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Abstract

Land-use intensification can reduce soil carbon stocks and changes microbial com-

munity biodiversity and functionality. However, there is a lack of consensus on

whether management consistently affects microbial biodiversity across geographic

scales, and how this relates to altered soil function. From a regulatory and monitor-

ing perspective, there is a need to identify functionally relevant indicators of land

use in order to evaluate the progress of soil restoration approaches. We performed a

landscape-scale survey of unimproved calcareous grasslands paired with local arable

contrasts, and assessed the consistency of responses in a variety of soil, biotic and

functional measures. In addition, adjacent grasslands undergoing restoration were

assessed to identify soil microbial indicators of recovery. Organic matter content

was consistently larger in grasslands than in arable fields, and increased with time

in the restoring sites. Molecular comparisons of grassland versus arable soils rev-

ealed numerous bacterial, archaeal and fungal indicators, with more representatives

of Ca. Xiphinematobacter, DA101, Bradyrhizobium, Rhodoplanes, Mycobacteria and

Mortierella in old grassland soils, whereas Nitrososphaera, Sporosarcina and

Alternaria infectoria were more abundant in arable soils. Extracellular enzymatic

responses were more variable, with none of the eight investigated enzymes being

consistent indicators of grassland or arable soils. Correlation analyses, incorporating

the molecular and enzymatic responses across all surveyed soils, revealed that

molecular indicators were more strongly correlated with soil organic matter

increases with restoration of arable soils. Our results highlight that microbial taxa

are among the most sensitive indicators of soil restoration, and we identify consis-

tent responses of specific taxa to management across geographic scales. This discov-

ery will be important for both the instigation andmonitoring of soil restoration.
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Highlights

• Soil microbes are key drivers of soil ecosystem services and are affected by

management

• Calcareous grassland exhibited abundant Verrucomicrobia; cropping

increased Nitrososphaera

• These taxa responded to SOM increases with grassland restoration, more so

than enzymes and fungi

• Microbes provide consistent, site-independent indicators for calcareous

grassland soil function restoration
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1 | INTRODUCTION

Microorganisms play a major role in delivering soil eco-
system services, including nutrient cycling, soil aggregate
stability, plant productivity and biodiversity (Fierer, 2017;
Kallenbach, Grandy, & Frey, 2016). For example, as plant
pathogens or symbionts, soil bacteria and fungi can sig-
nificantly influence crop yields in agriculture, and recent
evidence is emerging regarding the central role of
microbes in increasing soil carbon stocks (Cotrufo
et al., 2015; Cotrufo, Wallenstein, Boot, Denef, &
Paul, 2013). Differences in land management are known
to have strong effects on microbial biodiversity (Griffiths
et al., 2011), yet we are still some way from synthesizing
how land management affects the abundances of specific
microbial taxa, precluding wider understanding of func-
tional effects. Better understanding of the resistance and
resilience of soil microbial communities and their func-
tions for land-use change might provide novel approaches
for future sustainable agriculture as well as for restoring
ecosystems (Griffiths & Philippot, 2013). In addition,
policymakers and land users require reliable indicators of
soil function in order to monitor soil state and the efficacy
of ameliorative practices (Orgiazzi, Dunbar, Panagos, de
Groot, & Lemanceau, 2015; Stone et al., 2016).

Grasslands cover about one-quarter of the world's ice-
free area and make up 70% of global agricultural land,
storing 20% of global soil carbon (Smith et al., 2016).
More than 90% of English and Welsh unimproved,
species-rich grasslands were converted to more intensive
agriculture between 1932 and 1984 (Ridding, Redhead, &
Pywell, 2015). The associated cultivation has dramatically
modified soil organic matter (SOM) stocks (Deng, Zhu,
Tang, & Shangguan, 2016; Thomson et al., 2015). To pre-
vent further loss of soil C and vulnerable habitats, efforts
have been made to restore degraded landscapes and

abandoned fields to grassland in the UK (Bullock, 2011),
but to date there has been little information on how soil
C and wider microbial communities and features recover.
Their ability to rapidly adapt makes microorganisms
potential early indicators of succession during the regen-
eration progress (Bouchez et al., 2016; Griffiths
et al., 2016). Past research has identified that microbial
biomass and activity is reduced under intensive arable
management, and it is thought that intensification leads
to a general reduction in fungi compared to bacteria
(Emmerling, Udelhoven, & Schröder, 2001; Lauber,
Strickland, Bradford, & Fierer, 2008; Nunes et al., 2012;
Potthoff et al., 2006). New molecular methods now per-
mit a more detailed examination of the responses of indi-
vidual soil microbial taxa (Hirsch, Mauchline, &
Clark, 2010; Vogel et al., 2009), although we are some
way from synthesizing whether there are geographic con-
sistencies in taxonomic responses to management. Identi-
fying such taxa, and particularly those taxa associated
with SOM content increases, will advance new functional
understanding of the roles of microbes in soil processes,
as well as providing functionally relevant indicators to
assess soil recovery.

The effect of land management on soil microbial com-
munities has been assessed at a range of scales, from local
studies assessing the impacts of specific managements, to
broader landscape-scale surveys. At the local scale, one
study of bacterial and archaeal communities identified
that across three sites there was some consistency in spe-
cific indicators of grassland versus arable communities
(Zhalnina et al., 2013). This study found that specific
archaeal taxa were associated with arable sites, whereas
Bradyrhizobia were more abundant in grassland/aban-
doned arable fields. At the regional scale, a distributed
study of bacterial and fungal taxa across arable and grass-
land sites focused on assessing broad diversity effects, but

ARMBRUSTER ET AL. 2431

 13652389, 2021, 6, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.12977 by U

kri C
/O

 U
k Shared B

usiness N
A

T
U

R
A

L
 E

N
V

IR
O

N
M

E
N

T
 R

SC
H

 C
O

U
N

C
IL

, W
iley O

nline L
ibrary on [21/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



also noted key increases in dominant bradyrhizobial taxa
in grasslands. Notably, neither of these studies examined
the specific relationships between these taxa and SOM. A
critical issue in identifying microbes responsive to SOM
changes has been identified in several studies examining
intensification effects on microbial communities. Because
soil microbes, and bacteria in particular, are primarily
structured along gradients of pH (Griffiths et al., 2011),
land-use-driven change in other edaphic properties can
often obfuscate direct relationships between intensifica-
tion, SOM and microbial taxa (Lauber et al., 2008; Thom-
son et al., 2015). It is, therefore, likely that constraining
contrasts to land-use comparisons of soils of similar pH
may help identify specific indicators relating to SOM and
the lack of disturbance from cultivation.

We, therefore seek to determine the consistency of
microbial indicators across distributed sites in the south
of England, each containing three land management con-
trasts. Each site selected comprised three contrasting
land-use categories, including a contemporary intensively
managed arable field, ancient grassland and a restoring
former arable field established 3–65 years ago (Fagan,
Pywell, Bullock, & Marrs, 2008; Wagner et al., 2019).
These calcareous grasslands are typically characterized
by high levels of plant and faunal diversity and are

considered the most diverse habitats in Europe
(Poschlod & WallisDeVries, 2002). Here, we specifically
focus on calcareous soils to minimize wider confounding
effects of soil pH on microbial communities, and conse-
quently hypothesize that consistent microbial indicators
of land-use change in pristine versus arable contrasts will
be apparent across the distributed sites. Relatedly, across
all soils assessed we hypothesize that microbial commu-
nities will be dominantly structured across gradients of
organic matter and not pH. Finally, we predict that key
microbial taxa found to be indicators of pristine grass-
lands will increase proportionally with SOM improve-
ments through restorative management. The
performance of microbial indicators will additionally be
contrasted with enzymatic functional measures to test
the utility of such metrics for informing on soil status
under a restoration context.

