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Tracking climate change and its relationships with chemical weathering and massive volcanic activity in 
deep-time greatly improves our understanding of the Earth’s climate system. The Permo-Carboniferous 
period is a critical time interval with million year-scale glacial-deglacial cycles and massive basaltic 
volcanism, such as the Skagerrak-Centered (also named Skagerrak or Jutland) large igneous province. To 
explore the volcanism-climate interactions in this period, we obtained high precision CA-TIMS U-Pb
zircon ages for three tuffaceous layers from a cored upper Pennsylvanian-lower Permian marginal 
marine succession in southern North China. These ages calibrate the Permo-Carboniferous biostratigraphy 
between ∼301–296 Ma in North China. From this dated core succession, mudrock samples and 
their calculated weathering index values were screened to constrain the weathering trends for the 
source landscapes and demonstrate a rapid increase with a subsequent decrease in source chemical 
weathering intensity during the period of ∼299 to 296.5 Ma. These trends coincide with the southern 
Gondwana glacial records, low latitude temperature changes, relative sea-level variations, and shifts in 
atmospheric pCO2 that together document an earliest Permian climate warming-cooling perturbation 
with a temperature maximum at ∼298 Ma. This climate warming in the Permo-Carboniferous icehouse 
correlates with the emplacement of the Skagerrak-Centered large igneous province, which likely released 
voluminous CO2 that led to climate warming during the Permo-Carboniferous transition. The immediately 
following cooling could possibly result from the rapid post-eruptional weathering of the massive basaltic 
rocks of this province in tropical latitudes, which would have sequestered atmospheric CO2 and promoted 
return to cooler icehouse conditions. This study supports the assertation that massive basaltic volcanism 
could first cause rapid climate warming and then may have an overall net cooling effect as previously 
suggested for the Deccan Traps and the Central Atlantic Magmatic Province.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Massive basaltic volcanism and associated mafic intrusions dur-
ing large igneous province (LIP) events can release voluminous 
greenhouse gases (e.g., CO2) into the atmosphere and poten-
tially cause significant climate warming (e.g., Ernst and Youbi, 
2017; Schaller et al., 2012). LIP basaltic rocks can also experi-
ence rapid post-eruptive weathering and thus effectively consume 
atmospheric CO2 (Dessert et al., 2001; Schaller et al., 2012), return-
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ing the climate to cooler conditions (Jones et al., 2016; Schaller et 
al., 2012). Meanwhile continental weathering trends have discern-
able responses to climate change, with high weathering intensity 
corresponding to warm and humid climate and low weathering 
intensity to colder or drier conditions (e.g., Nesbitt and Young, 
1982; Yang et al., 2014). Therefore, weathering, climate and LIP 
volcanism are mechanically linked, leading to punctuated climate 
fluctuations through Earth history (Ernst and Youbi, 2017; Dessert 
et al., 2001; Schaller et al., 2012). The Permo-Carboniferous transi-
tion (∼302–297 Ma) represents one such critical period. This time 
interval coincides with the main emplacement of the Skagerrak-
Centered (also alternatively named as Skagerrak and Jutland, Ernst 
le under the CC BY-NC-ND license 
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Fig. 1. Location and stratigraphic column for the studied Permo-Carboniferous strata of Benxi (BX), Taiyuan, Shanxi and Xiashihezi (XS) formations of core Zk0901 from 
southern North China. (A) ∼300 Ma paleogeographic reconstruction modified after Torsvik et al. (2014) showing low-latitude position of North China block. Location of the 
Skagerrak-Centered LIP is marked by a pink circle. Also shown are the locations of Usolka section in Ural (Henderson et al., 2012), Naqing section in South China (Chen et 
al., 2016), Paraná Basin in South America (Griffis et al., 2018) and Karoo Basin in southern Africa (Scheffler et al., 2003). (B) Lithologic column with facies interpretation and 
stratigraphic positions of dated ash beds (arrows) and analyzed mudrock samples (spots). (For interpretation of the colours in the figure(s), the reader is referred to the web 
version of this article.)
and Youbi, 2017) LIP in NW Europe (Torsvik et al., 2008). It is asso-
ciated with a notable climate warming in western tropical Pangaea 
(Tabor et al., 2013), the terminal deglaciation in the Paraná Basin 
of South America (Griffis et al., 2018), a Gondwana-wide transgres-
sion (Stollhofen et al., 2008; Griffis et al., 2019) and the enhanced 
interstadial weathering in southern Africa (Scheffler et al., 2003). 
The Permo-Carboniferous peak icehouse also initiated during this 
period (∼298-297 Ma) and has been interpreted in terms of 
frequent explosive intermediate-felsic volcanism (Soreghan et al., 
2019). However, a paucity of high-resolution climate proxy records 
and overall lack of high-precision dated chronostratigraphic cor-
relation have hindered establishing potential basaltic LIP-climate-
weathering linkages for this time period.

To test this possible causal relationship among the LIP event, 
climate change and chemical weathering, we here report high-
precision zircon U-Pb ages for, and derive a record of, tropical 
weathering trends from a cored uppermost Carboniferous through 
the lower Permian succession in southern North China. Our data, 
combined with published and precisely age-constrained climate 
records, suggest a climate warming at the Permo-Carboniferous 
transition that likely corresponds with the emplacement of the 
Skagerrak-Centered LIP event.

