoo penguins

and fur seals highlight years with extreme low values, more than

they do years with extreme high values.

Discussion
In the context of the ecosystem approach to fisheries management

at South Georgia, we explored variability in the Antarctic krill

fishery, and how krill-dependent predators are responding to var-

iability in their local ecosystem, including in relation to the local

fishery. Although we considered CEMP data for all diving preda-

tors (penguins and seals), we focused on two species, gentoo pen-

guins and Antarctic fur seals, for which monitoring occurs at two

sites. Our results reflect some of the longest consistently main-

tained time series of CEMP predator monitoring anywhere in the

Southern Ocean.

We focus our discussion on three issues: firstly, patterns and

variability in the krill fishery at South Georgia. Secondly, whether

existing CEMP data have utility, at least in part, to inform man-

agement of the krill fishery by reflecting ecosystem status. Finally,

whether other monitoring data will increase the utility of CEMP

and better facilitate the identification and attribution of ecosys-

tem change. In addressing this latter issue, we also consider the

new management framework recently agreed by CCAMLR

(CCAMLR, 2019a), and how this may be implemented at South

Georgia. We also consider the wider suite of risks beyond those

included in CCAMLR’s current agreed management framework,

to advance further the ecosystem approach (Table 3).

Variability in the krill fishery
Krill catches at South Georgia vary between years, with annual

catches in the early years being much greater than in recent years

(Figure 3). Links between SST and krill abundance exist over the

northwest shelf, north of Bird Island, at least during summer (e.g.

Whitehouse et al., 2008; Fielding et al., 2014). As such, variability

in ocean temperatures might drive relationships with krill abun-

dance and therefore harvesting success. However, when consider-

ing the full duration of the catch history, we found no such

relationships. Only in years of extreme krill fishery failure was

there a suggestion that ocean temperatures might be linked

(Figure 7; Fedulov et al., 1996). Analyses of a shorter time series

since 2006 are more informative (Supplementary Material SC), as

they do provide evidence of a relationship between annual catch

and SST (Figure 4), but not other environmental indices. From

this, we hypothesis that the high availability of krill biomass in a

given year is probably associated with cold temperatures (with

temperature plausibly acting as a proxy for improved habitat

availability within the Antarctic Circumpolar Current). Vessels

therefore have good catches in years of colder temperatures, exert

greater effort, and have increased harvests. Further studies about

variation in how krill arrive, or are retained along the northern

shelf, are now needed (Table 3, Row 4). We also suggest that fur-

ther work is necessary to explore environmental links, including

for krill demography, distribution, and abundance (Table 3, Row

5), because if larger krill catches are apparently restricted to years

with colder temperatures, then warming oceans (Figure 4;

Supplementary Figure S4) are likely to have important conse-

quences for the krill fishery (Trathan and Agnew 2010).

Over time, there have been major changes in fishery opera-

tions, including a switch to winter harvesting in 1990, the cessa-

tion of former Soviet fishing interests in 1991 (the USSR was the

major krill fishing nation during the 1970s and 1980s), and the

introduction of the continuous fishing method in 2004. Since

2006, the fishing fleet has been relatively stable, and our analyses

support the suggestion that the level of krill harvesting at South

Georgia in any given year reflects a combination of factors includ-

ing links with the environment. However, at times these environ-

mental relationships are not evident, probably in part because of

the changing composition of the fleet, seasonal timing of vessel-

days, the number of continuous fishing vessels present, local

management arrangements, and other socio-economic factors

(Nicol et al., 2012). Additionally, harvesting at South Georgia

might also reflect conditions and catch rates at other favoured

fishing grounds further south. Hence, whether favoured southern

grounds are open or closed (either by sea ice or by catch limit),

will determine whether South Georgia becomes a target for har-

vesting (Everson and Goss, 1991).