2 | MATERIALS AND METHODS

2.1 | Sampling sites

Fourteen undisturbed calcareous grasslands (henceforth
“Pristine”) were identified in the south of England

FIGURE 1 Location of sampling

sites on chalk-rich parent material in

south England. At each site, a land-use

contrast of unimproved grassland

vs. intensive agriculture vs. reconverted,

former arable grassland (3 to 65 years of

regeneration time) was surveyed for

plant assemblage, soil chemistry, soil

bacterial and fungal diversity
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(Figure 1), which were not ploughed, nor improved for
grazing for at least 100 years (Fagan et al., 2008; Redhead
et al., 2014). Arable fields near each site were used as a
control or contrast, which is the land use that replaced
the calcareous grassland. At each location, a reverting,
ex-arable grassland (“Restoration”) was sampled to test
for the response of identified indicators to recovery over
time. Both the Pristine and restoring grasslands were sub-
ject to livestock (sheep and/or cattle) grazing at low
stocking density and without agricultural improvements.
Details of actual stocking rates and grazing dates were
unavailable. Dates when reversion of arable land to grass-
land started are based on past data, which investigated
land-use history utilizing historic maps (Fagan et al., 2008;
Fagan, Pywell, Bullock, & Marrs, 2010; Redhead et al.,
2014; Ridding et al., 2015). Grassland age in the restoring
fields differs strongly between sites, so that “Restoration”
is not considered a defined land use or treatment. Instead,
we focus on statistical comparisons between Arable and
Pristine. To ensure comparable soil properties, the sample
sites were situated on a chalk, lime-rich bedrock material,
with the “Pristine” site classified as NVC habitat Calcare-
ous Grassland. Sampling was conducted in summer 2016,
with plant cover assessed in five quadrats at each site, and
co-located soil cores (20 cm depth, 5 cm diameter) sampled
for further analysis. A subsample of each of the five cores
was stored at −20�C for microbial diversity and enzymatic
analyses. The remaining soil from each of the five cores
was pooled for standard chemical analysis of SOM (as loss-
on-ignition, 16 hr at 430�C), total C using the Walkley-
Black method, total N, C to N ratio, Olsen's P, K, Mg
(NRM Laboratories, Bracknell, UK) and pH (10 g soil in
25 mL distilled water).

2.2 | Extracellular enzyme activity and
bacterial biomass

Three of the five soil cores were randomly selected for
extracellular enzymatic activity assays and the same soil
solution was used to extract total DNA and measure bac-
terial biomass (see below). Potential activity of hydrolytic
exoenzymes acetase (acetyl esterase, ACE), α-glucosidase
(α -GLU), β-glucosidase (β-GLU), chitinase (N-acetyl-b-
glucosaminidase, CHIN), phosphatase (PHO), sulphatase
(arylsulphatase, SUL) and peptidase (leucine-aminopepti-
dase, LEU) was assessed with methylumbelliferyl (MUB)
and 7-amino-4-methylcoumarin (AMC) conjugated sub-
strates (Sigma-AldrichCompany Ltd, Gillingham, UK).
Enzyme assays were performed on 1.5 g of frozen homog-
enized soil mixed with 20 mL deionized water in sterile
falcon tubes. Samples were shaken for 20 mins at
400 rpm to obtain a homogeneous soil solution; 30 μL

soil solution was added to a 96-well microplate con-
taining 170 μL substrate solution at 300 mM (saturated
concentration). Reaction plates were incubated in the
dark for 3 hr at 28�C with one fluorometric scan every
30 min (BioSpa 8 Automated Incubator, BioTek, Swin-
don, UK). Fluorescence intensity was measured using a
Cytation 5 spectrophotometer (BioTek Swindon, UK)
linked to the automated incubator and set to 330 and
342 nm for excitation and 450 and 440 nm for emission
for the 4-MUB and the 7-AMC substrate, respectively.
For each sample, three technical replicates (soil solution
+ substrate + water) and a quenching curve (soil solution
+ water + 4-MUB or 7-AMC) were measured. For each
substrate, a control including the 4-MUB- or 7-AMC-
linked substrate and water alone were used to check the
evolution of fluorescence without enzyme degradation
over the duration of the assay. All enzyme activities were
calculated in [nkat], the amount (nmol) of catalysed
product per second and normalized by g of dry soil
(Marx, Wood, & Jarvis, 2001).

To assess bacterial biomass, 250 μL of the soil slurry
was mixed with 750 μL water, centrifuged at 1000 g for
5 min, and 500 μL of the supernatant fixed with 500 μL
0.5% paraformaldehyde solution for storage at −20�C.
All samples were run using the Accuri® Flow Cytometer
(Becton Dickinson UK Ltd, Wokingham, UK) in deep-
well plates after SYBR Green staining and 5 min incuba-
tion in the dark as described in Bressan et al., 2015.

2.3 | Molecular analyses of microbial
communities

For DNA extractions, a 200-μL aliquot of the soil-water
slurry used for the enzyme analyses was transferred into
96-well plates and extracted using the PowerSoil® DNA
Isolation Kit (QiagenLtd, Manchester, UK). Illumina
2-step amplicon sequencing was conducted according to
the protocols of the Earth Microbiome Project
(Thompson et al., 2017). In brief, amplicons were pre-
pared using established primers for the ITS regions
GTGARTCATCGAATCTTTG and TCCTCCGCTTATTG
ATATGC (Ihrmark et al., 2012) and 16S rRNA regions
(V4-5 region) 515f GTGYCAGCMGCCGCGGTAA and
806r GGACTACNVGGGTWTCTAAT, and PCR protocols
(Walters et al., 2016) using high-fidelity DNA polymerase
(Q5 Taq, New England Biolabs (UK) Ltd, Hitchin, UK).
Amplicon sizes were determined using an Agilent 2,200
TapeStation system (Agilent Technologies LDA UK Ltd,
Didcot, UK). For purification, PCR products were treated
according to manufacturer's instructions with Zymo DNA
Clean up Kit (Zymo Research Europe GmbH, Breisgau,
Germany). In a second round of PCR, Illumina adapters
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were added and all samples normalized using the
SequalPrep ™ Normalization Kit (Thermo Fisher Scien-
tific Ltd, Altrincham,UK), pooled and concentration veri-
fied spectrophotometrically with Qubit (Thermo Fisher

Scientific Ltd, Altrincham, UK). Illumina high-
throughput sequencing was performed with MiSeq®

Reagent Kit V3, which is capable of producing 2 × 300 bp
paired-end reads (Illumina Ltd, Cambridge, UK).

FIGURE 2 Boxplots of soil properties and plant available nutrients per land use across 14 sites. Arable soils are conventional croplands

with elevated levels of P and greater C to N ratio. Pristine soils were not ploughed or fertilized for at least 100 years, but maintained as

species-rich grasslands with high levels of SOM, C and N. Soil nutrient levels of ex-arable fields are recovering with time

FIGURE 3 Eight hydrolytic soil extracellular enzymatic activities in nkat (nanomol substrate degraded per minute, normalized per

gram dry soil) as response to land use in a calcareous grassland restoration chronosequence. Acetase, Chitinase, α- and β-glucosidase and
hemicellulase activities are considered to be relevant for carbon compound degradation, whereas phosphatase (aryl-phosphatase) is involved

in P cycling and peptidase (leucine-aminopeptidase) catalyses degradation of nitrogen compounds (peptides)

2434 ARMBRUSTER ET AL.
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Illumina sequencing output was analysed with
DADA2 (Callahan et al., 2016) in R (R Core Team, 2017),
to demultiplex raw sequences and trim paired sequences
to uniform lengths. The core sequence-variant inference
algorithm was applied with the DADA function to der-
eplicated data before paired-end sequences were merged
and chimeras were removed. Taxonomic data were
assigned from GreenGenes (DeSantis et al., 2006) for bac-
terial and UNITE (Koljalg et al., 2005) for fungal taxon-
omy. The 16S phylotype abundance table was rarefied to
4,590 reads, whereas the ITS table was rarefied to 2000
reads to account for differences in sampling depth, before
assessing β-diversity in non-metric multidimensional
scaling ordinations and running Permutational Multivar-
iate Analysis of Variance (PERMANOVA) with the func-
tions in vegan (Oksanen, 2008). Significant (p < .05)
indicator phylotypes for Pristine grassland and Arable
soil were determined using the indval routine in labdsv
(Dufrene, Legendre, Monographs, & Aug, 2011) and
wider statistical analysis and visualization was performed
in R version 3.6.0 using the packages ggplot2
(Wickham, 2016), circlize (Gu, Gu, Eils, Schlesner, &
Brors, 2014), labdsv (Roberts, 2019) and igraph (Csardi &
Nepusz, 2006).