2. Samples and analytical methods

North China occupied a low-latitude position surrounded by 
the Tethys Ocean to the west and the Panthalassic Ocean to the 
east during the Pennsylvanian through early Permian (Fig. 1A; 
Torsvik et al., 2014; Cawood et al., 2013). In North China, ubiq-
uitous littoral-deltaic coal-bearing siliciclastic and carbonate rocks 
accumulated in association with an ever-wet flora during the late 
Pennsylvanian to early Permian (Wang, 1985; Tabor and Poulsen, 
2008). Core Zk0901 was recovered from the Yongcheng Basin in 
southeastern North China (Fig. 1A). It is preserved in a dedicated 
core storage facility and is thus free of modern surface weather-
ing. It was drilled through the late Pennsylvanian-Permian strata 
to the underlying Ordovician limestones. The sampled core succes-
sion of Benxi, Taiyuan, Shanxi, and lowest Xiashihezi formations 
consists of black-grey mudrocks generally with horizontal lamina-
tion, siltstones and wave ripple-laminated or cross-bedded fine- to 
medium-grained sandstones, along with several coal seams 0.05-2 
m thick, and bio-clastic limestones (Fig. 1B). The Benxi and Taiyuan 
formations are broadly coastal and shallow marine deposits of very 
similar aspect to the cyclothemic successions of the North America 
and Europe (Wang, 1985; Schmitz and Davydov, 2012 and ref-
erences therein). The succession becomes progressively shallower 
upsection with more alluvial plain and nonmarine environments 
in the Shanxi and Xiashihezi formations (Feng, 2012).

Three tuffaceous layers (∼1-10 cm thick) were sampled for 
single-zircon CA-TIMS (chemical-ablation isotope-dilution thermal 
ionization mass spectrometry) U-Pb dating. Sample Lg14-11 is a 
tuffaceous claystone collected from the uppermost of Benxi Forma-
tion, sample Lg14-32 is a crystalline-lithic tuff collected from the 
middle part of Taiyuan Formation, and sample Lg14-87 is a tuffa-
ceous sandstone collected from the uppermost of Taiyuan Forma-
tion (Fig. 1B). A total of 119 mudrock samples were collected from 
core Zk0901 through the Benxi Formation to the middle Shanxi 
Formation for mineralogical and geochemical analysis.

Zircon grains separated from the three ash samples were dated 
using CA-TIMS protocols at the NERC Isotope Geoscience Labo-
ratory of the British Geological Survey, Nottingham, UK. Leached 
zircons were spiked with the mixed 202Pb-205Pb-233U-235U EARTH-
TIME tracer solutions (ET2535; Condon et al., 2015). Mineralogical 
analyses by X-ray diffraction were performed with a PANalytical 
X’Pert Pro model instrument at the State Key Laboratory of Geo-
logical Process and Mineral Resources (GPMR), China University of 
Geosciences (Wuhan). The analytical error is ∼5%. Major element 
analyses were conducted on a PANalytical Axios X-ray florescence 
spectrometer at ALS Chemex (Guangzhou, China). Analytical accu-
racy is better than 5% and uncertainty less than 5% for all major 
elements. Trace element abundances were measured on an Agilent 
7500a ICP-MS at the GPMR. Analytical precision and accuracy are 
generally better than 5% for most trace elements. Detailed analyti-
cal methods and data are available in the Supplementary files.

3. Results

3.1. High-precision CA-TIMS zircon U-Pb ages

Separated zircon grains were observed and imaged under trans-
mitted light microscopy. Samples Lg14-11 and Lg14-32 yield zir-
con populations with elongate prismatic morphologies (generally 
>3:1 long-to-width ratio and >100 μm in their longest dimen-
sions) and visible melt inclusions. The zircon population of sample 
Lg14-87, however, is more complex and includes sub-equant grains 
with slightly rounded to prismatic morphologies. By careful selec-
tion, only euhedral, clear grains devoid of optically recognizable 
cores were chosen for analysis. U-Pb ages are reported with 2σ
errors (Table S1). Weighted mean age errors are herein reported 
as ± X/Y/Z Ma, representing analytical/analytical + tracer solu-
tion/analytical + tracer solution + 238U decay constant uncertain-
ties.
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Fig. 2. Zircon U-Pb Concordia diagrams (A, B and C) and ranked 206Pb/238U age plot with weighted mean ages (D). Only the orange shaded analyses were incorporated for 
the calculation of the weighted mean age.
Eight single-zircon grains of sample Lg14-11 were analyzed and 
yielded concordant U-Pb data (Fig. 2A). Three analyses yield rela-
tively older 206Pb/238U dates of 303.76–397.32 Ma and are proba-
bly of xenocrystic origin. The remaining five analyses form a sig-
nificant cluster with a weighted mean 206Pb/238U age of 301.13 ±
0.20/0.21/0.39 Ma with an MSWD (mean squared weighted de-
viation) value of 0.69 (Fig. 2D). Seven single-zircon grains were 
analyzed from Lg14-32 and yielded concordant U-Pb data (Fig. 2B). 
One grain has obvious inheritance yielding an age of 301.59 ±
0.4 Ma. Another analysis is slightly younger at 298.87 ± 0.24 Ma 
and suggests incomplete mitigation of Pb loss despite the chemi-
cal abrasion approach. The five remaining analyses form a signif-
icant cluster with a weighted mean 206Pb/238U age of 299.32 ±
0.12/0.14/0.35 Ma with an MSWD value of 0.59 (Fig. 2D). Seven 
zircon grains from Lg14-87 were analyzed individually and yielded 
concordant U-Pb data (Fig. 2C). One analysis is an obvious outlier 
with dispersion beyond that expected due to analytical scatter and 
a 206Pb/238U age of 300.65 ± 0.15 Ma, older than the main popu-
lation. Excepting this xenocrystic grain, the other 6 analyses yield 
a weighted mean 206Pb/238U age of 295.65 ± 0.08/0.11/0.34 Ma 
with an MSWD value of 0.82 (Fig. 2D). The reported MSWD value 
for each weighted mean lies within its 95% confidence interval, 
indicating no excess geological scatter in the data. We herein in-
terpret the three weighted mean ages as the eruption ages of the 
ashes, thus indicating the time of accumulation of the enclosing 
sedimentary layers.

