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The flow of carbon from atmosphere to sediment
fauna and sediments reduces atmospheric CO2,
which in turn reduces warming. Here, during the
Changing Arctic Ocean Seafloor programme, we
use comparable methods to those used in the
Antarctic (vertical, calibrated camera drops and trawl-
collected specimens) to calculate the standing stock
of zoobenthic carbon throughout the Barents Sea. The
highest numbers of morphotypes, functional groups
and individuals were found in the northernmost
sites (80–81.3° N, 29–30° E). Ordination (non-metric
multidimensional scaling) suggested a cline of faunal
transition from south to north. The functional group
dominance differed across all six sites, despite all
being apparently similar muds. Of the environmental
variables we measured, only water current speed
could significantly explain any of our spatial carbon
differences. We found no obvious relationship with
sea ice loss and thus no evidence of Arctic blue
carbon–climate feedback. Blue carbon in the Barents
Sea can be comparable with the highest levels in
Antarctic shelf sediments.
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1. Introduction
Arguably the most visible physical response to global climate change has been ice and snow
losses from high latitudes and altitudes. This has been particularly pronounced in the ocean,
mainly throughout the Arctic and West Antarctica. The loss has manifested mainly as reductions
in maximal seasonal sea ice extent in time and space over continental shelves [1], but until
2014 there were marine ice gains in parts of East Antarctica [2]. Marine ice losses such as
seasonal sea ice, ice shelf disintegration and glacier retreat have also contributed to more polar
open water [1–3]. These in turn are driving some considerable and diverse knock-on biological
responses at high latitudes [4,5]. The effects of ice losses, warming and acidification on the carbon
cycle, storage and sequestration are key issues because of potential for feedbacks on climate
change. The Arctic carbon cycle is thought to be sensitive to aspects of climate change [6],
particularly in terms of storage magnitude and vulnerability of (carbon within) organic matter
and methane, in terms of both storage and flux. New major multidisciplinary research initiatives,
such as the Changing Arctic Ocean programme (https://www.changing-arctic-ocean.ac.uk/),
are underway to try to better understand and predict current uncertainties in marine-based
carbon flux.

On land, negative (mitigating) feedbacks on climate from retreating snow and ice coverage
have been smaller than expected [7]. By contrast, climate feedbacks on marine continental shelves
(from increased storage of carbon by marine life—so-called blue carbon) around West Antarctic
seas [8] have been found to be surprisingly large, though complex. Such work has found that the
biggest zoobenthic growth increases (and therefore also of blue carbon storage) inshore are short-
lived because they are wiped out by coincident increases in iceberg scouring. However, in deeper
water marine ice losses are leading to major gains in stored (and probably sequestered) carbon, at
least around parts of Antarctica [8–10]. Reductions in annual sea ice losses have been much greater
in time and space in the Arctic, but as in West Antarctica are likely to prove complex in terms of
blue carbon change. Arctic open water extent correlates with stimulation and maintenance of
phytoplankton blooms [11]; however, seasonal sea ice also supports substantial under-ice algal
blooms [12]. Arctic and sub-Arctic pelagic biota clearly have a considerable role in carbon storage
[13], yet how much of that carbon escapes recycling through the water column and then benthic
microbial loops remains to be determined. The Barents Sea has been very well sampled in terms of
benthos, even in just the last decade. Cochrane et al. [14] and Michalsen et al. [15] demonstrated the
variability in numbers and abundance of species. Across the Arctic, Roy et al. [16] and Jørgensen
et al. [17] both undertook extensive trawl programmes to record variability in composition,
abundance and wet mass. For faunal percentage cover, relative abundance, biodiversity and
species monitoring (e.g. with respect to climate) the literature to date is robust. However, most
prior studies use non-quantitative apparatus such as Agassiz trawls and unreliable indicators of
carbon stock, typically wet mass. This means very little if any literature can be converted to blue
carbon per unit area and thus comparison with blue carbon elsewhere. Thus zoobenthic mass
still remains little considered in terms of blue carbon storage (but see [18]), yet benthos there
can attain great age [19], storing carbon for residence times well inside United Nations (UN)
definitions of sequestration (https://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/
t/59244eed17bffc0ac256cf16/1495551740633/CarbonPricing_Final_May29.pdf).

