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Executive summary

Frequency-dependent anisotropy has been observed and can be explained by two

mechanisms, i.e. seismic scattering by heterogeneities, such as open aligned fractures,

and fluid flow in fractured porous rock. If the proper mechanism is understood, it may

provide a mean of going beyond the concept of the conventional static equivalent

medium theories to potentially estimate size of meso-scale fractures. In this paper, we

present some numerical results and synthetic seismograms using the far-field Green’s

function in fractured porous media. The model that we use takes account of fluid

interactions at two scales: meso-scale fractures inserted into a background porous rock

with micro-cracks. The fracture lengths can be much larger than grain-scale pores or

micro-cracks, but are less than the seismic wavelength, as a result velocity dispersion

occurs at the low or seismic frequency, and variation of shear-wave anisotropy with

frequency is expected. Our results show that time-delays between split shear-waves

vary with fracture sizes: as fracture length increases, shear-wave anisotropy decreases.

Our study has indicated the great potential of using seismic anisotropic measurements

to estimate fracture sizes, which are critical for fluid flow in fractured rock.
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1. Introduction

Fractures are common geological features in the subsurface of the Earth’s crust, and

they control much of the mechanical strength and transport properties of the solid

structure. Fracture systems are also crucial for hydrocarbon production, control and

manipulation of water supplies, and dispersal of pollutants. Much of our knowledge

about the Earth’s crust is obtained from seismic waves. One of the most successful

methods for the detection and characterisation of fractures and prediction of fluid flow

directions is the use of seismic shear-waves (Crampin 1985; Queen and Rizer 1990,

and Li 1997). The success of seismic anisotropy is its ability to provide subsurface

fracture orientations as derived from the polarization of fast shear-waves, and spatial

distribution of fracture intensity inferred from time-delays between fast and slow shear-

waves. However, the reservoir engineers’ reluctance to accept seismic anisotropy as a

routine technique for fracture characterisation is partially because of its failure to

provide information about sizes of fractures. So far the terms ‘crack’ and ‘fracture’

have been used as synonyms in geophysics and we do not distinguish between micro-

cracks and macro-fractures. Though it has been thought that the presence of micro-

scale (grain scale) cracks and/or macro-scale (metre-scale) fractures are both

considered to be the dominant causes of observed anisotropy in hydrocarbon reservoirs

(Liu et al. 1993), reservoir engineers are more interested in the latter as fluid flow in

hydrocarbon reservoirs is believed to be dominated by large-scale fluid units (Queen et

al. 1992).

The interpretation of anisotropic measurements made from seismic data requires

theoretical models that relate measurable seismic parameters to macroscopically

determined rock properties. Based on the assumption that the scalelength associated

with fractures is considerably smaller than that of the seismic wavelength, a description

of the average properties of a medium will be sufficient. Various equivalent medium

theories have been proposed (e.g. Thomsen 1995; Hudson et al. 1996, 2001;

Chesnokov et al. 1998; Liu et al. 2000; Parra 2000; Pointer et al. 2000; Tod 2001; van

der Kolk et al. 2001; Tod 2001, 2003, b, and Chapman 2003). These theories have

provided the foundation for anisotropic analysis, but most theories fail to provide an

adequate explanation of velocity dispersion at ‘low’ or seismic frequency, and it is not

possible to determine the size of fractures from seismic data based on those theories.

This is because in the conventional equivalent medium theories mentioned above,

velocities are given in terms of crack density, a single parameter that depends on both

the crack radius and the number density of the cracks.

Recently, strong observational evidence suggests that the measured seismic

anisotropy as inferred from time-delays between split shear-waves does actually

depend on frequency (Marson-Pidgeon and Savage 1997; Rümpker et al. 1999;
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Chesnokov et al. 2001; Liu et al. 2003, and Tod and Liu 2002). Two mechanisms

which can introduce velocity dispersion and thus frequency-dependent anisotropy are

the scattering of seismic waves in media with preferentially aligned heterogeneities,

such as fractures or fine layers, and fluid flow in porous rock. Chapman (2003) and

Chapman et al. (2003) present a theoretical model to allow vertically aligned fractures

inserted in a porous matrix, where the fractures are much larger than the grain-sized

cracks and pores. This model predicts velocity dispersion at ‘low’ or seismic

frequencies and can well explain the observed frequency-dependent seismic anisotropy.