3.2. Mudrock mineral and geochemical compositions

Major constituents of the mudrock samples are clay miner-
als, quartz and feldspars with generally low concentrations (each 
less than 5%) of calcite, ankerite, siderite and pyrite (Table S2). 
High carbonate mineral contents were detected in three samples 
(C14-16, C14-64 and C14-65) along with high percentages of CaO, 
MgO and Fe2O3T (Table S3). Mudrocks have a large range of K2O 
(0.12–6.87%) with varied K2O/Al2O3 (Table S4) and K2O/Na2O ra-
tios (<0.01–0.23 and 0.92–52.77, respectively). Over the entire 
sampled succession, analyzed mudrocks show a generally narrow 
range of clay minerals/quartz ratio (3.5–5.5) and Al/Si molar ratio 
(Al/Si*, 0.3–0.5). In contrast, mudrocks from the Benxi Formation 
and the lower Taiyuan Formation display much larger variations in 
these two ratios (3.3–31.3 and 0.1–1.1, respectively; Table S4). The 
Zr/Sc ratio varies in the range of ∼10-30 for most samples but can 
be high (>30) for some samples. The Th/Sc ratio has a positive cor-
relation with Zr/Sc ratio (r2 = 0.52) and changes from 0.5 to 3.0 
with most samples in the range of 0.7-1.3. The La/Yb ratio varies 
from 1.7 to 35.3 with most samples in the range of 12-20 with an 
average of 16.5. The Zr/Ti ratio also has a limited variation in the 
range of ∼0.03–0.08 (Table S4) for all but ten mudrocks (>0.09). 
The samples with higher Zr/Ti ratio possess correspondingly lower 
Na/Zr ratios.

3.3. Mudrock weathering index values

We here combine mineral index of alteration (MIA, Johnsson, 
1993), weathering index of Parker (WIP, Parker, 1970), chemical in-
dex of alteration (CIA, Nesbitt and Young, 1982), chemical index of 
alteration without CaO (CIX, Dinis et al., 2017), sodium weathering 
index (αAl

Na, Garzanti et al., 2013) and sodium depletion index 
(τ Na, Rasmussen et al., 2011) to quantify the chemical weather-
ing intensity experienced by the sources to the mudrocks. Values 
of these weathering indices are calculated according to the for-
mulae outlined in Table S5. Previous studies have shown that the 
dominant source for the early Permian sedimentary rocks in the 
Yongcheng Basin (Yang et al., 2014; 2016) corresponds with the 
composition of the upper continental crust of the southern North 
China craton (Gao et al., 1998). This inference is reasonable be-
cause in this study most analyses plot along the predicted weath-
ering trend (Nesbitt and Young, 1984) of the southern North China 
upper continental crust in the AL2O3-CaO*+Na2O-K2O (A-CN-K) di-
agram (Fig. 3A; Fedo et al., 1995). Furthermore, these samples have 
Zr/Ti, Th/Sc and La/Yb ratios, used as provenance indicators (e.g., 
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Fig. 3. A-CN-K (Al2O3-Na2O+CaO*-K2O) diagram with CIA scale on the left (A, Fedo et al., 1995) and CIX-WIP plot (B, Dinis et al., 2017) for the analyzed Zk0901 mudrock 
samples. In A-CN-K diagram, mudrock samples plot in the intermediate-intense weathering zones and generally mimic the ideal weathering trend of the southern North 
China upper continental crust (SNC, Gao et al., 1998). In CIX-WIP plot (Dinis et al., 2017), mudrock samples mainly define a linear relationship tracking the weathering trend 
of the southern North China upper continental crust and suggest a first-cycle derivation from the source region in southern North China. There are some samples plotting off 
obviously the source weathering trend lines in A-CN-K and CIX-WIP diagrams. These samples show high Mg-Ca carbonate mineral contents or have low clay mineral/quartz 
and Al/Si* ratios, or present high K2O/Al2O3 or K2O/Na2O ratios.
Scheffler et al., 2003), close to that of the southern North China 
upper continental crust (Table S4; Gao et al., 1998). Therefore, the 
composition of the southern North China upper continental crust 
is used as the average source rock to calculate αAl

Na and τ Na val-
ues for the analyzed mudrock samples. Obtained values of MIA, 
WIP, CIA, CIX, αAl

Na and τ Na range from 0.60 to 1.0, from 2.0 to 
60.8, from 75.1 to 99.3, from 78.4 to 99.5, from 2.6 to 210.4 and 
from −0.99 to −0.55, respectively (Table S4).