This study aimed to establish zoobenthic ‘blue carbon’ stock and its variability in space
throughout the trough habitat of the Barents Sea. This is an obvious, necessary step prior to
investigating potential change in Arctic benthic blue carbon stock or accumulation rate. It was
important that any method established during the Changing Arctic Ocean Seafloor (ChAOS)
project incorporated a representative range of conditions and measurable environmental factors
but also was directly comparable with wider datasets, such as from West Antarctic and sub-
Antarctic continental shelves [10]. The Barents Sea is ideal for this as it spans about 12° of latitude,
is undergoing historic losses in seasonal sea ice, is where Atlantic and Arctic water masses meet
and has a wide range of different substratum and basin versus mid-shelf trough environments.
Our key questions were as follows. (i) How much zoobenthic carbon is held per unit area on

https://www.changing-arctic-ocean.ac.uk/
https://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/t/59244eed17bffc0ac256cf16/1495551740633/CarbonPricing_Final_May29.pdf
https://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/t/59244eed17bffc0ac256cf16/1495551740633/CarbonPricing_Final_May29.pdf
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the shelf north of the Atlantic? (ii) How much does this vary in space and what drives this? (iii)
Finally, how do stock levels compare with those in West Antarctica?

2. Methods
Six sites, from 10 km to 100 km apart, were selected throughout the Barents Sea incorporating
a wide range of conditions from the southernmost shelf edge to the northernmost shelf break
(figure 1). Within each of these sites we further selected three or more locations kilometres apart
to provide nested samples. Sampling took place in the summer of 2017 during the scientific cruise
JR16006. A vertical, calibrated, high-resolution camera tripod (Shelf Underwater Camera system
(SUCS)) with twin 2000 lumen dimmable lights and an ultra-short baseline positioning beacon
was used to take images of the seafloor. To minimize distortion and error, the camera was always
perpendicular to the seabed (as opposed to being vertical in the water column), with a mid-focal
length (F11) and flat glass port, such that error within the field of view was ± less than 1 mm.
Finally an Agassiz trawl was used to collect zoobenthos from each site, by means of three replicate
5 min trawls. Using the SUCS, we captured 586 high-resolution (12 MB) images, each of which was
406 × 341 mm; these were then analysed for the density of each of 14 functional groups. These
functional groups were pioneer sessile suspension feeders, climax sessile suspension feeders,
sedentary suspension feeders, mobile suspension feeders, deposit-feeding crawlers, deposit-
feeding vermiform, deposit-shelled infauna, grazers, soft-bodied sessile predators, calcareous
sessile predators, soft-bodied mobile predators, calcareous mobile predators, arthropod predators
and flexible (mixed strategy), as used in Antarctic and sub-Antarctic datasets [20]. Functional
groups were assigned on the basis of the literature (e.g. [20]) applied to identified morphotypes
in images and closer inspection of trawl specimens (matched to similar morphotypes in images).
Antarctic data (collected in the same way) have verified that functional groups work as effective
surrogates (which therefore lose little information in comparison) for species identity-level data.
Trawled sample specimens were separated into morphotypes and functional groups from which
morphometrics were measured. Each morphotype was then dried at 60°C for 24 h and weighed.
The individual morphotypes were then ashed at 475°C for 12–24 h and reweighed. Approximate
carbon content was calculated as 50% of organic mass (dry mass – ash-free dry mass; see [21,22])
plus 12% of ash (skeleton) mass (approximate proportion of carbon in carbonate by molecular
mass).

Near-seabed (typically within 10–15 m of the seafloor) measurements of temperature, salinity,
chlorophyll-a fluorescence and oxygen were obtained from CTD (conductivity–temperature–
depth) casts at each site using an SBE 911plus fitted with an auxiliary SBE43 oxygen sensor
and a Chelsea MKIII Aquatracka fluorometer [23]. Salinity and oxygen were both calibrated
against in situ samples. A 75 kHz RD Ocean Surveyor Acoustic Doppler Current Profiler fitted
to the ship’s hull provided profiles of horizontal current velocities, from 20 m below the sea
surface to 20 m above the seafloor [24]. Raw data were collected in 8 m depth bins every 1 s
using a bottom-tracking configuration. Single-ping, bin-mapped, Earth-coordinate data contained
within the proprietary VMDAS binary files were read into Matlab for further processing and
quality control. The single-ping acoustic Doppler current profiler (ADCP) time stamps and the
position, attitude, time and heading information from the ship’s Seapath320+ were also ingested
into Matlab. Ensembles with no ADCP data or missing heading information were removed. The
single-ping ADCP velocities were rotated from the vessel’s centreline to a True North reference
and transducer misalignment errors were corrected for. Further screening was performed to
remove data where there was a low signal-to-noise ratio in any bin; where a four-beam solution
was not possible; where the maximum change in heading between pings was greater than 10°
per ping; where the maximum change in the ship’s velocity between pings was greater than
0.55 m s−1 per ping; and where the error velocity was more than twice the standard deviation of
error velocities of a single-ping profile. Velocities close to the bottom that were contaminated by
strong reflections from the seafloor were also discarded. Lastly, 5 min averages were created and
the absolute water velocities were determined. Depth mean velocities comprising the barotropic
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Figure 1. Locations and depth range of the ChAOS field sites in the Barents Sea which were used in this study. (Online version
in colour.)