A similar model using the method of smoothing has been developed by Tod (2003).

This latest advance in theoretical developments provides a theoretical basis to

potentially determine fracture sizes from remotely measured seismic attributes.

In this study, we use the model proposed by Chapman (2003) to examine the

variation of anisotropy with frequency, in particular, we restrict ourselves to seismic

frequency ranges. In Section 2, we present the anisotropic Green’s function, which can

handle frequency-dependent elastic stiffness. This is followed by a brief introduction

Section 3 to the model of Chapman (2003). In Section 4, we present 4-component

synthetic seismograms using the full-space far-field Green’s function, and apply the

rotation technique to the synthetic data. We show that the shear-wave anisotropy varies

with fracture sizes, i.e. the time-delays between split shear-waves decrease

systematically as fracture size increases, which agrees with the observation. In Section

5, modelling results for a field VSP dataset analysed by Liu et al. (2003) are presented

to demonstrate the effectiveness of the model of Chapman (2003). Finally, the

possibility of estimating fracture sizes from seismic anisotropy measurements is

discussed in Section 6.

2. Green’s tensors in general anisotropic media

The fundamental solution or the Green’s function in general anisotropic media has

continued to be of great interest to researchers in fields involving wave propagation.

However, rather surprisingly, progress has been very slow in deriving a method to

evaluate the Green’s function efficiently. In this section, we present an analytic

expression of the Green’s function for the far field. It is derived in the frequency-

domain, and can handle frequency-dependent elastic moduli.

We consider the equation of motion for a 3D elastic homogenous anisotropic

medium when an arbitrary body force is applied,
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where ui is the ith component displacement at x
r

, Fi is the ith component of the applied

body force at ’x
r

, ρ  is density, Cijkl are the elements of the uniform elastic coefficient

tensor (in general anisotropic media there are 21 elastic coefficients), and )(x
rδ is the

Dirac delta function. Einstein summation convention is understood throughout this

section. The solution to equation (1) is given by the convolution of the Green’s tensor

and the applied body source, i.e.
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rr
 is given in the following integral form by Burridge

(1967) using our notation,
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for the ith displacement at point x
r

 due to the application of a unit force in the jth

direction at point ’x
r

. ’xxr
rr −=  is the distance of the receiver at x

r
from the source at

’x
r

. }{ ipp =r
is the slowness vector, ω/)()( nn vk =  is wavenumber, ω  is frequency, v(n)

is the phase velocity of the nth wave, w(n) is the group velocity of the nth wave, gi
(n) is

ith component of the polarization vector of the nth wave, and )( pS
r

 is the slowness

surface. In anisotropic media, there are in general three distinct waves travelling at

different speeds (see below), resulting in the summation in equation (3).

The integral in equation (3) is difficult to evaluate and generally not useful for

practical implementation. There have been many attempts to compute this integral

efficiently, surprisingly even very recently. Various assumptions have to be used, even

in the simplest case of transversely isotropic (TI) media, where as in isotropic media,

the SH-wave is de-coupled from P- and SV-waves. Dong and Schmitt (1994) provide

an expression of the Green’s function in TI media in the form of inverse Laplacian

transform. Sáez and Domínguez (2000) consider only the case of elliptical anisotropy

(i.e. assuming P-wave wavefront is elliptical, resulting in SV-wave wavefront being

simply circular). For weak TI media, 9DYU\þXN� ������� GHULYHV� IDU�ILHOG� *UHHQ¶V
function based on ray solutions. Gridin (2000) has provided an analytic solution for the

far-field Green’s function in TI media at shear-wave singularities. For general

anisotropic media, progress was not made until the Radon transform form of equation

(3) was derived by Wang and Achenbach (1994, 1995) and numerically evaluated by

the authors themselves and more recently by Dravinski and Zheng (2000). Though the

anisotropic Green’s function in the form of the Radon transform is simpler than the

integral form of equation (3), it is still not easy to evaluate numerically, particularly for

implementation in boundary element methods where Green’s function has to be

integrated for each segment. Fortunately, in most seismological applications, the near-

field solution is not needed, and the far-field solution is usually sufficient. Following