4. An age model for the Permo-Carboniferous succession in 
North China and correlation with the Euramerican successions

The age of the Permo-Carboniferous strata in North China is 
only broadly constrained based on biostratigraphy and has large 
uncertainties (Wang and Qi, 2003; Shen et al., 2019). The Permo-
Carboniferous boundary has been placed at the bottom, in the 
middle, or at the top of the Taiyuan Formation in southern North 
China (Pei, 2004; Wang and Qi, 2003 and references therein). Our 
dated tuffaceous layers bracket the strata of the Taiyuan Formation 
except for the top limestones (Fig. 1B). These high-precision ages 
indicate a well-constrained late Gzhelian (Late Pennsylvanian) to 
late Asselian (early Cisuralian) age for this formation (Fig. 4), ac-
cording to the latest timescale for the Permian (Shen et al., 2019). 
The obtained age of 299.32 Ma from the middle Taiyuan Forma-
tion is close to the Permo-Carboniferous boundary age of 298.9 
± 0.15 Ma (Schmitz and Davydov, 2012) and thus constrains the 
Permo-Carboniferous boundary to the middle part of the Taiyuan 
Formation in the Yongcheng Basin. Limestones from the top of the 
formation in a section close to this basin yield a Sweetognathus
conodont fauna suggesting a middle Sakmarian to early Artinskian 
age (Gao et al., 2005). This biostratigraphic age would suggest an 
unconformity between the dated tuffaceous sandstone with age of 
∼ 295.65 Ma and the top limestones in the Taiyuan Formation 
if the latter also have the same conodont fauna. However, there 
is no corresponding geological evidence observed for an uncon-
formity in the sampled core succession. Importantly, this reported 
fauna is also proposed to contain Adetognathus (= ?Sweetognathus 
sulcatus in Gao et al., 2005), which became extinct in the low-
est conodont biozone (Sweetognathus binodosus) of the Sakmarian 
(Fig. 4; Henderson, 2018; Shen et al., 2019). If so, this fauna can 
be recalibrated to a latest Asselian age, which is consistent with 
our high-precision dating results. Unfortunately, we do not have 
the conodont elements reported in Gao et al. (2005) to confirm 
this inference. Detailed conodont biostratigraphic work needs to 
be undertaken on this strata interval.
Fig. 4. Devised age model through the core Zk0901 succession based on time scale 
and conodont zonation of Shen et al. (2019) and Henderson (2018). Abbreviations: 
Sak-Sakmarian, Art-Artinskian, Bx-Benxi Formation, Xs-Xiashihe Formation.

Based on the three high-precision zircon U-Pb ages, three aver-
age depositional rates of 17.7 ± 2.2 m/Myr, 16.5 ± 0.6 m/Myr, 
and 16.9 ± 0.7 m/Myr, without compaction correction, can be 
calculated for the strata intervals between sample Lg14-11 and 
Lg14-32, between Lg14-32 and Lg14-87, and between Lg14-11 
and Lg14-87, respectively. Given this concordance in depositional 
rate, we assume an overall average sediment accumulation rate 
of 16.9 m/Myr for the sampled strata interval and define an age 
model by linear interpolation (Fig. 4). This age model tightly con-
strains the studied succession of the Benxi, Taiyuan and Shanxi for-
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mations to within the late Gzhelian-Sakmarian (Fig. 4; Henderson, 
2018; Shen et al., 2019). Noting that the depositional rate could 
be variable in view of the shift in lithology and sedimentary facies 
especially for the interval above Sample14-87, the proposed linear 
age model may have large uncertainties. In spite of this deficiency, 
a model age of ∼291 Ma is acquired for the top Shanxi Formation 
(Fig. 4) in agreement with a tuff zircon U-Pb age of 293.0 ± 2.5 
Ma reported from the upper Shanxi Formation in the same basin 
(Yang et al., 2014), although the latter age has a large uncertainty 
and cannot provide a precise age constraint on the strata.

In North China, the Taiyuan Formation consists of cyclic de-
posits of coals, shales, sandstones and limestones (Yang et al., 
2017; Wang, 1985) and has been tentatively linked to glacial eu-
static transgressive-regressive episodes (Yang et al., 2017). In the 
Euramerican segment of tropical Pangea, the Permo-Carboniferous 
stratigraphic cyclothems have long been recognized as a far-
field effect of Gondwana glaciation and associated global cli-
mate changes (Eros et al., 2012; Schmitz and Davydov, 2012
and references therein). High-precision radiometric dating and 
high-resolution conodont biostratigraphic work has enabled Pan-
Euramerican correlations of these late Paleozoic cyclothemic suc-
cessions in disparate basins (Eros et al., 2012; Schmitz and Davy-
dov, 2012 and references therein). The North China succession has 
been noted to mimic the Pennsylvanian-early Permian cyclothems 
of Euramerica (Yang et al., 2017). Our high-precision zircon U-
Pb ages provide a tight age constraint for the Taiyuan Formation 
in southern North China and enable precise correlation with the 
radiometrically dated, conodont biostratigraphically constrained, 
latest Pennsylvanian to earliest Permian successions in Euramer-
ica (Schmitz and Davydov, 2012 and references therein).