Krill catches are concentrated to the northeast of Maiviken and

along the northern shelf break (Figure 2). Kemp and Bennett

(1932), and subsequently Everson (1984), reported that historical

whale catches at South Georgia between 1923/1924 and 1930/

1931 for both blue (Balaenoptera musculus) and fin (Balaenoptera

physalus) whales were focused in a similar location, indicating pu-

tative predictably located “aggregations of krill.” This suggests

that such areas were historically important for krill and krill-de-

pendent predators, and are likely to remain important into the

future as blue and fin whale populations recover. Interestingly,

the preferred seabed depth range used by the fishery (180–280 m;

Supplementary Figure S14) also includes habitats utilized by

nearshore or land-based predators (e.g. Trathan et al., 2006),
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Figure 7. Temporal relationships between extreme SST events at South Georgia in the west (see Supplementary Figure S1), gentoo penguin
breeding success <0.5 chicks per nest at Bird Island and Maiviken (see Figure 5), fur seal pup mass below 9.5 kg in February at Bird Island
(Figure 6), and years with krill harvests below 20000 t (see Figure 3).
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Table 3. Selected information requirements needed to enhance the ecosystem approach for the krill fishery at South Georgia; prioritized
requirements are in Rows 1, 2, and 3, which map to the endorsed CCAMLR approach (CCAMLR, 2019a).

Row Requirement Current status Desirable status Work needed

1 Estimates of the local
standing stock of krill
biomass in each area
used by the fishery,
either in the WCB or
the ECB, or both (Figure
8)

No data in winter at the
time that the fishery
operates; summer data
in the WCB (Fielding
et al., 2014) and ECB
(Trathan et al., 2003)

Calibrated acoustic surveys
prior to the start of
fishing and after fishing
is complete, see Figure 8
for plausible transects,
including a reduced
subset for fishing vessel
occupation

Initiate acoustic surveys in
May and September

2 Estimates of ecosystem risk
arising from fishing

No data Spatial and temporal
estimates of krill
consumption by marine
predators in order to
compare with estimates
of available krill biomass
and estimates of fishery
removals; assessment of
other risks from this
paper

Estimate predator
abundance and
distribution, including
fish, at the time that
fishing takes place;
estimate fraction of krill
in the diet; consider
depletion effects of krill
for predators in the
subsequent season;
ecosystem models

3 Catch limits based on the
estimate of local
standing stock in each
area used

CCAMLR Yield Model in
connection with
decision rules and stock
reference points
(Constable, 2001, 2011;
Constable et al., 2000)

Yield model parameterized
for local conditions at
South Georgia

Analyse catch, research net
and predator diet data
to determine
recruitment frequency

4 Estimates of krill
movement and
retention so
management can move
beyond the use of local
standing stock estimates
and towards a dynamic
stock estimate

Young et al. (2014) Understanding about how
krill move and are
retained by local
mesoscale eddies,
including rates;
understand how krill
arrive at South Georgia

General circulation models;
ecosystem models

5 Development of a
geographically focused
demographic model for
krill

No data Understanding of local
demographic process in
relation to growth and
reproduction

Demographic models;
ecosystem models;
general circulation
models

6 Estimates of carryover
effects of winter fishing
mortality on the
availability of krill in the
following summer, and
effects on dependent
species

This paper Understanding whether
harvesting impacts
particular predator
species in the following
breeding season

Analyses of predator
monitoring data, fishery
catch data and
movement and
retention of krill in
oceanographic models

7 Estimates of whether
particular types of krill
swarms are targeted by
the fishery and by
predators

No data Understanding about
swarm characteristics
and target preferences

Analysis of fishery data in
relation to available krill
swarms; analysis of
predator tracking data

8 Estimates of incidental
mortality and bycatch of
non-target species

CCAMLR CM 51-01
requires marine
mammal exclusion
devices to prevent seal
bycatch; CCAMLR CM
25-03 prohibits net
monitoring cables to
prevent seabird
mortality

Understanding of bycatch
of fish and non-target
crustacean species;
improved understanding
of trawl warp bird strike
occurrence

Electronic monitoring of
net cables; enhanced
analysis of net bycatch

Continued
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although risks to predators are reduced through spatial and tem-

poral fisheries closures (Trathan et al., 2014).

Even with low exploitation rates (Hill et al., 2016), and with

catches almost negligible in relation to the levels of krill con-

sumed by predators (Boyd, 2002; Trathan et al., 2012), it remains

possible that the spatial and/or temporal concentration of catches

(Figure 2) could lead to adverse ecosystem effects. Maintaining

monitoring at Maiviken is therefore vital, especially as catches are

increasing (CCAMLR, 2019a; Figure 3). Predator data from this

site could provide indicators about harvesting impacts, particu-

larly as monitoring datasets increase in duration. Near Bird

Island, where local catches are lower, predator success might not

be so sensitive. Nevertheless, co-location of monitoring sites close

to the fishery should help alert managers to changes in the ecosys-

tem, including potential impacts from the fishery. Therefore, lim-

iting the fishery to operate only in those areas where monitoring

occurs would be precautionary. Monitoring in locations not

influenced by the fishery would also be informative, given the

continued requirement for separating fishery from climate effects.