3 | RESULTS

3.1 | Soil properties

To assess the effects of land use on soil variables at each
location, we quantified soil pH, SOM, P, K and Mg, as well
as total C and total N, and present data grouped by man-
agement in Figure 2. SOM content in pristine grasslands
was significantly greater than in arable soils, with a mean
of 22.16% and only 6.76%, respectively (t-test, p < .001).
Phosphoros determined by the Olsen method and soil C:N
ratio were less in old grassland soil compared to Arable,
whereas all other tested parameters, with the exception of
potassium, were significantly greater in Pristine. With
respect to pH, arable soils were slightly less acidic (pH 7.9
vs. pH 7.7 in pristine grassland, t-test, p-value 0.0016). All
reverting soils showed attributes intermediate between
grassland and Arable (Figure 2, Table SI1).

Soil extracellular enzyme activities did not respond as
consistently to land-use change as did the soil properties
(Figure 3). From the eight evaluated enzymes only ACE
and CHIN were affected by land use, whereas variance in
PHO, hemicellulase (HEM) and β-GLU was completely
independent from land use. Comparison of Pristine and
Arable soils show mean α-GLU was most active in Arable
samples, but not significantly different between land-use
categories (Table SI2, p = .08). ACE activity increased with
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FIGURE 4 Non-metric dimensional scaling plots showing

differences in microbial and plant community composition between

treatments. Bacterial, fungal and plant communities were all

significantly different in grassland compared to arable soils

(PERMANOVA, p < 0.01), with restoration sites having an

intermediate centroid
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decreasing land-use intensity and was significantly
stronger in Pristine than in arable soils (p = .048).
CHIN and SUL mean activities were twice as high in
Pristine soils as in Arable, with CHIN being signifi-
cantly affected by land use (p = .024), whereas differ-
ences in SUL activities were not significantly different
between land-use categories (p > .05). Interestingly,
LEU showed more potential activity in Restoration sites
than in pristine grasslands.

3.2 | Land-use effects on plant and
microbial community structure

Multivariate assessment of bacterial and fungal commu-
nities revealed samples grouped clearly according to
land use, as assessed by non-metric multi dimensional
scaling ordination of Amplicon Sequence Variant rela-
tive abundances (Figure 4). The plant community ordi-
nation, based on presence/absence data from surveyed

TABLE 2 Linear fit of environmental variables to the non-metric multidimensional scaling ordination for bacterial (left) and fungal

(right) soil communities

Bacteria Fungi

NMDS1 NMDS2 R2 p value NMDS1 NMDS2 R2 p value

SOM 0.97 0.26 0.85 0.001*** Age 0.97 0.24 0.65 0.001***

Total N 1.00 0.09 0.78 0.001*** SOM 1.00 −0.03 0.53 0.001***

Age 0.99 0.14 0.66 0.001*** CHIN 0.48 0.88 0.44 0.001***

pH −0.87 −0.50 0.66 0.001*** Total N 0.99 −0.12 0.44 0.001***

Moisture 0.83 0.56 0.62 0.001*** Mg 0.82 0.58 0.40 0.001***

C to N −0.99 −0.14 0.60 0.001*** C to N −0.98 −0.18 0.38 0.001***

Mg 0.73 0.68 0.53 0.001*** pH −0.85 −0.52 0.36 0.001***

Total C 0.89 −0.45 0.50 0.001*** Moisture 0.91 0.41 0.27 0.002**

Bact. biomass −0.34 0.94 0.38 0.001*** Total C 0.77 −0.64 0.25 0.006**

ACE 0.61 0.79 0.35 0.001*** Bact. biomass −0.63 −0.77 0.24 0.008**

CHIN 0.47 0.88 0.27 0.003*** ACE 0.60 0.80 0.23 0.007**

P −0.50 −0.87 0.21 0.024* P −0.96 −0.29 0.21 0.007**

LEU −0.11 0.99 0.16 0.048* HEM 0.39 0.92 0.13 0.063

α-Glu −0.89 −0.46 0.08 0.259 α-Glu −0.85 0.52 0.11 0.110

PHO −0.33 −0.94 0.03 0.581 LEU −0.19 −0.98 0.06 0.110

K −0.80 −0.60 0.03 0.613 K −0.68 −0.73 0.05 0.345

β-Glu −0.78 −0.63 0.01 0.820 β-Glu −0.71 0.70 0.04 0.426

HEM −0.11 0.99 0.00 0.973 PHO −0.97 0.23 0.02 0.643

Abbreviations: ACE, acetase; α-glu, α-glucosidase; β-glu, β-glucosidase; CHIN, chitinase; HEM, hemicellulase; PHO, phosphatase;
LEU, peptidase; age, years since reconversion from arable to grassland; SOM, soil organic matter content.

TABLE 1 PERMANOVA results of soil microbial community composition in bacterial, fungal and plant cover as a response to the

land-use types undisturbed grassland vs. cropland

Degrees of freedom Sums of squares Mean squares F value R2 p

Bacterial 16S 1 1.330 1.330 8.492 0.279 .001***

Residuals 22 3.445 0.157 0.721

Total 23 4.774 1.000

Fungal ITS 1 1.374 1.374 5.650 0.176 .001***

Residuals 26 6.449 0.248 0.821

Total 27 7.823 1.000

Plant cover 1 2.955 2.955 25.440 0.495 .001***

Residuals 26 3.020 0.116 0.505

Total 27 5.975 1.000
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quadrats, as expected showed that Arable communities
were highly dissimilar to the grasslands. Further signifi-
cance testing using PERMANOVA revealed all grass-
land communities were significantly different from
arable land (Table 1, PERMANOVA p < .01, F > 0.5).
Restoration sites were situated between grassland and
Arable, and the variance within this group is likely to
reflect different times since arable abandonment. We
also fitted the soil chemical and enzymatic data to the
non-metric multidimensional scaling (NMDS) plots to
examine specific relationships with microbial commu-
nity composition (Table 2). For both bacterial and fun-
gal communities, SOM and age (time since cultivation)
were highly related to community composition, and
importantly, these variables were stronger than pH. In
accordance with the results shown in Figure 2, enzy-
matic responses were more weakly associated with
microbial communities, although it is noteworthy that
CHIN was jointly the third strongest linear fit with fun-
gal community structure.

3.3 | Molecular indicators of land-use
change

Indicator analysis revealed 440 prokaryote and 139 fungal
taxa significantly associated with pristine grassland, and
401 prokaryote and 168 fungal taxa associated with ara-
ble land use. A full list of these indicator taxa is provided
in the Supplementary Materials, whereas dominant taxa
are shown in Figure 5. Strikingly, the seven most abun-
dant prokaryotic taxa indicative of Pristine grassland soils
all belong to the phylum Verrucomicrobia (genera: Can-
didatus Xiphinematobacter and DA101), with other nota-
ble taxa occurring in the top 20 abundance-ranked
indicators, including several α-Proteobacteria (genus:
Bradyrhizobia, Rhodoplanes and Mesorhizobium) and
Actinobacteria (genus: Gaiellaceae, Solirubrobacterales
and Mycobacteriaceae). Prokaryotic indicators were
abundant in arable soils and highly dominated by
archaeal Candidatus Nitrososphaera taxa, as well as
several other acidobacterial (iii1-15), firmicute
(Sporosarcina, Planococcacaea and Bacillales) and actino-
mycete phyla (Arthrobacter) (Figure 5a). Another notable
taxon in the top 20 most abundant Arable indicators
included a Nitrosomonad (β-Proteobacteria).