5. Permo-Carboniferous weathering trends in the southern 
North China

Muds/mudrocks have the potential to provide valuable informa-
tion on the weathering intensity of their source landscapes (e.g., 
Nesbitt and Young, 1982; Garzanti et al., 2013; Scheffler et al., 
2003). For the studied mudrocks, calculated MIA, CIA, CIX, WIP, 
αAl

Na and τ Na values are plotted along the age model to track their 
source weathering trends (Fig. 5). Of the 119 analysed mudrocks, 
the majority preserve compositional variations predominantly re-
lated to chemical weathering of the source, but 38 samples show 
mineral and geochemical characteristics indicating effects of diage-
netic alteration, hydrodynamic sorting and recycling, or provenance 
change (Figs. 3 and 5; Fedo et al., 1995; Garzanti et al., 2013; 
Garzanti and Resentini, 2016; Lupker et al., 2013; von Eynatten et 
al., 2016). The criteria by which they were excluded are outlined 
in the supplementary data files.

The remaining 81 mudrock samples have low K2O/Al2O3 ratios 
and show a narrow variation in clay minerals/quartz, Al/Si* and 
Zr/Ti ratios, with the latter close to that of the southern North 
China upper continental crust (Fig. 5). They have CIA values, the 
most widely used weathering index, that display a positive cor-
relation with MIA (r2 = 0.45, P < 0.001), CIX (r2 = 0.90, P <
0.001) and αAl

Na (r2 = 0.72, P < 0.001), and a negative cor-
relation with WIP (r2 = 0.71, P < 0.001) and τ Na (r2 = 0.42, 
P < 0.001). On the other hand, CIA values are poorly correlated 
with clay minerals/quartz, Zr/Sc, Zr/Ti and Th/Sc ratios (r2 = 0.02, 
0.03, 0.03 and 0.01, respectively), which are indicators of dynamic 
sorting, sedimentary recycling and provenance change (Johnsson, 
1993; von Eynatten et al., 2016; Garzanti and Resentini, 2016
and references therein). The results also show poor correlation 
of Al/Si* ratio with clay minerals/quartz (r2 = 0.06, P < 0.001) 
and Zr/Zn ratios (r2 = 0.09, P < 0.001), all of which were used 
to monitor grain-size variation for silt-clay sediment (Lupker et 
al., 2013; von Eynatten et al., 2016). These relationships suggest 
that the sample compositional trends are unlikely controlled by 
grain size change and thus have little or no sorting effects. In ad-
dition, these samples dominantly plot along the ideal weathering 
trend of the southern North China upper continental crust on the 
A-CN-K (Fig. 3A) and the CIX-WIP (Fig. 3B) diagrams. This indi-
cates a persistent sediment supply from a source in southern North 
China (Fedo et al., 1995; Yang et al., 2016) and implies little or 
no effect on the sample compositional trends from sedimentary 
recycling (Dinis et al., 2017; Garzanti et al., 2013). An insignifi-
cant influence from sedimentary recycling is further supported by 
the notable stratigraphic framework in North China with Permo-
Carboniferous sequences disconformably overlying lower Paleozoic 
carbonates (Wang, 1985), which cannot provide a recycled silici-
clastic source (Johnsson, 1993). Therefore, these screened mudrock 
samples retain source chemical weathering signals, and their se-
quential variations of calculated MIA, CIA, CIX, WIP, αAl

Na and τ Na
values should accordingly reflect the chemical weathering trends 
in the source (e.g., Johnsson, 1993; Nesbitt and Young, 1982; Schef-
fler et al., 2003). These variations in chemical weathering trends 
(Fig. 5) reveal a remarkable increase, followed by an immediate 
decrease of similar magnitude in weathering intensity, in the up-
permost Carboniferous to lower Asselian interval (∼299-296.5 Ma) 
with relatively smaller fluctuations in the rest of the Asselian in-
terval. The lowest Asselian mudrocks have much higher CIA values 
than those in the rest of the studied interval with the former and 
latter comparable to that of the river mouth muds in the humid 
equatorial and subequatorial Africa, respectively (Fig. 5; Dinis et 
al., 2017; Garzanti et al., 2013).