CEMP data—monitoring indices for gentoo penguins
Gentoo penguins show consistent patterns of breeding behaviour

at Bird Island and Maiviken. Years of almost complete breeding

failure (Figure 5) occurred at both locations, readily distinguished

by breeding success (chicks per nest) values below 0.1. In most

years, breeding success was greater than 0.8, suggestive of a near

binary response. Thus, gentoo penguins were able to produce

chicks in most years but failed when conditions fell below some

ecological threshold. This may be because gentoo penguins have a

varied diet (Waluda et al., 2017) and are therefore able to utilize

alternate prey species, except in extreme years. Gentoo breeding

failure events did not always coincide with periods with warmer

SST, or with years of reduced (or elevated) krill catches.

Interestingly, years with high levels of gentoo nest initiation, fol-

lowed years with high krill catches, suggesting that winter conditions

are important to gentoo penguins. Ecological carryover effects from

the winter into the summer are clearly important but require further

exploration. Seasonal variation in krill acoustic density between sum-

mer and winter (based on a single mooring over a 3-year period)

suggests elevated biomass in summer, with potentially a second

smaller peak in winter (Saunders et al., 2007). Understanding the rel-

ative importance of these peaks is now important, as well as the po-

tential for these to vary or change and influence gentoo penguin

(and other predator) population processes.

CEMP data—monitoring indices for Antarctic fur seals
Our results support earlier evidence that Antarctic fur seals are

decreasing at Bird Island (Forcada and Hoffman, 2014), whilst

they are either stable or possibly increasing at Maiviken

(Supplementary Figures S9–S13). Data series are probably too

short at Maiviken to determine the precise nature of the trend,

but they appear to differ from those at Bird Island.

Pups born at Bird Island are on average significantly smaller

just after birth than are those at Maiviken (Figure 6). This differ-

ence is consistent for each year that data are available. By March,

Bird Island pups have on average reached a similar weight to

those at Maiviken (Figure 6), suggesting that pup mortality and/

or growth rates differ between the two sites. This result suggests

that local biological conditions differ in the foraging areas utilized

by female fur seals from the two sites and that management can-

not rely on monitoring results from a single site or a single species

when assessing ecological change at South Georgia.

Interestingly, pup weights at Bird Island in January showed a

significant relationship with SST during the preceding winter,

again highlighting the importance of understanding carryover

effects from the winter into the summer. However, not all warm

events resulted in low pup mass; for example, no detectable warm

period occurred before or during the 2016 low pup mass event

(Figure 6), although an unusually low temperature was evident

prior to this event (Supplementary Figure S2). Thus, a better un-

derstanding of the complexity within the ecosystem (e.g. Murphy

et al., 2007a, b) that leads to anomalous events is almost certainly

important for an ecosystem approach to management.

Table 3. continued

Row Requirement Current status Desirable status Work needed

9 Consideration of the
consequences of
cetacean recovery for
fishery management

Zerbini et al. (2019),
Calderan et al. (2020)

Projections of krill
consumption by all
marine mammal
populations;
consideration of
cetacean ship strike by
fishing vessels

Analyses to explore
cetacean rates of
recovery, diet and
consumption; studies on
phenology and feeding
period; analyses of vessel
speed and cetacean ship
strike frequency

10 Consideration of climate
change

Knowledge of warming
ocean temperature, and
changes in climate
indices (e.g. Trathan
et al., 2006, 2007;
Whitehouse et al., 2008;
Fielding et al., 2014;
Forcada and Hoffman,
2014)

Understanding of how
climate change interacts
with marine mammal
recovery and krill fishing

