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Abstract

A method for the generation of realistic fracture patterns is presented. The com-

pute program, written in FORTRAN 77, follows an approach of the scaling of nat-

ural fractures. The properties of spatial and size distributions are controlled by the

statistical distribution. It is a fast and e�cient way to generate various fractured

patterns with realistic spatial distributions, including power-law or fractal distribu-

tion of fracture sizes. The patterns created by the program have been applied to

model seismic wave propagation, and 
uid 
ow simulation in fractured rocks. Some

sample patterns are presented in this paper to demonstrate the 
exibility of this

simple, and e�cient method.

Key words: Fracture pattern, fractal distribution, �nite-di�erence methods, wave

propagation, FORTRAN 77.

1 Introduction

Scaling in fracture systems has become an active �eld of research in the last 25
years motivated by practical applications (e.g. Bonnet et al., 2001). In the case
of the hydrocarbon industry, scaling laws provide a key to the prediction of the
nature of subseismic fracturing (below the limit of seismic resolution), which
can signi�cantly in
uence 
uid 
ow in reservoirs and cap rock quality, from
seismically resolved faults. The numerous studies of fracture-system scaling in

1 Also at: Department of Geology & Geophysics, University of Edinburgh, Grant
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the literature do indeed suggest that scaling laws exist in nature. It is also
indicated, however, that such scaling laws must be used with caution due to
the physical in
uences that govern their validity. In recent years the power
law distribution has been increasingly employed to describe the frequency
distribution of fracture properties and geometry. However, a power law is not
an appropriate model in all cases, and other distributions that have been
used include the log normal, gamma, and exponential laws. In the program
presented here we have a choice between a power law, a random uniform, a
Gaussian, an exponential, and a Gamma distribution. Other distributions may
easily be included without additional di�culty.

The generation of synthetic fracture populations and patterns has become
well-established using sophisticated cellular automatons. Those models can
create detailed patterns of development of a population of fractures involv-
ing nucleation, growth, branching, interaction and coalescence (Cowie et al.,
1993; Cowie et al., 1995; An and Sammis, 1996; Narteau et al., 2000). Such
a detailed discussion and representation of fracture generation, evolution and
formation of certain patterns are beyond the scope of the program presented
here. Instead, we present a simple, but yet e�cient method to generate real-
istic fracture patterns for applications, for example, in the forward modelling
of wave propagation and 
uid 
ow simulation in fractured media. Though the
created fracture patterns do not obey to any law that controls their evolution,
their spatial or size pattern follows a statistical distribution de�ned by the
user.

2 Generation of fracture distributions

In this section, we will describe the procedure and the algorithm that are
used to create the di�erent fracture patterns. The algorithm can generate four
di�erent spatial distributions of fractures, (a) random uniform, (b) Gaussian,
(c) exponential, and (d) gamma. The certain distributions are chosen as being
the most commonly demonstrated patterns in fractured rock. For instance,
in continental rocks and in the vicinity of mid-oceanic ridges fracture growth
results from a uniform stress distribution (Dershowitz and Einstein, 1988),
and propagation of fratures can be compared to a Poisson process (Cruden,
1977) resulting in an exponential distribution. Also the gamma distribution
is a power law with an exponential tail and is in common use in fault and
earthquake statistics and seismic hazard assessment (Main, 1996; Sornette
and Sornette, 1999).

The algorithm utilizes the di�erent random number generators (e.g. Press et
al., 1997; or supplied by users), that varies according to the distribution de-
�ned by users. For each distribution, the generator is applied once to give
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x-coordinates, and completely independently once more to give z-coordinates.
Both x- and z-coordinates are then normalised to the grid size of the model.
Those pairs of x- and z-coordinates are the centres of the distributed fractures.
The resulting distribution of fractures, without any alterations, is the parent
spatial distribution. The size and orientation of the fractures are given as in-
puts to the algorithm. Subsequently, the algorithm examines the fractures for
any overlapping cases. We de�ne overlapping as the case where the distance
between the centres of two fractures is less than a prede�ned value. The test-
ing of overlapping is optional and depends on users' choice. After that, the
remaining number of distributed fractures is counted. If that number is less
than the desired number, the resulting distribution of fractures is rejected.
The number of fractures following the parent spatial distribution is raised by
a number chosen by users (the default number is set to 5). A new group of
fractures, spatially distributed according to the parent distribution, is chosen.
The new group of fractures follows the same procedure that described above.
This process continues until the desired number of non-overlapping spatially
distributed fractures is reached. A 
ow chart of the �ltering algorithm is pre-
sented in Fig. 1. The �nal spatial distribution of the fractures is a result of
the parent distribution after applying data �ltering, so we call this the daugh-
ter spatial distribution. The spatial correlation in the daughter population is
then determined by the two-point correlation function of the fracture centre
locations in two dimensions. The two-point correlation function C(r), for each
distribution is de�ned as, C(r) = 1