6. Implication for an earliest Asselian climate warming

A record of source weathering trends for the end-Carboniferous 
to early Permian (∼300-290 Ma) for southern North China emerges 
when the results of this study are integrated with previously 
published mudrock data from the upper Shanxi Formation and 
bottom of the Xiashihezi Formation in core Zk090 (Yang et al., 
2016). The observed variation in CIA values from Zk0901 is com-
parable to that recorded in time-equivalent deposits of the upper 
Dwyka to bottom Ecca Group in South Africa (Fig. 6A; Scheffler 
et al., 2003; Stollhofen et al., 2008). In addition to a significant 
Sakmarian increase in CIA values (Yang et al., 2014), correspond-
ing to the early Permian glacial to postglacial transition (Scheffler 
et al., 2006), both the CIA trends from equational North China 
and high-latitude South Africa display an increase at the Permo-
Carboniferous boundary (∼299 Ma) and present high values in the 
earliest Asselian (Fig. 6A). Corresponding to this earliest Asselian 
high weathering intensity period is the interstadial phase of the 
Hardap Shale Member at the top of the deglaciation sequence III 
of the Dwyka Group (Fig. 6A). The top of Hardap Shale member 
has been tightly constrained at ∼296.5 Ma by CA-TIMIS method 
(Griffis et al., 2019). Biostratigraphically, this shale member of 
Dwyka Group can be correlated with the postglacial sedimentary 
rocks of the uppermost Itararé Group in Paraná Basin (Taboada et 
al., 2016), where the onset of deglaciation has been well dated at 
around the Permo-Carboniferous boundary (>298 Ma, Griffis et al., 
2018). Latest Gzhelian-earliest Asselian deglacial climate warming 
has also been documented in Eastern Gondwana and NE Russia 
near the paleo-pole by shallow marine fossil data (Davydov et al., 
2013; Davydov and Biakov, 2015). This correlation supports the 
linkage of high weathering intensity with deglacial warming and 
argues for a global climate control on the weathering trends.

We here apply a statistically tested hypothesis that weather-
ing is approximately supply-limited in most hillslope landscapes 
(e.g., Ferrier et al., 2016) to the eroding Permo-Carboniferous land-
scapes in southern North China. Modern surface soils in a supply-
limited weathering regime tend to be chemically depleted to an 
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Fig. 5. Stratigraphic variations of mineralogical and geochemical proxies for the analyzed Zk0901mudrock samples. Locally estimated scatterplot smoothing trendlines using 
PAST software (http://folk.uio .no /ohammer /past/, 0.1 smoothing, solid lines) with 2.5% and 97.5% bootstrapped errors (dashed lines) are shown for MIA, WIP, CIA, CIX, αAl

Na

and τ Na values (see the Data Repository for details). In the weathering index panels, red and green arrows indicate more and less weathered directions, respectively. The CIA 
value ranges for river mouth muds in humid subequatorial and equatorial Africa (HSEA and HEA, Dinis et al., 2017; Garzanti et al., 2013) are also shown for comparison. The 
K2O/Al2O3 and Zr/Ti ratios of the southern North China upper continental crust are indicated (vertical blue dotted lines). Only the samples used for smoothing analysis are 
plotted in Fig. 6.

Fig. 6. Global correlations of climate and weathering records across the Permo-Carboniferous transition. (A) Karoo succession spanning the glacial Dwyka Group to the base of 
post-glacial Ecca Group in South Africa constrained by zircon U-Pb ages (Stollhofen et al., 2008; Griffis et al., 2019) and its CIA trend (Scheffler et al., 2003) compared to that 
of Yongcheng succession (Zk0901). HSM: the Hardap Shale Member (HSM) at the top of the deglacial sequence III (DS III) of the Dwyka Group. HSM can constrained by CA-
TISM zircon U-Pb dating and biostratigraphic correlation in the age range of ∼299-296.5 Ma (Griffis et al., 2019; Stollhofen et al., 2008; Taboada et al., 2016). (B) Temporal 
distribution of τ Na for Zk0901 with corresponding LST (bottom axis) estimated using the transfer function of Yang et al. (2016). (C) Latest Carboniferous-early Permian 
glaciation history for paleo-Gondwanan regions of eastern South America (ESA), South Africa (SAF), Antarctica (ANT), India (IND), Tethys Himalaya (TH), western Australia 
(WAU) and east Australia (EAU). (D) Sequential variation of conodont δ18O from Naqing section of South China (Chen et al., 2016). (E) High-precision dating calibrated 
stratigraphical variation of conodont 87Sr/86Sr ratio from Urals (Henderson et al., 2012). (F) U-Pb and Ar-Ar dating results for the Oslo graben basaltic lava, North Sea basalts, 
West Midland Valley alkaline sill, northeastern England dolerite and south Sweden mafic sills of the Skagerrak-Centered LIP (Corfu and Dahlgren, 2008; Hamilton and Pearson, 
2011; Heeremans et al., 2004; Monaghan and Pringle, 2004; Torsvik et al., 2008 and references therein; Table S6). Blue solid and dashed lines in B, C and D are the locally 
estimated scatterplot smoothing trendlines (PAST, 0.2 smoothing) and bootstrapped errors (2.5% and 97.5%), respectively. Pink shading indicates the interval (∼298.5-297.5 
Ma) with the earliest Asselian temperature peak and the red line denotes the onset of the climate warming in the latest Gzhelian (∼299 Ma).
extent (weathering intensity) largely controlled by precipitation 
and temperature (Ferrier et al., 2016 and references therein; Riebe 
et al., 2004). Because there was an ever-wet coal-forming climate 
in North China during the early Permian (Montañez and Poulsen, 
2013; Tabor and Poulsen, 2008), the observed weathering trends 
might not be controlled by water availability, but likely indicate 
changes in land surface temperature (Yang et al., 2016). Using the 
τ Na–based transfer function (Yang et al., 2016), a reconstructed 
land surface temperature trend through the sampled succession 
suggests a distinct warming of ∼3-5 ◦C (with an uncertainty of 
2.7 ◦C), immediately followed by a rapid cooling in the early As-
selian and generally lower temperatures in the middle Asselian-
early Sakmarian (Fig. 6B).
This earliest Asselian warming may have already initiated in 
the latest Gzhelian (∼300-299 Ma, Fig. 6B). It is correlated with 
a Gondwana-wide deglacial transgression (Stollhofen et al., 2008
and references therein) and thus reflects a significant retreat of 
the Gondwana ice sheet (Fig. 6). The subsequent cooling is tempo-
rally correlated with the resumed tillite deposition in South Africa 
(Fig. 6C), marking an ice sheet expansion event in Gondwana. It is 
important to note that there are near-field glacial facies in other 
parts of Gondwana (India, Tethys Himalaya, Australia and Antarc-
tica) (Fig. 6C, Montañez and Poulsen, 2013; Torsvik et al., 2014; 
Isbell et al., 2012; Fielding et al., 2008), representing a deep-freeze 
climate state for much of the Asselian. Though not well age con-
strained, stratigraphic correlations may also suggest deglacial de-