Fungal communities were dominated by Mortierella
minutissima, which was abundant in both land-use types
but was a significant indicator of Arable soils, whereas
Mortierella exigua was dominant in Pristine grassland
(Figure 5b). Other abundant and significant fungal taxa
in Pristine grassland soils were Pseudeurotium, Preussia
flanaganii, Fusarium solani and F. oxysporum and

Clavaria. Other dominant Arable soil indicators, aside
from Mortierella minutissima, included Gibellulopsis
nigrescens, Cladosporium exasperatum, Mycosphaerella
tassiana and a member of the Nectriaceae family.

3.4 | Indicator relationships with SOM
restoration

In order to assess the performance of the arable and pris-
tine grassland indicators in predicting SOM recovery with

FIGURE 5 Circle diagram of (a) bacterial and (b) fungal

indicators of grassland and arable soils. The mean relative

abundance of 16S and ITS amplicons is plotted in red for Arable

and green for Pristine grassland. Only dominant Operational

Taxonomic Units (OTUs) are labelled, with red text denoting

significant arable indicators, green denoting grassland indicators

and black text identifying abundant taxa which are not affected by

management
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restoration management, we performed a pairwise
Pearson correlation analyses of all microbial indicators
and broader plant and microbial biodiversity metrics
(diversity indices and ordination scores), together with
soil abiotic and enzymatic responses. The correlation
matrix is presented in Figure 6, displaying only those
variables highly correlated with SOM (positive correla-
tion in Figure 6a, negative in Figure 6b). SOM is posi-
tively correlated with the highly abundant
Chthoniobacterales, an order of Verrucomicrobia, as
well as with members of Rhizobiales and
Syntrophobacterales.

The fungal OTU73 and Sordariales were also positively
related, although they were found at lower relative abun-
dance. As anticipated, there is a strong positive correlation
of SOM with soil C, N, moisture and grassland age. In
contrast, soil pH and C to N ratio are negatively correlated
with organic matter and likewise with the highly abun-
dant archaeal Nitrososphaerales, Actinomycetales, acid-
obacterial iii1-15 and RB41 taxa. We further visualize the
specific relationships between SOM and the most domi-
nant indicators of both land use and SOM restoration in
Figure 7. The selected prokaryotic taxa Nitrososphaera,
Ca. Xiphinematobacter and Bradyrhizobium, which were
determined as indicative for Arable or Pristine land use,
respectively, are more strongly correlated with SOM
(R2 > 0.5, p-value <0.001) than the most abundant fungal
specimen or extracellular acetase potential activity
(R2 < 0.3, p-value >0.001) (Figure 7).

4 | DISCUSSION

In this distributed survey of paired land-use contrasts, we
found clear differences in plant, fungal and prokaryotic
communities between historically undisturbed calcareous
grassland soils and intensively managed arable land. Dis-
tinct bacterial, fungal and archaeal taxa were identified
as highly indicative for each land use, and furthermore, a
number of prokaryotic taxa were found to be the most
strongly associated with grassland restoration age-related
increases in SOM. The abundances of these specific taxa
were found to be more sensitive indicators of SOM than
any of the functional enzymatic responses or broader
community metrics describing plant or microbial
biodiversity.

Amongst the top bacterial indicators for pristine soils
are several taxa of the phylum Verrucomicrobia. Our
findings are consistent with previous studies which have
demonstrated that members of the Verrucomicrobia are
dominant across soils in different habitats and ecosystems
(Bergmann et al., 2011), with a preference for grassland
soils (Brewer, Handley, Carini, Gilbert, & Fierer, 2017).
Our findings uniquely demonstrate that members of this
phyla also strongly respond to increases in SOM brought
about by grassland restoration. Although the lack of cul-
tured representatives means we know little about the
functionality of Verrucomicrobia in soils, recent meta-
genomic reconstruction found evidence of heterotrophy
with putative amino acid auxotrophies compensated by
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FIGURE 6 Network analysis of full dataset (soil chemistry, functional and biodiversity indicators) showing only strong correlations

with SOM content. The left panel shows variables positively correlated with SOM (> 0.7) and the right panel shows negative correlations (<

− 0.7). For the molecular indicators the size of nodes is scaled to relative OTU abundance, and only the more abundant taxa are labelled.

Blue nodes represent bacterial taxa, red nodes represent soil properties and yellow nodes are fungal taxa
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efficient mechanisms for amino acid uptake, and abilities
to store surplus C (Brewer et al., 2017). Additionally, a
reduced genome size was noted, which is thought to be a
common phenomenon in free-living auxotrophic bacte-
ria, which efficiently assimilate a wide range of com-
pounds at low substrate concentration.

The arable soils were characterized by a dominance
of several archaeal Nitrososphaerales taxa. Cultivated
soils tend to contain elevated levels of nitrogen as a result
of fertilizer application, which ammonia-oxidizers oxidize
to nitrate in the first step of the nitrogen cycle
(Boddy, 2016; Madigan, Clark, Stahl, & Martinko, 2010).

FIGURE 7 Top row: relative abundance of the three most dominant bacterial indicator taxa identified in the network analysis. Bottom

row: other fungal and functional indicators were clearly related to SOM, but to a lesser extent than prokaryots. Ca. Xiphinematobacter and

Bradyrhizobia are indicative for old grassland soils, whereas ammonia-oxidizing archaeal Nitrososphaerales indicate Arable land use.

Grassland indicators increase in relative abundance with recovery of SOM in the restoration soils; Nitrososphaerales decrease. Acetase

potential activities [nkat] and the abundance of indicator fungi Mortierella exigua are increasing with SOM, whereas Mortierella minutissima

abundance decreases
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A functionally similar ammonia-oxidizing bacteria
(AOB), a Nitrosomonad, was also found to be indicative
of arable soils, but this was less abundant. AOB and
ammonia-oxidising archaea (AOA), esp. Candidatus
Nitrososphaera, were previously defined as signature
organisms for agriculture in long-term experiments at
one (Rothamsted Park Grass Experiment) or multiple
locations and across a range of edaphic conditions (UK,
Florida, Michigan), in which soil pH and ammonium
concentrations were clearly correlated with AOA abun-
dance. These studies also noted that the abundances of
Nitrososphaera were negatively related to
Bradyrhizobium, which was elevated in relatively unim-
proved plots (Zhalnina et al., 2013, 2014). This is also
consistent with our findings, as a bradyrhizobial taxon
was also highly related to increases in organic matter,
although less abundant overall than the Verrucomicrobia
in these calcareous soils. Previously, it was considered
that the opposing abundances of these taxa in relation to
N availability reflects differences in N capture, either
archaeal ammonia oxidation in improved soils or bra-
dyrhizobial N fixation in unimproved soils (Zhalnina
et al., 2013). Although this may be true also in our
soils, we also note that the recent metagenomics evi-
dence suggests the Nitrososphaera are able to fix inor-
ganic carbon from bicarbonate (HCO3) or CO2 (Berg
et al., 2010), which also may be a factor underlying
their competitiveness in C-depleted arable soils. More-
over, the slow-growing, free-living members of genus
Bradyrhizobium were described to be genetically highly
heterogeneous, with certain taxa being unable to fix N
in symbiosis with legumes, but different functions and
carbon metabolisms depending on land use (Jones
et al., 2016).