tidal velocity and any non-tidal contribution to the depth average flow (e.g. a density-driven
geostrophic current) were calculated. The ship worked at each site for 30–42 h; therefore, between
2.5 and 3.5 semi-diurnal tidal excursions were resolved.

Each site was sampled during a different phase of the spring–neap tidal cycle. To ensure that
any potential relationship between zoobenthic carbon and velocities was not masked (or indeed
artificially generated) by the spring–neap range in current speed at each location, we generated
tidal current predictions using the Oregon State University (OSU) Tidal Inversion Software (OTIS)
[25] and the regional Arctic 5 km solution. The tidal prediction at each site was based on eight
harmonic constituents (including M2, S2, N2 and K2). We extracted the maximum tidal current
velocities on 19 and 26 July 2017, the nearest neap and spring tides to our sampling times,
respectively.

Substratum type (Wentworth scale) and rugosity (shadow length) were estimated from SUCS
images. Substratum type was graded to categories from clay to bedrock. Shadow length in images
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was used to grade rugosity (seabed roughness) into five categories from smooth (1 mm level
roughness) to rough (40+ cm level differences). Sea ice history was calculated as the number of
sea ice days per year across 16 years (in which a sea ice day was classified as having over 85%
sea ice concentration) using the 6.25 km data, AMSRE for January 2011–October 2011, SSMI for
November 2011–July 2012 and AMSR2 for July 2012–December 2018 [26].

The number of individuals within each of the 14 functional groups was converted into
densities per area (m2). For each image, the mean carbon mass of each functional group (per
site) was multiplied by the total number of individuals from this functional group and summed
to give a standing stock of epi-zoobenthic carbon per image/area. Thus, for each site, there were
approximately n = 20 values of blue carbon stock (20 images were taken at each deployment). For
comparison with West Antarctic data, Arctic sites were categorized into shallows, rocky rubble,
sediment basin or sediment shelf break types.

Differences in data were tested where possible using ANOVA; where this failed to meet
assumptions of normality or equality of variances differences in data were transformed (log).
Where data failed to comply with equality of variance but did comply with normality, we used
Welch’s one-way ANOVA. Arctic versus Antarctic data still showed significant non-normality
and inequality of variance after BoxCox transformation; however, ANOVA was considered to be
robust enough to use with the transformed data. Multivariate analyses, using routines within
the PRIMER statistical package (PRIMER-e Ltd, Plymouth, UK), were used with assemblage
data, which were summed into areas totalling 0.25, 0.5 and 1 m2. This summing was undertaken
by pooling the fauna from two randomized images (from the same deployment for 0.25 m2,
pooling four randomized images for 0.5 m2 and eight images for 1 m2) and similarly investigated
using non-metric multidimensional scaling (nMDS), using both morphotypes and functional
groups for comparison. Blue carbon mass data were also compared using nMDS, principal
component analysis (PCA) and the BEST (BIO-Env) procedure to correlate biological patterns
with environmental data (latitude, depth, temperature, oxygen, chlorophyll-a fluorescence,
salinity and substratum). Current flow data were collected per site not per sample so were not
included in the analysis. The BEST procedure was employed to find the best match between the
assemblage data and those from environmental variables associated with these samples, namely
the best explanatory variable, and then RELATE to statistically analyse the BEST procedure to see
how related the two matrices (blue carbon data and environmental variables) are; if there is no
relation, ρ will be approximately zero.

3. Results

(a) Environmental differences between sites
For many explanatory variables, there was little difference among sites, despite them
being considerable distances apart (table 1). For example, variability in salinity and oxygen
concentration among all sites was biologically minor (e.g. 34 practical salinity units (PSU) and
46 µmol kg−1, respectively).