Identification of reference
areas to help partition
impacts of fishing and
climate
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CEMP data—ecosystem status
Analyses of CEMP data from Bird Island indicate that the marine

ecosystem at South Georgia is changing (Supplementary Figures

S5 and S6), with changes most evident in winter (Supplementary

Figures S7 and S8). Relationships with SST and SAM are signifi-

cant. Management of the krill fishery in the context of a warming

ocean (Supplementary Figure S4) and changing predator popula-

tion processes (Supplementary Figure S5) requires robust indica-

tors to inform management options. However, gentoo penguins

and Antarctic fur seals provide contrasting signals of ecosystem

status at South Georgia. Gentoo penguins show broadly similar

responses across the island, yet provide little discrimination be-

tween years, except in bad years. Antarctic fur seals show different

responses between sites. This means that both species present dif-

ferent challenges when considering their use as indicators of eco-

system status. Anomalous years for each index do not necessarily

align, highlighting the complexity of using simple metrics to re-

flect ecosystem status (Figure 7).

Plausibly, our CEMP monitoring data might be more difficult

to interpret because our study location is recovering from signifi-

cant levels of historical over-harvesting. Seals (Payne, 1977),

whales (Laws, 1977), and fish (Kock, 1992; Kock and Jones, 2005;

Belchier, 2013) are now recovering, with changes in the relative

abundance of different predators still ongoing (Trathan and Reid,

2009; Trathan et al., 2012; Zerbini et al., 2019). Conceptual mod-

els of ecosystem interactions at South Georgia (Murphy, 1995)

have hypothesized that populations of krill, penguins, seals, and

whales should change following the cessation of marine mammal

harvesting in the 1960s. Such models suggest that penguin num-

bers will decrease after initial population expansion; subsequently

that fur seal numbers will also decrease and that cetaceans will

eventually recover.

Understanding if the hypothetical model proposed by Murphy

(1995) is supported by evidence is important, as management

must understand the relative significance of all forcing factors, or

drivers of change that are acting on the ecosystem. Indeed, any

such understanding should be able to explain the differences in

predator monitoring observed at both Bird Island and Maiviken,

two locations �100 km apart.

Increasing the utility of CEMP to facilitate the ecosystem
approach to fisheries management
Various studies have suggested general approaches for determin-

ing fisheries catch levels for forage species so as not to dispropor-

tionately affect different components of the marine ecosystem

(e.g. Cury et al., 2011; Smith et al., 2011). However, identifying

an appropriate catch level for krill based on CEMP data, includ-

ing the questions of when, and by how much catch should be

2001 to 2018 (t)
<VALUE>

T1
T8

T9

T18

Figure 8. The cumulative krill fishery catch (t) at South Georgia for the period 2001 to 2018; no-take zones are shown in red (see text), with
proposed acoustic transects for monitoring krill status with the Western Core Box (T1 to T8) and the Eastern Core Box (T9 to T18); transects
suitable for repeated fishery occupation are shown in turquoise (see text).
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increased or decreased, and when and from where catch can be

taken (e.g. Hewitt et al., 2004), has not been achieved. Moreover,

evaluation of ecological connectivity at relevant scales (Murphy

et al., 1988) still remains to be achieved. Although attempts have

been made to integrate different CEMP indices (e.g. de la Mare

and Constable, 2000; Boyd and Murray, 2001; Reid et al., 2005,

2007), none have been adopted by CCAMLR.