Although we found several fungal indicators of grass-
land versus arable management, when we included the
restoration site data these did not respond as well as the
bacterial indicators with respect to relationships with
increasing SOM. Mortierella, a widely distributed soil fun-
gus, was highly abundant across the soils and was also
sensitive to land-use change. Although Mortierella min-
utissima dominated arable soils, M. exigua was found to
be elevated in grassland soils. Previous studies on fungal
communities under different land-management systems
found Mortierella positively correlated to nitrate-N, but
negatively to soil P (Detheridge et al., 2016), with
M. elongata supporting crop performance by its contribu-
tion to the P cycle and increased activity of β-glucosidase
and contributing to stable soil C pools via production of
recalcitrant C compounds (Li et al., 2018). We also found
Fusarium oxysporum and F. solani as strong indicators
for old calcareous grasslands and the potential plant
pathogenic Fusarium merismoides as an indicator for

arable land. Other potential plant pathogenic taxa from
the classes Leotiomycetales and Dothideomycetales were
amongst the top indicators for old grasslands (Sigler,
Lumley, & Currah, 2000), confirming previous work
showing uncertainties in the delineation between patho-
genic and harmless saprotrophic fungi (Detheridge
et al., 2016; Thornton, 1965). The investigated ITS marker
gene targets identification of fungi, but picked up unicel-
lular algae as indicative of croplands too, which are likely
to form lichens and soil crusts. Using light as an energy
source, they are able to grow on nutrient-deficient, bare
surfaces (Watkinson, 2016). More specific to croplands
were a lichen, Trebouxia decolorans, and several green
algae, as well as the crop pests Alternaria infectoria
and Stemphylium vesicarium, the cause of spots on cer-
tain pears and a saprophyte in soil (Rossi et al., 2005).
Neoascochyta species cause leaf scorch on wheat
(Golzar et al., 2019) and were also more abundant in
croplands. Interestingly, we detected the crop pathogen
Pythium as an arable indicator when analysing the
bacterial 16S sequencing output, where it came up as
a mitochondrial DNA sequence in the order α-Prote-
obacteria, which are ancestors of eukaryotic mitochon-
drial cells with their own genetic system (Bevan &
Lang, 2004). As fungi are, like plants, spatially more
variable than bacteria, their larger variance in soil
molecular analysis is likely to be representative and
reduces their potential as land-use indicators compared
to the determined prokaryotic ones.

Extracellular enzyme activities in this study did not
react consistently to land use, because responses within
land-use classes were highly variable. Previous work
has shown enzymatic responses can be highly affected
by management, and in particular have been shown to
be repressed with nutrient addition (Ramirez
et al., 2014). However, in our study we have to con-
sider not only the impact of fertilizer amendments, but
tillage, pesticides, grazing and other plant growth stim-
ulators, as well as the contrasting vegetation cover,
which may have had unmeasured effects on the enzy-
matic responses. Other studies have also shown more
variable responses across different enzymes across a
chronosequence relating to specific nutrient limitations,
but identified that correcting enzymatic responses to
biomass better reflected efficiency in relation to succes-
sional changes in P acquisition (Allison, Condron, Pelt-
zer, Richardson, & Turner, 2007). We also note that
soil enzyme responses are known to be sensitive to
temperature, season and assay pH (Nottingham
et al., 2016; Puissant et al., 2019; Turner, 2010), factors
we did not consider in our workflow of multiple
substrate degradation assays from a single sampling
point.
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5 | CONCLUSIONS

Soils provide fundamental services to humans and sus-
tainable land management and restoration are crucial
for maintaining soil multifunctionality in a changing
world. Biological indicators are used widely for moni-
toring, although typical vegetation surveys are prob-
lematic because indicators may not be transferable
between different sites and regions, due to differences
in environmental factors (Karlík & Poschlod, 2019).
Additionally, the relevance of plant indicators for soil
services remains uncertain. Our findings demonstrate
that, across these calcareous soils, specific phylotypes
of soil microbial taxa are the most consistent indicators
of both land-use change and SOM recovery. We there-
fore advocate that specific microbial taxa, and not
broad taxonomic groups, be strongly considered
amongst suites of indicators for soil monitoring
(Bouchez et al., 2016; Griffiths et al., 2011). However, we
note that our analysis was purposely limited to high pH
soils, and so specific indicators for other geo-climatically
defined soils remain to be defined. More generally, the spe-
cific identification of microbial taxa responding to land-use
change, and SOM improvement, should guide wider
attempts to understand the functional capacity of these
enigmatic organisms and their roles in driving soil forma-
tion and soil service delivery.

ACKNOWLEDGEMENTS
This study was part of MA's doctoral research, funded
by the Graduate School for the Environment, a collabo-
ration between NERC Centre for Ecology and Hydrol-
ogy, Lancaster Environment Centre and Rothamsted
Research and the UK Natural Environment Research
Council Soil Security Programme “U-GRASS” (NE/
M017125/1).

We want to acknowledge the contributions of Jodey
Peyton in sample and data collection.

Furthermore, we thank all conservation organizations
involved in providing information about history, manage-
ment and locations of the restoring calcareous grassland
sites.

AUTHOR CONTRIBUTIONS
RP designed the survey and carried out sampling and
field work, MA and TG carried out laboratory analysis
and analysed the data with RG. MA wrote a first draft
and all co-authors contributed to the final version of the
paper. KF identified and surveyed the original sites.

DATA SHARING AND DATA
ACCESSIBILITY STATEMENT
OTU tables are available as Supplementary Information.

CONFLICT OF INTERESTS
The authors declare no potential conflict of interests.

DATA AVAILABILITY STATEMENT
OTU tables are available as Supplementary Information.

ORCID
Melanie Armbruster https://orcid.org/0000-0003-0252-
5559
Jeremy Puissant https://orcid.org/0000-0001-5403-8424

REFERENCES
Allison, V. J., Condron, L. M., Peltzer, D. A., Richardson, S. J., &

Turner, B. L. (2007). Changes in enzyme activities and soil
microbial community composition along carbon and nutrient
gradients at the Franz Josef chronosequence, New Zealand. Soil
Biology and Biochemistry, 39(7), 1770–1781. https://doi.org/10.
1016/j.soilbio.2007.02.006

Berg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F.,
Zarzycki, J., Hügler, M., … Fuchs, G. (2010). Autotrophic car-
bon fixation in archaea. Nature Reviews Microbiology, 8(6),
447–460. https://doi.org/10.1038/nrmicro2365

Bergmann, G. T., Bates, S. T., Eilers, K. G., Lauber, C. L.,
Caporaso, J. G., Walters, W. A., … Fierer, N. (2011). The under-
recognized dominance of Verrucomicrobia in soil bacterial
communities. Soil Biology & Biochemistry, 43(7), 1450–1455.
https://doi.org/10.1016/j.soilbio.2011.03.012

Bevan, R. B., Lang, B. F. (2004) Mitochondrial genome evolution:
the origin of mitochondria and of eukaryotes. In: Mitochondrial
Function and Biogenesis. Topics in Current Genetics, vol 8.
Berlin, Heidelberg: Springer. https://doi.org/10.1007/b96830

Boddy, L. (2016). Pathogens of autotrophs. In The Fungi (3rd
ed., pp. 245–292). https://doi.org/10.1016/B978-0-12-382034-1.
00008-6

Bouchez, T., Blieux, A. L., Dequiedt, S., Domaizon, I., Dufresne, A.,
Ferreira, S., … Ranjard, L. (2016). Molecular microbiology
methods for environmental diagnosis. Environmental Chemistry
Letters, 14(4), 423–441. https://doi.org/10.1007/s10311-016-0581-3

Bressan, M., Trinsoutrot Gattin, I., Desaire, S., Castel, L.,
Gangneux, C., & Laval, K. (2015). A rapid flow cytometry
method to assess bacterial abundance in agricultural soil.
Applied Soil Ecology, 88, 60–68. https://doi.org/10.1016/j.
apsoil.2014.12.007

Brewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A., &
Fierer, N. (2017). Genome reduction in an abundant and
ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’.
Nature Microbiology, 2(2). https://doi.org/10.1038/nmicrobiol.
2016.198

Bullock, J. M. (2011). UK National Ecosystem Assessment: Techni-
cal Report Chapter 6. United Nations Environment Programme
World Conservation Monitoring Centre (UNEP-WCMC), 219
Huntingdon Road, Cambridge, CB3 0DL, UK.