N2Nd(r); where N is the total number of
points and Nd is the number of pairs of points whose distance is less than r

(Hentschel and Proccacia, 1983).

3 Examples

We present three examples, that exhibit the use of the presented program in
the generation of fracture distributions which have di�erent statistical prop-
erties. For each example we also show the statistical properties. We present
a case of parallel fractures of the same size that have di�erent spatial distri-
butions, a case of parallel fractures that have di�erent sizes, and fractures at
arbitrary angles.

3.1 Spatial distributions

The �rst example is given in Fig. 2, in which we present four di�erent sim-
ulations of fracture distributions. In each model, there are 100 fractures dis-
tributed in a 1280 x 1280 m2 area. The parent distributions for the fracture
centre spacing are (a) random uniform, (b) Gaussian, (c) exponential, and (d)
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Gamma. In this simulation, each fracture has the same length, 2a = 30m. As
we can see from Fig. 2 due to statistical distribution, fractures are clustered in
models (b) and (c), whereas they are uniformly distributed or more scattered
in models (a) and (d). In the case of model (c), where the fractures are expo-
nentially distributed, they are all concentrated in a small area forming a big
cluster. In the current simulation we chose not to allow overlapping between
the fractures.

To examine the validity of the algorithm, we present the statistical properties
of each distribution in Figs. 3, 4, 5, and 6, respectively. In (a) and (b) of those
�gures we show the independent probabilities P (x) and P (z) as a function
of the x- and z-coordinates of the centres of the fractures, for the daughter
distributions (a), (b), (c), and (d) of Fig. 2. The probability plots con�rm that
the random number generator does create the expected distributions. We also
present the two-point correlation functions of the parent spatial distributions,
in Figs. 3(c), 4(c), 5(c), and 6(c). We can see that the random uniform dis-
tribution has correlations that peak in the middle range, the Gaussian and
the exponential peak in the short range, and the Gamma is the most broad-
band distribution. Thus the ratio of wavelength to correlation length will be
greatest for the random uniform distribution, and smallest for the Gamma
distribution.

3.2 Power-law or fractal distribution of fracture sizes

In the second example we demonstrate the generation of a fractured net-
work with fractures of variable size. The variation of crack sizes follows a
von K�arm�an correlation function, which gives a power-law or fractal distribu-
tion (Wu, 1982). An exponential and a Gaussian correlation function is also
available for users to choose. Other functions can also be implemented. The
resulting model is shown in Fig. 7(a). We have 150 fractures with a correlation
length of 200m, distributed in an 25600 x 2560 m2 area following a Gamma
spatial distribution. The crack size varies from 10m to 250m, and is shown in
Fig 7(b) for each one of the cracks. In Fig. 7(c) we present the power spectrum
of the size distribution in a log-log scale. The plot shows that the logarithm
of the power spectrum varies approximately linearly with the logarithm of
the spatial wavenumber. Such a size distribution, is a power-law distribution,
often called a fractal (Bonnet et al., 2001).

3.3 Multifracture sets or orientation distributions

There is an option in the program to generate fracture patterns with multi-
ple sets at di�erent orientations or with a given orientation distribution, such
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as normal or Gaussian function. In this example shown in Fig. 8, we create
a fracture network consisting of three sets and each set has a di�erent ori-
entation. The �rst set has a uniform spatial distribution, is parallel to the
x-direction, and the fracture size varies from 10m to 400m. The second set has
a Gaussian distribution, is orientated 30o from the horizontal, and the frac-
ture size varies from 10m to 200m. The third set has a Gamma distribution,
is oriented 60o from the horizontal, and the size varies from 100m to 600m.
We chose each of the set to have di�erent spatial distribution and size in order
to represent a case of three di�erent preferential fracture orientations where
the di�erence in the stress conditions generate fractures of di�erent sizes and
spatial distributions.