Changes in the near-bed temperature and salinity between the sites were consistent with the
transition from warm (greater than 3°C) saline inflow of Atlantic water across the Barents Sea
Opening at B3 to cold and fresh Arctic water northeast of Svalbard. Sites B13 and B14 were both
2°C colder than B3. The temperature of bottom water at B15 and B16 was sub-zero. Despite being
further north, B17 was 3°C warmer than B15 and B16. Its near-shelf break location means that B17
was probably influenced by warm Atlantic-origin waters being carried in the Arctic boundary
current.

The maximum observed velocities and predicted spring tidal current are summarized in
table 1. The maximum observed velocities recorded at each site ranged from 0.1 m s−1 (at B14 and
B15) to 0.4 m s−1 (at B17). Note, however, that sites B15 and B17 were sampled during neap and
spring tides, respectively, which, based on only 2 days of data, is likely to amplify the apparent
difference between them. Although the current velocities from the tidal prediction model are
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Table 1. Environmental characteristics of Barents Sea sites in July 2017. Sea ice is given as mean number of days per year since
2002.Maximumdepth average velocities inm s−1 recorded during the sampling of each site and themaximumpredicted spring
tide velocity (m s−1) on 26 July 2017. Near-bed temperature in °C. Salinity is shown inPSU, oxygen inµmol kg−1 and chlorophyll-
a inµg−1. Substratum is grain size and rugosity is the scale of variability in roughness.

depth sea ice

max.
observed
flow

max. predicted
tidal velocity
on 26 July 2017 temp. salinity oxygen chloro. substratum rugosity

B3 367 0 0.15 0.21 3.95 35.04 274.0 0.02 silt and rock cm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B13 358 0 0.12 0.14 1.78 35.00 294.7 0.06 silt mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B14 293 6.2 0.1 0.11 1.95 34.99 276.6 0.04 silt mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B15 316 42.8 0.1 0.08 −1.49 34.89 314.9 0.03 silt mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B16 310 45.9 0.25 0.25 −1.44 34.67 320.0 0.02 silt mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B17 314 50.4 0.4 0.21 1.76 34.89 293.4 0.02 silt and rock cm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

typically biased towards lower velocities (and do not account for any non-tidal processes), a
comparison of the maximum predicted spring currents at each location helps to even out this
potential aliasing across all sites. The strongest tidal currents (0.21–0.25 m s−1 on 26 July 2016)
were predicted to occur at B3, B16 and B17. The difference between the predicted maximum neap
and spring tide currents at each site ranged from 0.05 m s−1 at B15 to 0.16 m s−1 at B16. This
demonstrates that the temporal variability in current magnitude at each site is almost as high as
the inter-site differences. At sites B13 and B17, there was a northeast depth mean non-tidal flow of
0.03 m s−1 and 0.07 m s−1, respectively. Overall, we conclude that sites B3, B16 and B17 experience
the largest currents. Sites B13–B15 typically experience weaker currents.

The sites B3 and B17 had occasional boulders, and so raised rugosity but only in their
immediate vicinity. However, the combination of high flow and boulders at B17 is potentially
important for the establishment of suspension feeders.

The number of sea ice days per year at each site was more predictably aligned with latitude and
the polar front position. The three southernmost sites (B3, B13, B14) had little or no seasonal sea
ice cover. The three northernmost sites (B15–B17), however, have been experiencing a significant
reduction in the number of sea ice days per year over the last decade, from 80 to 90 days in 2002
to less than 20 in 2016 (figure 2).

(b) Functional groups and surrogacy
Ordinations of assemblage composition of 0.25, 0.5 and 1 m2 areas using separate taxonomic and
functional categories showed similar patterns. There was more dispersion in functional group
plots of the same area size, but the nature of the trend (a clear latitudinal cline from B3 to
B17 site) was similarly evident. Site B13 was least distinct (in both taxonomic and functional
ordinations) owing to the overlap with B3 and B14, the sites immediately south and north of it,
respectively. Thus functional groups showed good taxon surrogacy with compositional similarity
within and between sites (figure 3). While taxonomic richness showed no simple pattern with
latitude (although the richest were the two highest latitude sites, B16 and B17), functional groups
showed an increase northwards (figure 4; ANOVA, F = 191.6, p < 0.001). The range of functional
richness was one to eight functional groups per sample (image), while the taxonomic richness
ranged from one to 12 morphotypes per sample. As with richness, both magnitude and variability
in density were highest above 80° N, but all other sites were little different (figure 4b). Establishing
these patterns and variability in zoobenthos is important to set the context of blue carbon findings.