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W.,
Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-
resolution sample inference from Illumina amplicon data.
Nature Methods, 13, 581–583. https://doi.org/10.1038/nmeth.
3869 http://10.0.4.14/nmeth.3869 https://www.nature.com/
articles/nmeth.3869#supplementary-information,

ARMBRUSTER ET AL. 2441

 13652389, 2021, 6, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.12977 by U

kri C
/O

 U
k Shared B

usiness N
A

T
U

R
A

L
 E

N
V

IR
O

N
M

E
N

T
 R

SC
H

 C
O

U
N

C
IL

, W
iley O

nline L
ibrary on [21/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-0252-5559
https://orcid.org/0000-0003-0252-5559
https://orcid.org/0000-0003-0252-5559
https://orcid.org/0000-0001-5403-8424
https://orcid.org/0000-0001-5403-8424
https://doi.org/10.1016/j.soilbio.2007.02.006
https://doi.org/10.1016/j.soilbio.2007.02.006
https://doi.org/10.1038/nrmicro2365
https://doi.org/10.1016/j.soilbio.2011.03.012
https://doi.org/10.1007/b96830
https://doi.org/10.1016/B978-0-12-382034-1.00008-6
https://doi.org/10.1016/B978-0-12-382034-1.00008-6
https://doi.org/10.1007/s10311-016-0581-3
https://doi.org/10.1016/j.apsoil.2014.12.007
https://doi.org/10.1016/j.apsoil.2014.12.007
https://doi.org/10.1038/nmicrobiol.2016.198
https://doi.org/10.1038/nmicrobiol.2016.198
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/nmeth.3869
http://10.0.4.14/nmeth.3869
https://www.nature.com/articles/nmeth.3869#supplementary-information
https://www.nature.com/articles/nmeth.3869#supplementary-information


Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E.,
Haddix, M. L., Wall, D. H., & Parton, W. J. (2015). Formation
of soil organic matter via biochemical and physical pathways of
litter mass loss. Nature Geoscience, 8(10), 776–779. https://doi.
org/10.1038/ngeo2520

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., &
Paul, E. (2013). The microbial efficiency-matrix stabilization
(MEMS) framework integrates plant litter decomposition with
soil organic matter stabilization: Do labile plant inputs form
stable soil organic matter? Global Change Biology, 19(4),
988–995. https://doi.org/10.1111/gcb.12113

Csardi, G., & Nepusz, T. (2006). The igraph software package for
complex network research. Complex Systems, 1695. http://
igraph.org

Deng, L., Zhu, G., Tang, Z., & Shangguan, Z. (2016). Global patterns
of the effects of land-use changes on soil carbon stocks. Global
Ecology and Conservation, 5, 127–138. https://doi.org/10.1016/j.
gecco.2015.12.004

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L.,
Keller, K., … Andersen, G. L. (2006). Greengenes, a chimera-
checked 16S rRNA gene database and workbench compatible
with ARB. Applied and Environmental Microbiology, 72(7),
5069–5072. https://doi.org/10.1128/AEM.03006-05

Detheridge, A. P., Brand, G., Fychan, R., Crotty, F. V.,
Sanderson, R., Griffith, G. W., & Marley, C. L. (2016). The leg-
acy effect of cover crops on soil fungal populations in a cereal
rotation. Agriculture, Ecosystems & Environment, 228, 49–61.
https://doi.org/10.1016/j.agee.2016.04.022

Dufrêne, M., & Legendre, P. (1997). Species assemblages and indi-
cator species: the need for a flexible asymmetrical approach.
Ecological Monographs, 67(3), 345–366.

Emmerling, C., Udelhoven, T., & Schröder, D. (2001). Response of
soil microbial biomass and activity to agricultural de-
intensification over a 10-year period. Soil Biology and Bio-
chemistry, 33(15), 2105–2114. https://doi.org/10.1016/S0038-
0717(01)00143-2

Fagan, K. C., Pywell, R. F., Bullock, J. M., & Marrs, R. H.
(2008). Do restored calcareous grasslands on former arable
fields resemble ancient targets? The effect of time, methods
and environment on outcomes. Journal of Applied Ecology,
45(4), 1293–1303. https://doi.org/10.1111/j.1365-2664.2008.
01492.x

Fagan, K. C., Pywell, R. F., Bullock, J. M., & Marrs, R. H. (2010).
The seed banks of English lowland calcareous grasslands along
a restoration chronosequence. Plant Ecology, 208(2), 199–211.
https://doi.org/10.1007/s11258-009-9698-9

Fierer, N. (2017). Embracing the unknown: Disentangling
the complexities of the soil microbiome. Nature Reviews
Microbiology, 15, 579–590. https://doi.org/10.1038/nrmicro.
2017.87

Golzar, H., Thomas, G., Jayasena, K. W., Wright, D., Wang, C., &
Kehoe, M. (2019). Neoascochyta species cause leaf scorch on
wheat in Australia. Australasian Plant Disease Notes, 14(1), 1.
https://doi.org/10.1007/s13314-018-0332-3

Griffiths, B. S., Römbke, J., Schmelz, R. M., Scheffczyk, A.,
Faber, J. H., Bloem, J., … Stone, D. (2016). Selecting cost effec-
tive and policy-relevant biological indicators for European
monitoring of soil biodiversity and ecosystem function.

Ecological Indicators, 69(October), 213–223. https://doi.org/10.
1016/j.ecolind.2016.04.023

Griffiths, B. S., & Philippot, L. (2013). Insights into the resistance
and resilience of the soil microbial community. FEMS Microbi-
ology Reviews, 37(2), 112–129. https://doi.org/10.1111/j.1574-
6976.2012.00343.x

Griffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M., &
Whiteley, A. S. (2011). The bacterial biogeography of British
soils. Environmental Microbiology, 13(6), 1642–1654. https://
doi.org/10.1111/j.1462-2920.2011.02480.x

Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). Circlize
implements and enhances circular visualization in R. Bioinfor-
matics, 30(19), 2811–2812. https://doi.org/10.1093/bioinforma
tics/btu393

Wickham, H. (2016). ggplot2: Elegant graphics for data
analysis. New York: Springer-Verlag, Springer. ISBN 978-0-387-
98141-3

Hirsch, P. R., Mauchline, T. H., & Clark, I. M. (2010). Culture-
independent molecular techniques for soil microbial ecology.
Soil Biology and Biochemistry, 42(6), 878–887. https://doi.org/
10.1016/j.soilbio.2010.02.019

Ihrmark, K., Bödeker, I. T. M., Cruz-Martinez, K., Friberg, H.,
Kubartova, A., Schenck, J., … Lindahl, B. D. (2012). New
primers to amplify the fungal ITS2 region – Evaluation by
454-sequencing of artificial and natural communities. FEMS
Microbiology Ecology, 82(3), 666–677. https://doi.org/10.1111/j.
1574-6941.2012.01437.x

Jones, F. P., Clark, I. M., King, R., Shaw, L. J., Woodward, M. J., &
Hirsch, P. R. (2016). Novel European free-living, non-
diazotrophic Bradyrhizobium isolates from contrasting soils
that lack nodulation and nitrogen fixation genes – A genome
comparison. Scientific Reports, 6(1), 1–10. https://doi.org/10.
1038/srep25858

Kallenbach, C. M., Grandy, A., & Frey, S. D. (2016). Direct evidence
for microbial-derived soil organic matter formation and its eco-
physiological controls. Nature Communications, 7, 1–10.
https://doi.org/10.1038/ncomms13630

Karlík, P., & Poschlod, P. (2019). Identifying plant and environmen-
tal indicators of ancient and recent calcareous grasslands. Eco-
logical Indicators, 104(March), 405–421. https://doi.org/10.
1016/j.ecolind.2019.05.016

Koljalg, U., Larsson, K. H., Abarenkov, K., Nilsson, R. H.,
Alexander, I. J., Eberhardt, U., … Ursing, B. M. (2005). UNITE:
A database providing web-based methods for the molecular
identification of ectomycorrhizal fungi. New Phytologist, 166(3),
1063–1068. http://lup.lub.lu.se/record/146804

Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N.
(2008). The influence of soil properties on the structure of bac-
terial and fungal communities across land-use types. Soil Biol-
ogy and Biochemistry, 40(9), 2407–2415. https://doi.org/10.
1016/j.soilbio.2008.05.021