At Bird Island, multiple species are monitored (including spe-

cies that are not part of CEMP), with fewer monitored at

Maiviken. With multiple monitoring parameters, some might be

changing in different ways, so a combined standardized index

(CSI) has been suggested (e.g. Boyd and Murray, 2001; Reid

et al., 2005, 2007). The CSI was developed to reflect ecosystem

status; however, without the inclusion of pelagic predators, which

are also known to be changing and are major krill consumers, it

remains unclear whether this concept still has relevance for man-

agement. For example, perciform fish take as much krill as do

whales, penguins, and fur seals combined, whereas myctophid

fish may take double that amount (Hill et al., 2007). Our results

confirm that different species respond differently (Figure 7; see

also Supplementary Material SB), whilst the same species may re-

spond differently at different sites (Figure 6; see also Murphy

et al., 2013), adding further to the challenges (and complexity) of

translating CEMP into management action. An important ques-

tion remains—whether, and if so, how can different species

responses be rationalized against each other, or combined, to fa-

cilitate management decisions. The translation is made even

more complex as CEMP was designed to include parameters that

vary over different time scales (e.g. over multiple years—penguin

population size, between years—penguin breeding success, and

within years—penguin body mass). Rationalizing the spatial and

temporal scales (Murphy et al. 1988) implicit in these different

indices presents challenges. Moreover, the statistical power

needed to determine ecological change points may not be avail-

able (CCAMLR, 2003; Reid et al., 2007). Translation will also be

made complex should the ecosystem become more productive as

whales recover (Dewar et al., 2006; Nicol et al., 2010), which they

now are within the Scotia Sea (Zerbini et al., 2019; Calderan

et al., 2020). The approach reported in Supplementary Material

SB, could be enhanced with additional monitoring data, includ-

ing from krill-eating fish (Main et al., 2009; Hollyman et al., In

Review) and cetaceans (Zerbini et al., 2019).

Thus, although CEMP includes numerous species and indices,

management does not directly use the outputs of monitoring.

CCAMLR was innovative in attempting to achieve this, but to

date, has not managed to close the loop between monitoring and

management action. An important indirect benefit of CEMP has

been the realization that management of the krill fishery at small

spatial and temporal scales requires an assessment of risk at these

smaller scales, something now recognized by CCAMLR

(CCAMLR, 2019a). Recent work has reiterated the need to define

safe ecological limits for predators, coupled with a method to ad-

just fishing activities in response to the state of the predator pop-

ulation (Hill et al., 2020). However, where multiple predators

depend upon a fished target species, reference points will need to

be clearly articulated so that they do not have unintended conse-

quences elsewhere in the ecosystem. Ultimately, reference points

for predators need to reflect management objectives. For

CCAMLR, the management objective expresses the need to main-

tain ecological relationships and prevent changes that are irrevers-

ible except over short timescales. Operationalizing this has

engendered intense debate within CCAMLR (often unresolved

with strongly voiced opposing views about data sufficiency and

ecosystem processes) and is likely to remain challenging for an

ecosystem that is dynamic and evolving and where predator indi-

ces are changing in relation to one another (e.g. Supplementary

Figures S5 and S6), confirming the complexity of utilizing marine

predators as indicators of ecosystem status (Tett et al., 2013).

Moving towards management at smaller spatial and
temporal scales
Recognizing the challenges associated with using CEMP data,

CCAMLR is now pursuing a new framework (CCAMLR, 2019a).

At South Georgia, the greatest data requirement under

CCAMLR’s new approach will be to develop acoustic estimates of

krill density and biomass (Table 3, Row 1; Figure 8), including

krill distribution and swarm structure at relevant times of the

year. Further, it will be necessary to consider scales of ecosystem

operation in order to assess risks from fishing (Table 3, Row 2).

Assessment of risk should provide critical ecosystem information

at appropriate spatial and temporal scales to match the footprint

of the fishery and key foraging areas of not only land-based pred-

ators but also selected pelagic predators.

There is a long history of estimating krill biomass (c.f. Table 3,

Row 1) at South Georgia (Brierley et al., 1997; Fielding et al.,

2014), including at different times of year (Reid et al., 2010) and

in areas used by the krill fishery (Trathan et al., 2003). However,

surveys at the time of year that the fishery takes place have never

been undertaken, as most surveys were designed to address eco-

logical questions about predator–prey dynamics, rather than

about fisheries management. Nevertheless, the survey transects

used in the past (Figure 8) have the potential to provide informa-

tion about both the stock and predator–prey interactions if they

are carried out in winter as well as in summer, also providing in-

creased understanding about winter carryover effects. Some

transects could be repeated during the course of the fishing sea-

son to explore whether depletion of krill is detectable (Figure 8).

Co-location of CEMP monitoring would allow fishery impacts to

be most easily determined, suggesting that the fishery should be

restricted to the northern shelf of South Georgia (Figure 8), at

least until more information is available.