The most abundant functional group differed within (replicates) and between sites, such that
the patterns of dominance were ‘site specific’ (figure 5). Suspension feeders comprised most of
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Figure 2. Number of sea ice days per year at each location between 2002 and 2018, with B3 being Atlantic and open water all
year round. (Online version in colour.)

B3

stress = 0.268 stress = 0.247 stress = 0.238

stress = 0.203 stress = 0.166 stress = 0.152

B13
B14
B15
B16
B17

0.25 m2 0.5 m2 1.0 m2

(a) (b) (c)

(d) (e) ( f )

Figure 3. nMDS ordinations of taxonomic and functional group assemblages across three spatial scales (0.25, 0.5 and 1 m−2)
at all six locations. Taxonomic data are the number of morphotypes per sample at (a) 0.25, (b) 0.5 and (c) 1 m2 and functional
group refers to the numbers of functional groups per sample at (d) 0.25, (e) 0.5 and (f ) 1 m2. (Online version in colour.)

the fauna at B3 but were virtually absent at B14 and B15. There were no clear environmental
signals to such dominance. For example, sites with lower sea temperature were no more similar
with respect to any one group’s dominance than sites with increased temperatures. Multi-feeding
trait groups, such as ophiuroids, mainly dominated at sites with sea ice, but seemingly not in any
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Figure 4. Number of taxonomic and functional groups (a) and density of benthic marine invertebrates (b) at each of the six
locationswithin the Barents Sea in increasing latitude. Richness data (a) are themean and standard deviation (bars) of numbers
ofmorphotypes (termed taxonomic) and numbers of functional groups (termed functional). Density (of individualmacrofauna)
data (b) are shown per sample.

proportion to sea ice probability or duration. Suspension feeders were most dominant in the two
shelf-edge sites (B3 and B17) and calcareous predators were more dominant at sites with lower
current speeds, but in each case these were highly variable within sites as well.

(c) Zoobenthic carbon stock
Mean zoobenthic carbon varied from less than 3 g m−2 to greater than 20 g m−2 and showed a
similar pattern across sites for zoobenthic density (figure 6). There was a significant difference
in zoobenthic carbon across sites (one-way ANOVA, F = 105, p < 0.001) with post hoc Tukey
tests showing significantly more seabed carbon at B16 than any other site. However, there were
no significant differences in carbon per zoobenthic individual (figure 6b), so the higher carbon
standing stock was due to densities (figure 4b) and the functional group composition (figure 5).
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Figure 5. Different functional groups dominating across the six seabed field sites, where pie size is representative of the mean
number of the functional groups at that location. The smallest pie contains three dominant functional groups and the largest
six. (Online version in colour.)

At B16, an unusually important functional group was deposit feeders (figure 5). These included
many polychaetes, bivalve molluscs and echiurans, which were larger than at other sites (one-way
ANOVA, F = 89, p < 0.01; B16 0.45 g per individual versus other sites mean 0.16 g per individual).

From the environmental factors we considered, obvious drivers of variability in functional
group importance did not emerge in our data. For example, high-carbon sites (figure 6) were
associated with high and low sea ice, sea temperature, oxygen and salinity. At site level, the
highest zoobenthic carbon was found at high-velocity locations (B3, B16, B17) (table 1 and
figure 7). Of the variables we measured, only the current magnitude could significantly explain
any of our spatial carbon differences. Zoobenthic carbon showed a significant relationship with
the log-predicted spring tidal current speed (one-way ANOVA, F = 82, p = 0.001) and the r2 value
of the associated regression explained 44% of data variability. Zoobenthic carbon showed distinct
clustering for each site (figure 8); however, there was no correlation between total carbon and any
of the environmental variables (BEST, BVSTEP, Spearman ρ = 0.224, p < 1%). The RELATE model
also showed little to no correlation (Spearman) between the biological resemblance matrix and
the environmental matrix, confirming no obvious environmental drivers behind the zoobenthic
carbon stock.