Li, F., Chen, L., Redmile-Gordon, M., Zhang, J., Zhang, C.,
Ning, Q., & Li, W. (2018). Mortierella elongata's roles in organic
agriculture and crop growth promotion in a mineral soil. Land
Degradation & Development, 29(6), 1642–1651. https://doi.org/
10.1002/ldr.2965

Lynne Boddy, Chapter 8 – Pathogens of Autotrophs, Editors: Sarah
C. Watkinson, Lynne Boddy, Nicholas P. Money, The Fungi

2442 ARMBRUSTER ET AL.

 13652389, 2021, 6, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.12977 by U

kri C
/O

 U
k Shared B

usiness N
A

T
U

R
A

L
 E

N
V

IR
O

N
M

E
N

T
 R

SC
H

 C
O

U
N

C
IL

, W
iley O

nline L
ibrary on [21/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1038/ngeo2520
https://doi.org/10.1038/ngeo2520
https://doi.org/10.1111/gcb.12113
http://igraph.org
http://igraph.org
https://doi.org/10.1016/j.gecco.2015.12.004
https://doi.org/10.1016/j.gecco.2015.12.004
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1016/j.agee.2016.04.022
https://doi.org/10.1016/S0038-0717(01)00143-2
https://doi.org/10.1016/S0038-0717(01)00143-2
https://doi.org/10.1111/j.1365-2664.2008.01492.x
https://doi.org/10.1111/j.1365-2664.2008.01492.x
https://doi.org/10.1007/s11258-009-9698-9
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1007/s13314-018-0332-3
https://doi.org/10.1016/j.ecolind.2016.04.023
https://doi.org/10.1016/j.ecolind.2016.04.023
https://doi.org/10.1111/j.1574-6976.2012.00343.x
https://doi.org/10.1111/j.1574-6976.2012.00343.x
https://doi.org/10.1111/j.1462-2920.2011.02480.x
https://doi.org/10.1111/j.1462-2920.2011.02480.x
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1016/j.soilbio.2010.02.019
https://doi.org/10.1016/j.soilbio.2010.02.019
https://doi.org/10.1111/j.1574-6941.2012.01437.x
https://doi.org/10.1111/j.1574-6941.2012.01437.x
https://doi.org/10.1038/srep25858
https://doi.org/10.1038/srep25858
https://doi.org/10.1038/ncomms13630
https://doi.org/10.1016/j.ecolind.2019.05.016
https://doi.org/10.1016/j.ecolind.2019.05.016
http://lup.lub.lu.se/record/146804
https://doi.org/10.1016/j.soilbio.2008.05.021
https://doi.org/10.1016/j.soilbio.2008.05.021
https://doi.org/10.1002/ldr.2965
https://doi.org/10.1002/ldr.2965


(Third Edition), Academic Press (Cambridge, Massachusetts,
US), 2016, (pp. 245–292), ISBN 9780123820341, https://doi.
org/10.1016/B978-0-12-382034-1.00008-6.

Madigan, M., Clark, D. P., Stahl, D., & Martinko, J. M. (2010). Brock
biology of microorganisms (13th ed.). New York, US: Benjamin-
Cummings Publishing Company, Pearson.

Marx, M.-C., Wood, M., & Jarvis, S. C. (2001). A microplate fluori-
metric assay for the study of enzyme diversity in soils. Soil Biol-
ogy and Biochemistry, 33(12), 1633–1640. https://doi.org/10.
1016/S0038-0717(01)00079-7

Nottingham, A. T., Turner, B. L., Whitaker, J., Ostle, N.,
Bardgett, R. D., McNamara, N. P., … Meir, P. (2016). Tempera-
ture sensitivity of soil enzymes along an elevation gradient in
the Peruvian Andes. Biogeochemistry, 127(2–3), 217–230.
https://doi.org/10.1007/s10533-015-0176-2

Nunes, J. S., Araujo, A. S. F., Nunes, L. A. P. L., Lima, L. M.,
Carneiro, R. F. V., Salviano, A. A. C., & Tsai, S. M. (2012).
Impact of land degradation on soil microbial biomass and activ-
ity in Northeast Brazil. Pedosphere, 22(1), 88–95. https://doi.
org/10.1016/S1002-0160(11)60194-X

Oksanen, R. K. J. (2008). Vegan—Community Ecology Package.
http://vegan.r-forge.r-project.org/

Orgiazzi, A., Dunbar, M. B., Panagos, P., de Groot, G. A., &
Lemanceau, P. (2015). Soil biodiversity and DNA barcodes:
Opportunities and challenges. Soil Biology and Biochemistry, 80,
244–250. https://doi.org/10.1016/j.soilbio.2014.10.014

Poschlod, P., & WallisDeVries, M. F. (2002). The historical and
socioeconomic perspective of calcareous grasslands—Lessons
from the distant and recent past. Biological Conservation,
104(3), 361–376. https://doi.org/10.1016/S0006-3207(01)
00201-4

Potthoff, M., Steenwerth, K. L., Jackson, L. E., Drenovsky, R. E.,
Scow, K. M., & Joergensen, R. G. (2006). Soil microbial commu-
nity composition as affected by restoration practices in Califor-
nia grassland. Soil Biology and Biochemistry, 38(7), 1851–1860.
https://doi.org/10.1016/j.soilbio.2005.12.009

Puissant, J., Jones, B., Goodall, T., Mang, D., Blaud, A.,
Gweon, H. S., … Griffiths, R. (2019). The pH optimum of soil
exoenzymes adapt to long term changes in soil pH. Soil Biology
and Biochemistry, 138, 107601. https://doi.org/10.1016/j.soilbio.
2019.107601

R Core Team (2017). R: A Language and Environment for Statistical
Computing. https://www.r-project.org/

Ramirez, K. S., Leff, J. W., Barberán, A., Bates, S. T., Betley, J.,
Thomas, W., … Fierer, N. (2014). Biogeographic patterns in
below-ground diversity in New York City' s Central Park are
similar to those observed globally. Proceedings of the Royal Soci-
ety B, 281, 20141988. https://doi.org/10.1098/rspb.2014.1988

Redhead, J. W., Sheail, J., Bullock, J. M., Ferreruela, A.,
Walker, K. J., & Pywell, R. F. (2014). The natural regeneration
of calcareous grassland at a landscape scale: 150 years of plant
community re-assembly on Salisbury plain, UK. Applied Vege-
tation Science, 17(3), 408–418. https://doi.org/10.1111/avsc.
12076

Ridding, L. E., Redhead, J. W., & Pywell, R. F. (2015). Fate of semi-
natural grassland in England between 1960 and 2013: A test of
national conservation policy. Global Ecology and Conservation,
4, 516–525. https://doi.org/10.1016/j.gecco.2015.10.004

Roberts, D. (2019). Ordination and Multivariate Analysis for Ecology
(Version 2.0-1) (Computer software). http://ecology.msu.
montana.edu/labdsv/R

Rossi, V., Pattori, E., Giosué, S. et al. (2005) Growth and sporula-
tion of Stemphylium vesicarium, the causal agent of brown spot
of pear, on herb plants of orchard lawns. Eur J Plant Pathol
111, 361–370. https://doi.org/10.1007/s10658-004-5273-3

Sigler, L., Lumley, T. C., & Currah, R. S. (2000). New species and
records of saprophytic ascomycetes (Myxotrichaceae) from
decaying logs in the boreal forest. Mycoscience, 41(5),
(pp. 495–502). https://www.uamh.ca/Research/_/media/uamh/
Research/Publications/UamhPubs/2000_Sigler_etal_Myxotri
chaceae_in_decaying_logs_Mycoscience.pdf

Smith, P., House, J. I., Bustamante, M., Sobocka, J., Harper, R.,
Pan, G., … Pugh, T. A. M. (2016). Global change pressures on
soils from land use and management. Global Change Biology,
22(3), 1008–1028. https://doi.org/10.1111/gcb.13068