http://folk.uio.no/ohammer/past/
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posits in Himalayas and western Australia in eastern Gondwana at 
around the Permo-Carboniferous transition in addition to the South 
America (Davydov et al., 2013; Garzanti et al., 1998; Griffis et al., 
2019; Taboada et al., 2016). Coincidently, conodont δ18O values 
from South China show a ∼1� decrease and a subsequent in-
crease in the earliest Asselian (Fig. 6D; Chen et al., 2016), denoting 
a consistent pattern for the tropical sea water temperature change. 
During this earliest Asselian warm interval there is a short-term 
sea level high (∼297.5 Ma, Haq and Schutter, 2008). Consequently, 
a coincidence of deglaciation, higher temperature and sea-level 
high stand likely defined a climate warm interval in the first ∼2 
m.y. in the Asselian immediately predating the late Paleozoic max-
imum icehouse.

7. Causal link with the Skagerrak-Centered LIP?

The earliest Asselian temperature maximum is apparently com-
parable to that in the middle Miocene (∼17-15 Ma), which was 
associated with ice sheet retreat and climate warming during the 
late Cenozoic icehouse and has been causally linked to the erup-
tive CO2 release of the Columbia River Flood Basalts (McKay et al., 
2014; Kasbohm and Schoene, 2018 and reference therein). Simi-
larly, the hypothesized earliest Asselian climate warming is tempo-
rally overlapping with the massive basaltic eruptions and mafic in-
trusions of the Skagerrak-Centered LIP (Torsvik et al., 2008). Over-
all, this LIP magmatism may extend from the Late Carboniferous 
to early Permian (Torsvik et al., 2008). However, the main phase 
of basaltic volcanism in the Oslo graben and North Sea, and of 
mafic sills in Scotland, England and south Sweden, is constrained 
through U-Pb and Ar-Ar geochronology within a brief interval of 
∼300–298 Ma (Table S6; Corfu and Dahlgren, 2008; Heeremans 
et al., 2004; Monaghan and Pringle, 2004; Hamilton and Pear-
son, 2011; Timmerman et al., 2009). Although the uncertainties 
on these compiled ages for the Skagerrak-Centered LIP are large 
and need to be improved in the future, especially the Ar-Ar data, 
they are consistent with the hypothesis that the main basaltic 
phases of this LIP are temporally correlated with the earliest As-
selian warming. As generally assumed and modelled for other LIPs 
(Dessert et al., 2001; Ernst and Youbi, 2017; Schaller et al., 2012), 
the Skagerrak-Centered LIP event may have resulted in a rapid re-
lease of voluminous CO2 into the atmosphere, leading to a rise in 
atmospheric pCO2. It is, however, difficult to quantify the amount 
of CO2 emitted without knowing critical information like original 
volume, eruptive rate, and magmatic process of the LIP (Corfu and 
Dahlgren, 2008; Neumann et al., 2004; Self et al., 2006). Nonethe-
less, using a conservative volume estimate of ∼1.5 ×105 km3 for 
the erupted basalts in Skagerrak-Centered LIP (Neumann et al., 
2004; Torsvik et al., 2008) and scaling based on data estimated 
for the Deccan basalts (Self et al., 2006), suggests a possible mag-
matic release of 1.4 × 103 Pg CO2. Additional CO2 emissions could 
come from contact metamorphism related to the voluminous in-
trusions of sills and dyke swarms in the LIP (McKay et al., 2014; 
Torsvik et al., 2008; Phillips et al., 2018). Importantly, the back-
ground atmospheric pCO2 at the Permo-Carboniferous transition is 
quite low (Montañez et al., 2016) and would be sensitive to the 
change in the rate of magmatic CO2 input. Therefore, the potential 
release of CO2 during the emplacement of the Skagerrak-Centered 
LIP could potentially have resulted in a greenhouse warming in the 
earliest Permian (∼299-298 Ma).