Comparison of BoxCox-transformed Barents Sea zoobenthic carbon stock data with similarly
transformed and comparable Antarctic literature data (figure 9, [8] and electronic supplementary
material) found a significant difference between polar regions, among sites and a significant
pole×site interaction term (table 2). Both West Antarctica and the Barents Sea have high-carbon
areas (particularly South Orkney Islands, Weddell Sea and B16, respectively) and low-carbon
areas (South Georgia, Amundsen Sea and B14 and B15, respectively).
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Table 2. General linear model ANOVA of polar region, site and estimated zoobenthic carbon (BoxCox transformed data) with a
pole× site interaction term.

d.f. sum sq mean sq F-value p-value

pole 1 151.9 151.9 179.8 0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

site 5 106.7 21.3 21.3 0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pole× site 4 102 25.5 30.2 0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

error 805 680 0.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total 815
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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4. Discussion
Antarctic sea ice losses may have led to greater carbon drawdown and seabed storage, much of
which probably escapes the carbon cycle through burial [8]. But is this happening in the Arctic?
Our Barents Sea data were collected during a very limited time frame but did span a wide
range of sea ice durations and yet showed no evidence for influences on benthic blue carbon.
Highest blue carbon stocks occurred in the highest and lowest sea ice sites (figures 2 and 6).
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This is important because until 2014 Arctic sea ice losses dwarfed those in Antarctica. Hence, the
response of Arctic oceans is likely to have a big impact on the strength of climate feedbacks on
ongoing climate change. The minimum extent of sea ice in the Arctic is currently declining by
an average of 91 600 km2 per year [27]. Increased negative feedback (mitigation) requires more
carbon to leave the carbon cycle or even more carbon drawdown or cycling. Much environmental
focus has been on how pelagic primary [11,12] and secondary [13] production changes and how
sensitive these changes are to intensifying warming [6]. As carbon sequestration is defined (by the
UN) as removal from the carbon cycle for at least 100 years there is very little—if any—scope for
this in the water column (few Arctic pelagic biota are thought to exceed 100 years in age). Thus,
sequestration requires burial, which can only happen at the sediment–water interface, so the fate
of carbon at the seafloor is a crucial part of the cascade regardless of carbon pelagic or benthic
origin.

The Barents Sea can be a very productive system, but, as elsewhere, little of this may reach
the seabed; for example, only 17–52% particulate organic carbon even reaches 90 m depth at most
sites [28] and just 4.4% by 500 m [18]. Seabed carbon from secondary production in the current
study in the Barents Sea reflected the biological variability reported from Arctic seabeds [14–18].
Biodiversity [14–18], biomass [14,15,29–31] and thus natural capital of blue carbon standing stock
vary massively in the Arctic. Many of the biodiversity and biomass values reported and, by proxy,
benthic carbon values are quite low [18,29–30]. However, many such carbon values were derived
by conversion of wet mass with Rowe’s [32] conversion factor (1 mg C = 0.034 mg wet mass),
which can differ by an order of magnitude between taxa [18] so may have error levels comparable
to site differences. However, key baselines in the old and fairly comprehensive literature [33]
use such values and methods, so it will remain important to find ways to compare these with
modern blue carbon work. The 4–20 g m−2 of zoobenthic ‘blue’ carbon found in the Barents Sea
is higher than for most reported Arctic benthic values but generally falls within the range of
literature estimates [29–31,34]. At similar latitudes on the more Atlantic-influenced west coast of
Spitsbergen, Gorska et al. [31] found a comparable mass of zoobenthic carbon to our values on
the shelf, declining by an order of magnitude down the continental slope. They [31] also found
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that benthic biomass was highest in the Fram Strait, moderate in the North Atlantic and lowest
in the ‘Arctic’, further suggesting that these were limited by organic carbon (phytoplankton)
flux. Notably one of the highest zoobenthic carbon values found previously in the Barents Sea
[29] was near one of our sites, B17. Indeed the zoobenthic blue carbon levels in the Barents
Sea fall at the upper end of all polar values (figure 9). South of the Atlantic Ocean, the South
Orkney Islands are considered a benthic blue carbon hotspot [35], but our study using similar
methods found that half of the Barents Sea values exceeded those. Such data suggest that the
Barents Sea may be important for blue carbon natural capital, yet it is also a region in the midst
of profound sea ice losses (figure 2), fishing activity [36] and other stressors [6]. The key step
following establishment of extent and variability of blue carbon is to elucidate the drivers behind
such values and surprisingly we found no links between blue carbon stock and sea ice cover,
unlike in West Antarctic seas [8]. This was all the more surprising as less primary production is
thought to reach the seabed at the more northerly (more sea ice covered) sites [28].