At South Georgia, the seasonal closure of the krill fishery and

coastal no-take buffers (Trathan et al., 2014; Figure 8) minimize

risks to predators (c.f. Table 3, Row 2), in a manner consistent

with the new CCAMLR approach (CCAMLR, 2019a). Coastal

buffers protect the foraging areas of marine predators such as

gentoo penguins, cormorants, petrels and prions, and spawning

aggregations of various fish species. A recent review of the buffers

(see www.gov.gs/wp-content/cache/all/32110-2/index.html;

accessed 10 May 2021), extended coastal protection to 30 km, to

reduce further any likelihood of spatial overlap with the winter

krill fishery. An important consideration was that the buffers

should be consistent with the voluntary buffers at the Antarctic

Peninsula (Handley et al., 2021). Further refinement of the sea-

sonal closure of the krill fishery and coastal no-take buffers might

be valuable as more information about the winter distribution of

predators becomes available (e.g. Bamford et al., 2021).

The data to support CCAMLR’s new approach (Table 3, Rows

1, 2, and 3) are not part of CEMP, but combining the new ap-

proach with CEMP has the potential to enhance understanding

about the performance of different predators, providing an
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ecosystem status report, or ecosystem health check. For example,

understanding spatial and temporal variation in krill biomass

could help inform predator functional responses, which are likely

to be variable and complex (e.g. Koehn et al., 2017). More infor-

mation to inform about krill movement in ocean currents (flux)

would enhance understanding about the stock itself (e.g. Meyer

et al., 2020) and about krill–predator interactions (Trathan and

Hill, 2016).

Until winter carryover effects are better understood, the krill

catch limit within the area regularly fished at South Georgia

(Figures 2 and 6) should be closely regulated, particularly as the

fishery is so spatially concentrated and the climate is changing

(Figure 4). An interim catch limit below the CCAMLR interim

catch limit (279000 t) for Subarea 48.3, specific to the area fished

would be precautionary, at least until data are available to esti-

mate the winter biomass of krill at South Georgia, including in-

formation about krill recruitment periodicity, and retention and

replenishment rates (Table 3, Rows 3, 4, and 5).

The median (summer) density of krill within the area covered

by Transects 1 to 8 (Figure 8) is �48.925 g m�2 over the period

1996/97 to 2012/13 (Fielding et al., 2014), extrapolating to almost

1250000 t in the area currently used by the winter fishery (Figure

8). The harvest rate of 0.093 currently used by CCAMLR

(CCAMLR, 2010; see also Table 3, Row 3), indicates that an an-

nual catch limit of �114500 t could be considered precautionary.

A further priority should be the development of an appropriate

local parameterization of CCAMLR’s yield model (Constable

et al., 2000; Constable, 2001) based on local estimates of growth,

recruitment, and natural mortality, but also consideration of krill

flux (Table 3, Rows 3, 4, and 5).

Utilizing new technologies to reduce any limitations with fu-

ture monitoring would be sensible. An important trade-off to-

wards improved ecosystem monitoring is likely to be the tension

between what parameters are measured and how broadly meas-

urements can be made. In this respect, unoccupied aerial vehicles

(UAVs or drones), autonomous survey vehicles (gliders and sail-

buoys), and moorings should be considered. Similarly, individual

fishery quotas could be used to help encourage fishing vessels to

participate in data collection, whilst reducing the negative effects

of Olympic fishing (e.g. Aranda, 2009).

Thus, instigating annual biomass estimates for use in combina-

tion with the CCAMLR yield model, decision rules, and stock ref-

erence points (Constable, 2001; 2011; Constable et al., 2000)

should ensure the continuation of precautionary catch limits for

South Georgia. This, used in combination with an assessment of

the ecological structure, should further reduce risks to the ecosys-

tem. Exploring CEMP data in relation to available krill biomass

(in winter and summer) then has the potential to inform on eco-

system status and change. Enhancing the framework proposed by

CCAMLR (CCAMLR, 2019a; Table 3 Rows 1, 2, and 3) to incor-

porate krill movement and retention has the potential to improve

management options, including by increasing catch limits.

Moving towards a dynamic understanding of the stock would en-

hance the ecosystem approach for krill fishery management.