Stone, D., Blomkvist, P., Hendriksen, N. B., Bonkowski, M.,
Jorgensen, H. B., Carvalho, F., … Creamer, R. E. (2016). A
method of establishing a transect for biodiversity and ecosystem
function monitoring across Europe. Applied Soil Ecology, 97,
3–11. https://doi.org/10.1016/j.apsoil.2015.06.017

Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J.,
Locey, K. J., … Zhao, H. (2017). A communal catalogue reveals
Earth's multiscale microbial diversity. Nature, 551(7681),
457–463. https://doi.org/10.1038/nature24621

Thomson, B. C., Tisserant, E., Plassart, P., Uroz, S.,
Griffiths, R. I., Hannula, S. E., … Lemanceau, P. (2015). Soil
conditions and land use intensification effects on soil micro-
bial communities across a range of European field sites. Soil
Biology and Biochemistry, 88, 403–413. https://doi.org/10.
1016/j.soilbio.2015.06.012

Thornton, R. H. (1965). Studies of fungi in pasture soils.
New Zealand Journal of Agricultural Research, 8(3), 417–449.
https://doi.org/10.1080/00288233.1965.10419888

Turner, B. L. (2010). Variation in pH optima of hydrolytic enzyme
activities in tropical rain forest soils. Applied and Environmen-
tal Microbiology, 76(19), 6485–6493. https://doi.org/10.1128/
AEM.00560-10

Vogel, T. M., Simonet, P., Jansson, J. K., Hirsch, P. R., Tiedje, J. M.,
van Elsas, J. D., … Philippot, L. (2009). TerraGenome: A
consortium for the sequencing of a soil metagenome. Nature
Reviews Microbiology, 7(4), 252–252. https://doi.org/10.1038/
nrmicro2119

Wagner, M., Fagan, K. C., Jefferson, R. G., Marrs, R. H.,
Mortimer, S. R., Bullock, J. M., & Pywell, R. F. (2019). Species
indicators for naturally-regenerating and old calcareous grass-
land in southern England. Ecological Indicators, 101(January),
804–812. https://doi.org/10.1016/J.ECOLIND.2019.01.082

Walters, W., Hyde, E. R., Berg-Lyons, D., Ackermann, G.,
Humphrey, G., Parada, A., … Knight, R. (2016). Improved bac-
terial 16S rRNA gene (V4 and V4-5) and fungal internal tran-
scribed spacer marker gene primers for microbial community
surveys. mSystems, 1(1), e00009–e00015. https://doi.org/10.
1128/mSystems.00009-15

Watkinson, S. C. (2016). Chapter 7 -Mutualistic symbiosis between
fungi and autotrophs. In The Fungi (3rd ed., pp. 205–243). Edi-
tors: Sarah C. Watkinson, Lynne Boddy, Nicholas P. Money.

ARMBRUSTER ET AL. 2443

 13652389, 2021, 6, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.12977 by U

kri C
/O

 U
k Shared B

usiness N
A

T
U

R
A

L
 E

N
V

IR
O

N
M

E
N

T
 R

SC
H

 C
O

U
N

C
IL

, W
iley O

nline L
ibrary on [21/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/S0038-0717(01)00079-7
https://doi.org/10.1016/S0038-0717(01)00079-7
https://doi.org/10.1007/s10533-015-0176-2
https://doi.org/10.1016/S1002-0160(11)60194-X
https://doi.org/10.1016/S1002-0160(11)60194-X
http://vegan.r-forge.r-project.org/
https://doi.org/10.1016/j.soilbio.2014.10.014
https://doi.org/10.1016/S0006-3207(01)00201-4
https://doi.org/10.1016/S0006-3207(01)00201-4
https://doi.org/10.1016/j.soilbio.2005.12.009
https://doi.org/10.1016/j.soilbio.2019.107601
https://doi.org/10.1016/j.soilbio.2019.107601
https://www.r-project.org/
https://doi.org/10.1098/rspb.2014.1988
https://doi.org/10.1111/avsc.12076
https://doi.org/10.1111/avsc.12076
https://doi.org/10.1016/j.gecco.2015.10.004
http://ecology.msu.montana.edu/labdsv/R
http://ecology.msu.montana.edu/labdsv/R
https://www.uamh.ca/Research/_/media/uamh/Research/Publications/UamhPubs/2000_Sigler_etal_Myxotrichaceae_in_decaying_logs_Mycoscience.pdf
https://www.uamh.ca/Research/_/media/uamh/Research/Publications/UamhPubs/2000_Sigler_etal_Myxotrichaceae_in_decaying_logs_Mycoscience.pdf
https://www.uamh.ca/Research/_/media/uamh/Research/Publications/UamhPubs/2000_Sigler_etal_Myxotrichaceae_in_decaying_logs_Mycoscience.pdf
https://doi.org/10.1111/gcb.13068
https://doi.org/10.1016/j.apsoil.2015.06.017
https://doi.org/10.1038/nature24621
https://doi.org/10.1016/j.soilbio.2015.06.012
https://doi.org/10.1016/j.soilbio.2015.06.012
https://doi.org/10.1080/00288233.1965.10419888
https://doi.org/10.1128/AEM.00560-10
https://doi.org/10.1128/AEM.00560-10
https://doi.org/10.1038/nrmicro2119
https://doi.org/10.1038/nrmicro2119
https://doi.org/10.1016/J.ECOLIND.2019.01.082
https://doi.org/10.1128/mSystems.00009-15
https://doi.org/10.1128/mSystems.00009-15


Academic Press (Cambridge, Massachusettes, US). https://doi.
org/10.1016/B978-0-12-382034-1.00007-4

Zhalnina, K., de Quadros, P. D., Gano, K. A., Davis-Richardson, A.,
Fagen, J. R., Brown, C. T., … Triplett, E. W. (2013). Ca.
Nitrososphaera and Bradyrhizobium are inversely correlated
and related to agricultural practices in long-term field experi-
ments. Frontiers in Microbiology, 4, 104. https://doi.org/10.
3389/fmicb.2013.00104

Zhalnina, K., Dias, R., de Quadros, P. D., Davis-Richardson, A.,
Camargo, F. A. O., Clark, I. M., … Triplett, E. W. (2014). Soil
pH determines microbial diversity and composition in the park
Grass experiment. Microbial Ecology, 69(2), 395–406. https://
doi.org/10.1007/s00248-014-0530-2

SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Armbruster M,
Goodall T, Hirsch PR, et al. Bacterial and archaeal
taxa are reliable indicators of soil restoration across
distributed calcareous grasslands. Eur J Soil Sci.
2021;72:2430–2444. https://doi.org/10.1111/ejss.
12977

2444 ARMBRUSTER ET AL.

 13652389, 2021, 6, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.12977 by U

kri C
/O

 U
k Shared B

usiness N
A

T
U

R
A

L
 E

N
V

IR
O

N
M

E
N

T
 R

SC
H

 C
O

U
N

C
IL

, W
iley O

nline L
ibrary on [21/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/B978-0-12-382034-1.00007-4
https://doi.org/10.1016/B978-0-12-382034-1.00007-4
https://doi.org/10.3389/fmicb.2013.00104
https://doi.org/10.3389/fmicb.2013.00104
https://doi.org/10.1007/s00248-014-0530-2
https://doi.org/10.1007/s00248-014-0530-2
https://doi.org/10.1111/ejss.12977
https://doi.org/10.1111/ejss.12977

	Bacterial and archaeal taxa are reliable indicators of soil restoration across distributed calcareous grasslands
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Sampling sites
	2.2  Extracellular enzyme activity and bacterial biomass
	2.3  Molecular analyses of microbial communities

	3  RESULTS
	3.1  Soil properties
	3.2  Land-use effects on plant and microbial community structure
	3.3  Molecular indicators of land-use change
	3.4  Indicator relationships with SOM restoration

	4  DISCUSSION
	5  CONCLUSIONS
	ACKNOWLEDGEMENTS
	  AUTHOR CONTRIBUTIONS
	  DATA SHARING AND DATA ACCESSIBILITY STATEMENT
	  CONFLICT OF INTERESTS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