Although the changes in bottom water temperature and salinity were consistent with the
transition from Atlantic to Arctic waters, changes in zoobenthic carbon could not be statistically
correlated with the bottom water hydrography. For example, the polar front, which marks the
transition from Atlantic to Arctic water, was located just south of B15 during our cruise. However,
the largest range in zoobenthic carbon was found north of the polar front between B15 and B16,
sites that had very similar bottom water temperatures and salinities. It was surprising not to
find any strong relationships between near-seabed environmental characteristics and zoobenthic
blue carbon levels. This may be because (i) our sampling was only during a single month so did
not capture the variation in seasonal range of conditions, (ii) we focused within a single habitat
(shelf trough) where the levels of environmental variability were subtle, (iii) differences are less
amplified in epifauna, or (iv) such factors are not particularly important to standing stock (but
may be important for other unmeasured aspects of zoobenthic carbon, such as production).

Tidal currents make an important contribution to the mixing and transport regimes in most
coastal and shelf seas. Using data from the same TPXO Inverse Tidal Model that we have
used here, Holt et al. [37] calculate that the mean M2 semi-major axis tidal current speed is
0.29 m s−1 for water shallower than 500 m, compared with a global mean of 0.06 m s−1. The
clearest environmental driver of distribution of zoobenthic carbon identified by us was current
speed. Increased amounts of zoobenthic carbon were found at sites that experience higher current
velocities (figure 7). Organism design is important in enhancing the hydromechanic conditions
necessary for feeding. Best [38] showed that feeding rate is a function of ambient flow speed,
which affects filtering efficiency, and this could explain the relationship between flow and
zoobenthic carbon as there will be an optimal flow rate for filter feeders to draw down enough
water. Kedra et al. [39] also found considerable variability in community structure and function
in the Svalbard Bank of the Barents Sea, which corresponded to currents and overlying water
masses. On the SUCS images, 22% of individuals on soft substrata were suspension feeders
(50% primary consumers). Growth of suspension feeders can be enhanced at higher flow speeds
because of increased turbulent vertical mixing [40]. Why would other feeding modes be boosted
by higher current flow, though? Currents could transport phytoplankton under seasonal ice (from
open water) to provide food for suspension and deposit feeders, but also carry zooplankton and
detritus for more predatory/scavenging feeding modes. However, the upper limits for feeding
are determined by the balance between energy gained from feeding and the cost of filter feeding
[41]. There is a cost to feeding (measured as raised metabolic activity (oxygen usage) to support
higher functionality) and therefore benthos may choose not to feed even though food is present as
the benefit of feeding would depend on both the quality and quantity of the available food [42].

Current speed is important for megafaunal distribution [43], and also physical dynamics can
play an important role with fauna shifting to suspension feeders in dynamic areas and deposit
feeders in depositional areas [33,34,44]. In this study, B13, which was a site of lower flow rate,
had a much larger proportion of deposit feeders than suspension feeders; however, B16, which
experiences stronger currents, had both suspension and deposit feeders present.
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During the winter, ocean-to-atmosphere heat loss, strong winds and, in polar regions,
brine rejection during sea ice formation drive strong vertical mixing of the water column.
On continental shelves, where the depth of vertical mixing exceeds the total water column
depth, the sea floor and its blue carbon reservoir may become seasonally ‘re-connected’ to
ocean–atmosphere processes and exchanges and therefore experience seasonal variability in
temperature, salinity and oxygen concentration. The impact that seasonal variability of these
environmental variables has on benthic blue carbon cannot be determined from this dataset.

Future projections show that increased rates of momentum transfer from the winds into the
ocean [45], increases in volume, heat and freshwater transports from the Pacific [46] and warming
of Atlantic water entering the Arctic [27,47,48] are changing the hydrography and circulation of
the Arctic Ocean. Whether or not any changes in wind-, tidal- or density-driven current regimes
across the Arctic shelves will benefit the Arctic benthos or not is unknown.

Lifespan or trophic position of biota need not necessarily impact their blue carbon importance,
because the key climate relevance is whether the carbon is sequestered, i.e. through burial.
Intuitively it could be argued that higher predators probably bury proportionally less carbon
because of losses due to compound inefficiencies and respiration losses up the food chain. A
major likely influence on lifespan and likelihood of biomass burial is trawling. The impact of
trawling on macro-zoobenthos [36] may hinder the observation of a relationship between sea ice
loss and benthic blue carbon increase. Trawling may prevent long-term deposition of carbon by
grinding up benthos and reworking the sediment on impact with the seafloor [49], similar to ice
scour disturbance in the Antarctic [50]. B13, B14 and B15 were all low in terms of benthic blue
carbon stock compared with the other sites; however, these sites are in an area of intense trawling
activity [51]. The trawling for fish and shrimp in the Barents Sea is causing a reduction in total
benthic biomass [51]. North of our sites in the Arctic Ocean, the area was covered by sea ice
for more than 200 days per year [51]. This area is also high in deposit feeders (figure 5) and is
protected as it is outside the current range of trawling, but this could change as sea ice declines
and exploitation moves northward. Patchiness within and between sites could be due to the local
catastrophic trawl events as each location could be at a varying state of recovery [10].