Other management actions that would enhance the ecosystem

approach at South Georgia include mitigation measures appro-

priate to reduce incidental mortality of seabirds and marine

mammals, or bycatch of fish (Table 3, Rows 8 and 9). Seal exclu-

sion devices are already mandatory across the krill fishery includ-

ing at South Georgia (CM 51-01; www.ccamlr.org/en/measure-

51-01-2010; accessed 10 May 2021) and are generally effective

(CCAMLR, 2018); however, efforts to minimize incidental mor-

tality of seabirds during the course of trawl fishing (CM 25-03;

www.ccamlr.org/en/measure-25-03-2020; accessed 10 May 2021)

almost certainly still require revision, including consideration of

warp strike (ACAP, 2017; Kuepfer et al., 2018). Ship strike may

become important as cetacean populations recover. Many fisher-

ies include the use of move-on rules for bycatch mitigation, but

these have never been considered for krill, so should be more fully

evaluated (e.g. Everson et al., 1992). Appropriate mitigation of in-

cidental mortality and bycatch is dependent upon a better under-

standing of fishery operations. Therefore, in addition to full

scientific observer coverage (CM 51-06; www.ccamlr.org/en/mea

sure-51-06-2019; accessed 10 May 2021), electronic monitoring

(Ewell et al., 2020), coupled with proposed best practice (ACAP,

2017) should be considered mandatory for the krill fishery.

Scientific observation should of course be in accordance with the

CCAMLR Scheme of International Scientific Observation

(CCAMLR, 2019b).

In the longer term, krill management should consider the util-

ity of climate change reference areas (Table 3, Row 10). Krill

catches are focused to the north of South Georgia, while the

southern shelf remains free of any fishery influence (apart from

extraction much further south at the Antarctic Peninsula and at

the South Orkney Islands). As such, the south-eastern shelf at

South Georgia might be a suitable reference area, having the po-

tential to help partition impacts of fishing and climate and assist

in attributing cause the for observed change.

Conclusion
Fisheries management includes consideration of trade-offs, which

for the ecosystem approach includes considerations about the

ecosystem. We emphasize that monitoring to understand ecosys-

tem operation and change requires different information to that

required for fisheries management, but the former should inform

the latter. Here, we report important relationships between krill

catches and the environment and between predators and the envi-

ronment, which now warrant further investigation. Enhanced

monitoring of krill in particular is likely to increase the probabil-

ity of detecting changes in the ecosystem, and correctly attribut-

ing cause. A key trade-off now will be about how much

investment in monitoring is necessary, and who pays, to prevent

potential fisheries impacts in biodiverse ecosystems where preda-

tors that compete with the fishery are abundant. Before catches

increase, a reliable ecosystem health check will be necessary. Our

work shows that carry-over effects from winter are important for

predators in the following summer, emphasizing that risks in

time and space need to be better understood. Development of the

analyses presented here could help provide an annual ecosystem

status report.

Setting or changing krill fishery catch limits by use of predator

monitoring data without the availability of an independent stock

assessment is challenging. Monitoring of krill in winter and sum-

mer would enhance the utility of CEMP for providing an ecosys-

tem health check. CEMP data provide a useful means to assess

ecosystem status, but regular stock assessments at the scale of

fishery operation are now necessary for the management of the

krill fishery at South Georgia.

Our findings have relevance to the other krill fishery hotspots

that occur elsewhere in the Scotia Sea, at the Antarctic Peninsula,

and at the South Orkney Islands. Table 3 highlights gaps that
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remain to be addressed under the ecosystem approach, not just at

South Georgia, but also at other hotspots used by the fishery.

Data availability
The CEMP monitoring data from Bird Island underlying this ar-

ticle are available from the UKRI/BAS Polar Data Centre:

Macaroni penguin arrival weights—https://doi.org/gb69.

Macaroni penguin fledging weight—https://doi.org/gb7c.

Macaroni penguin breeding success—https://doi.org/gb7k.

Gentoo penguin nesting chronology—https://doi.org/gb78.

Gentoo penguin fledging weight—https://doi.org/gb7n.

Gentoo penguin breeding success—https://doi.org/gb7v.

Antarctic fur seal special study beach summary counts—

https://doi.org/gb79.

Antarctic fur seal fur seal pup weight—https://doi.org/gb72.

The CEMP monitoring data from Maiviken underlying this ar-

ticle are available from the UKRI/BAS Polar Data Centre:

Gentoo penguin fledging weight—https://doi.org/gb7q.

Gentoo penguin breeding success—https://doi.org/gb7x.

Antarctic fur seal summary counts—https://doi.org/gb77.

Antarctic fur seal fur seal pup weight—https://doi.org/gb76.

The krill fishery catch and effort data underlying this article

were made available by the CCAMLR Secretariat. These data can

be shared on reasonable request to CCAMLR.
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