A subsequent rapid cooling (∼298-296.5 Ma) after the earli-
est Asselian warming is indicated by the weathering trends in 
North China and the conodont δ18O data from South China (Fig. 6). 
This cooling event is associated with a rapid drawdown of atmo-
spheric pCO2 (Montañez et al., 2016) and a lowering in short-
term sea level (Haq and Schutter, 2008), although there are no 
high-precision age constraints for the latter two events. It might 
correspond with the onset of the early Permian peak icehouse 
(Soreghan et al., 2019). Based on global radio-isotopically dated 
intermediate-felsic eruption data, Soreghan et al. (2019) proposed 
a radiative forcing effect of explosive volcanic sulfate aerosols on 
the early Permian glacial acme. This climatic cooling effect is likely 
to provide an important control factor to the late Paleozoic ice 
age. However, the compiled explosive volcanic records in Soreghan 
et al. (2019) have a temporal resolution of 10 Myr, because of 
their general large uncertainties in determined ages, which is hard 
to reconcile with our high-resolution (<1 Myr) climate variations 
in the Permo-Carboniferous transition. Therefore, another climate 
cooling mechanism is hinted for the early Asselian cooling.

This cooling trend immediately following a rapid warming is 
reminiscent of the negative climate feedback of LIP basaltic weath-
ering as proposed for the Deccan Traps (Dessert et al., 2001) 
and Central Atlantic Magmatic Province (Schaller et al., 2012). In
the earliest Asselian there is a remarkable decreasing trend of 
marine 87Sr/86Sr based on high-precision zircon U-Pb dating of 
the calibrated conodont strontium isotopic curve from the Ural 
successions (Fig. 6E, Henderson et al., 2012). This has a rate of 
∼0.00015/Myr (Henderson et al., 2012), much higher than that for 
the whole Early Permian (Korte and Ullmann, 2018). The over-
all decrease in the Early Permian marine 87Sr/86Sr has been re-
lated to enhanced igneous activity or a reduction in radiogenic 
riverine Sr flux (Korte and Ullmann, 2018 and references therein). 
But these explanations are inconsistent with coincident low atmo-
spheric pCO2 and high pO2 during the earliest Permian (Chen et 
al., 2018). This faster decreasing trend of marine 87Sr/86Sr dur-
ing ∼298.5 to 298 Ma is temporally correlated with the earliest 
Permian temperature maximum (Fig. 6E; Henderson et al., 2012). 
Considering its occurrence immediately following the emplace-
ment of the Skagerrak-Centered LIP basalts, it is possible that the 
rapid chemical weathering of the basalt and the resultant influx 
of unradiogenic Sr into the ocean would partially account for the 
earliest Permian decrease in marine 87Sr/86Sr. This linkage is sup-
ported by further evidence: (1) the volcanic rocks in Skagerrak-
Centered LIP generally have low 87Sr/86Sr ratios in the range of 
∼0.703-0.705 (Neumann et al., 2004), (2) the Skagerrak-Centered 
LIP was emplaced in a humid tropical latitude (∼11◦ N, Torsvik et 
al., 2014), and (3) the stratigraphic framework in this LIP suggests 
that the basaltic volcanic sequences have experienced extensive 
post-eruptional weathering and erosion at least in the early Per-
mian (Neumann et al., 2004). In addition, LIP volcanic rocks are 
more chemically reactive to weathering than continental silicates 
and their chemical weathering tends to effectively consume atmo-
spheric CO2 (Dessert et al., 2001; Schaller et al., 2012). Importantly, 
models suggested that the LIP basaltic weathering could reduce the 
pCO2 to below pre-eruptive levels and result in a cooler climate in 
1-2 Myr (Dessert et al., 2001; Schaller et al., 2012). Following the 
assumptions for other LIPs (Ernst and Youbi, 2017 and references 
therein), the basaltic weathering of Skagerrak-Centered LIP could 
have likely driven the indicated atmospheric CO2 drawdown and 
induced the subsequent climate cooling and widespread glaciation 
through the remaining Asselian and early Sakmarian stages of the 
early Permian.

8. Conclusions

Volcanism-climate interaction is an intriguing topic especially 
for the Permo-Carboniferous ice age with multiple glacial-deglacial 
cycles and massive pulses of felsic-basaltic volcanism. A cored 
Permo-Carboniferous succession in southern North China was 
studied in terms of geochronology and weathering geochem-
istry. Three tuff layers were dated with high-precision CA-TIMS 
single zircon U-Pb dating method and yield ages of 301.13 ±
0.20/0.21/0.39 Ma, 299.32 ± 0.12/0.14/0.35 Ma and 295.65 ± 0.08 
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/0.11/0.34 Ma. Assuming a consistent rate of sediment accumula-
tion, a linear age model is proposed for, and contains, the sampled 
strata in age range between ∼302-290 Ma. Systematic variations in 
calculated weathering index values from screened mudrock sam-
ples from this dated Permo-Carboniferous succession track weath-
ering trends in the source landscapes in southern North China and 
indirectly indicate significant perturbations to climate. When inte-
grated with geochronological and biostratigraphic data, the U-Pb 
calibrated climate proxy records from conodont fossils in South 
China and glacial deposits in Gondwana, the weathering trends for 
the North China succession developed in this study document an 
earliest Permian temperature maximum in the early Permian ice-
house. Our new data compiled with literature studies support a 
causal linkage between this climate warming-cooling perturbation 
and the Skagerrak-Centered LIP through magmatic-metamorphic 
CO2 emission and subsequent post-eruptional basaltic weathering 
and CO2 drawdown, although further work on improving age con-
straints for this LIP event is to be encouraged.
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