The Arctic and the Western Antarctic are ‘hot spots’ for climate change (or sustained periods of
warming) [1,2,4,6]. Barnes [52] showed that the loss of sea ice in the Western Antarctic Peninsula
increased the duration of phytoplankton blooms, which led to an increase in zoobenthic blue
carbon and consequently carbon drawdown and thus provided a negative feedback on climate
change. Our study showed that zoobenthic blue carbon in the Barents Sea was considerably
higher than that in the sub-Antarctic (South Georgia), and it was twice the amount commonly
found in the Antarctic with the exception of shallow Antarctic systems. However, perhaps of
more note was the high variability in Barents Sea benthic carbon (figure 9), particularly at site
B16 (figure 4) compared with the Antarctic shelves. The reason for this is unclear, although South
Georgia also has high variability in benthic carbon stocks and, like the Barents Sea, also has high
site-to-site variability in functional group presence and dominance [20]. At South Georgia that
was driven by major habitat and substratum differences, which was not the case in the Barents
Sea. Overall, our data show that there is a high level of zoobenthic carbon in the Barents Sea
section of the Arctic where sea ice levels have been retreating significantly [17]. The polar front
may be responsible for a multi-year signal of food supply to the seafloor that could be reflected in
benthic communities. Carrol et al. [44] found that infaunal organism density and species richness
were, respectively, 86% and 44% greater at stations located near the polar front than at stations
located in either Atlantic- or Arctic-dominated water masses. This is not clear in our epifaunal
data as B16 is in Arctic water and had a higher amount of taxonomic diversity and density than
the sites around the polar front; however, this signal may only be picked up in multi-year data.
We found 19–36 morphotypes of epifauna per site (at B14 and B17, respectively), which was low
to comparable to past regional soft sediment work. Previous richness levels found included 96–
179 per site in the Barents Sea [14], 22–85 in the Kara Sea [30] and 10–64 in Canadian Arctic
shelf sediments [16]. Meaningful comparisons of such values are very difficult though because of
differing sample areas, efforts and equipment types.
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In conclusion, our study answered the questions we set out to investigate; we found more
functional groups northwards in the Barents Sea with different functional groups dominating
and each site being unique. Blue carbon storage showed both ‘within site’ and ‘between site’
variation for which trawling could have been a contributing factor. The blue carbon stock of
the Arctic Barents Sea was twice that of the Antarctic soft sediment continental shelf and could
therefore have great potential for increased carbon drawdown with possible values of around
1–6 t km−2 per year. One of the main factors underpinning the distribution of zoobenthic blue
carbon appears to be flow rate. Arctic shelves differ substantially from those along the Western
Antarctic Peninsula, where most research for the potential for enhanced blue carbon sequestration
caused by sea ice loss has been carried out. Our findings reiterate the need for investigations
into zoobenthic blue carbon in the Arctic to better inform global estimates of carbon budgets
[8]. Benthic blue carbon responses to sea ice loss in the Arctic could represent one of the largest
negative feedbacks to climate change; however, our data show no clear link between sea ice and
zoobenthic carbon but provide a good baseline of Arctic benthic blue carbon data for building on
with further work. We suggest investigation with a wider range of Barents Sea sites to include
habitats different from soft sediment continental shelf, analysis of data from 2018 and 2019 for
multi-year comparison and ground-truthing our data in a multidisciplinary context by looking
at box-core and multi-core results from the same sites. Other studies [53] used environmental
DNA to look at diversity and found a higher diversity than with morpho-taxonomy, which when
linked to the environmental variables could give a different answer in response to environmental
drivers. Studies combining multiple techniques are required to gain a complete picture of
the environmental drivers controlling community structure. There is also a need to look at
water column nutrient data for each of our sample sites to see if the nutrients required to
sustain phytoplankton blooms for longer are available. Prolonged warming and its predicted
consequences are likely to continue to affect the structure and functioning of marine benthos in
the Arctic.
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