4 Applications

There is an increasing interest in understanding the complicated nature of seis-
mic wave propagation in fractured rocks. Numerical modelling techniques are
becoming very common for this purpose and there is a variety of approaches
currently available. The algorithm presented here provides a simple, but yet
realistic tool to generate fractured rock models that have certain statistical
properties and examine how those properties a�ect the wave propagation in
the rock. Such studies may ultimately lead to the extraction of valuable infor-
mation about the fracture distributions in natural rocks, directly from seismic
data. The synthetic patterns generated using this simple method may be po-
tentially used for a range of applications. Here we just list three cases where
we have used the synthetic fracture patterns for various applications (details
of these can be found in our companion papers).

a) The generated fracture patterns can be compared with real fracture pat-
terns to understand the rock mechanics of natural fractures and to study the
statistical properties of natural fractures (Main et al., 1990).

b) The synthetic fracture patterns can be used to study the seismic wave
propagation in fractured rock (Liu et al., 2001). In a separate paper, We
present some results of numerical modelling using the pseudospectral method.
We use the models presented in Fig. 2, put a source in the center of the model
and take snapshots at consecutive time steps. A sample snapshot is shown in
Fig. 9. The algorithm was used by (Vlastos et al., 2003) to simulate fractured
rock, and study the e�ects of spatial distribution of cracks and their sizes.

c) These synthetic fracture patterns can be used in an existing 
uid 
ow
simulator to study the e�ects of various fracture distributions on 
uid 
ow in
fractured rock. An example has been given in our companion paper (Vlastos
et al., 2003).
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5 Summary

Understanding the response of the rock to seismic waves is an important issue
in exploration geophysics. Fracturing is making things more complicated and
a good representation of the fractured network is needed for a complete study
of the e�ects. We presented an algorithm that uses a simpli�ed approach to
the generation and evolution of the network of cracks. The algorithm is a
useful tool for the creation of sets of cracks that have statistical properties of
our choice. It has been used successfully for wave propagation studies. The
code is written in standard FORTRAN 77, and is available from the author
(E.Liu@bgs.ac.uk).
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FIGURE CAPTIONS

Figure 1. Flow chart of the algorithm used to generate the four spatial dis-
tributions of fractures shown in Fig. 4.

Figure 2. The four di�erent models, illustate di�erent statistical distribu-
tions of fractures: (a) random uniform, (b) Gaussian, (c) exponential, and (d)
Gamma.

Figure 3. Statistical properties of the random uniform distribution of frac-
tures in Fig. 4(a). (a) Probability plot of the coordinate of the centre of frac-
tures along the x-direction, (b) Probability plot of the coordinate of the centre
of fractures along the z-direction, (c) Two-point correlation function of the
parent distribution of fractures.

Figure 4. Statistical properties of the Gaussian distribution of fractures in
Fig. 4(b). (a) Probability plot of the coordinate of the centre of fractures along
the x-direction, (b) Probability plot of the coordinate of the centre of frac-
tures along the z-direction, (c) Two-point correlation function of the parent
distribution of fractures.

Figure 5. Statistical properties of the exponential distribution of fractures
in Fig. 4(c). (a) Probability plot of the coordinate of the centre of fractures
along the x-direction, (b) Probability plot of the coordinate of the centre of
fractures along the z-direction, (c) Two-point correlation function of the par-
ent distribution of fractures.

Figure 6. Statistical properties of the Gamma distribution of fractures in
Fig. 4(d). (a) Probability plot of the coordinate of the centre of fractures
along the x-direction, (b) Probability plot of the coordinate of the centre of
fractures along the z-direction, (c) Two-point correlation function of the par-
ent distribution of fractures.

Figure 7. (a) Fracture distribution with power-law distribution of fracture
sizes. (b) Illustration of the sizes of fractures in model (a), that follow a power-
law distribution. (c) Power spectra of fracture size distributions shown in (a).
(d) Cumulative number of the fractures of model (a) plotted against the frac-
ture size.

Figure8. Three sets of fractures with di�erent orientations.

Figure9. Snapshots taken at t=250 ms. (a) to (d) correspond to fracture
distributions (a) to (d) in Fig. 2. The numbers on the top and on the left side
of the snapshots are the actual model sizes.
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Figure 3
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12



Figure 5

13



Figure 6
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Figure 8
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Figure 9
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