5

Ben-Menahem and Gibson (1990, 1995); Benahem and Sena (1990); Kendall et al

(1992), and Gajewski (1993), the far-field or ray solution of the Green tensor is given

by,
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where K(n) is the Gaussian curvature of the slowness surface of the nth wave, and a

procedure for computing K is given by Gajewski (1993). The plus sign is used when

the larger of the principal curvature of the slowness surface is negative, and the minus

sign when the principal curvature is positive. For completeness, we also give the

corresponding traction Green tensor which is related to the Green displacement tensor

by Hooke’s law,

)exp(
4

)(
)’,(

)’,( )(
3

1
)()(

)()()(

rik
Kw

pggi
xnC

x

xxG
nCxxT n

n
nn

n
l

n
j

n
k

pipkl
l

kj
pipklij ∑

=

±=
∂

∂
=

πρ
r

rr
rr

, (5)

for the traction in the ith direction at point x
r

 on the boundary due to the application of

a unit force in the jth direction at point ’x
r

. {ni} is the normal at receiver position x
r

.

Note that the traction Green’s function is needed in the formulation of boundary

element methods. The phase velocities {vi} and polarization vector {gi} can be obtained

by solving the Kevin-Christoffel equation,

02 =− jkkjijkl vnnC δρ . (6)

There are in general three complex eigenvalues with three orthogonal eigenvectors. The

three eigenvalues are the phase velocities, and the corresponding three eigenvectors are

the polarization vectors of the three body waves. The group (energy or ray) velocities

{ wi} can be calculated by,

( ) kjlijkli ggpCw ρ/= . (7)

Equations (4) and (5) cannot be applied in a vicinity of parabolic points of the slowness

surfaces at which K=0. In isotropic media, the Gaussian curvature K of the slowness

surface is simply the square of the phase velocity of the corresponding wave, and the

phase velocity equals to group or ray velocity, i.e. wv
rr = . Equations (4) and (5) reduce

to the far-field Green functions for isotropic media.

In the 2D case, the Hankel functions replace the exponential functions (with the

use of the Weyel integral), i.e. )()1(
0 krH

r

eikr

→  (for displacement) and

)()1(
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r

ieikr

→  (for traction). )1(
0H  and )1(

1H  are the zeroth and first-orders

respectively of Hankel functions of the first kind.
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The elastic stiffness Cijkl can be complex and frequency-dependent, resulting in

complex eignvalues from Christoffel equation (6), with the real part giving the velocity,

and imaginary part giving the attenuation. The inverse of the quality factor is given by

)](Im[
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21
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v

k

k
Q ==− , (8)

for given phase velocity {vi} and frequency ω.

Gajewski (1993) did a detailed study of the radiation patterns of various sources

using equation (4), which will not be repeated here. Instead, we only show one

synthetic example to demonstrate of the validity of our implementation. Figures 1 and 2

show the comparison of the synthetic seismograms for an isotropic full space computed

using the isotropic and anisotropic Green’s functions. In the model, we use a vertical

force and a 30Hz Ricker wavelet. The source is at the origin with five receivers at the

positions of (0.2, 0.3), (0.2, 0.6), (0.2, 0.9), (0.2, 1.2) and (0.2, 1.5) km. We can see that

in general isotropic and anisotropic solutions give identical results in the limit of

isotropy, and the differences are marginal.

3. Effective elastic stiffness of porous rock with meso-scale fractures

In this Section, we summarise the model developed by Chapman (2003) to model

macro-fractures in porous rocks with isotropic distribution of random micro-cracks. The

merits and limitations are discussed in Chapman et al. (2003). The effective elastic

stiffness tensor is written as

3210 CeCeCCC fc −−−= φ , (9)

where φ is porosity of the matrix, ec is the density of micro-cracks, and ef is the density

of macro-fractures. C0 is the elastic stiffness of the matrix, C1, C2 and C3 are the

contributions of pores, cracks and fractures, respectively, and their explicit expressions

are given in the Appendix of Chapman et al. (2003). The size-dependent terms of elastic

stiffness are linked by the relationship between two relaxation time scales, τm and τf, i.e.

m
m

f
f a

a
ττ 





= , where τm is related to the standard micro-structural squirt flow and τf is

related to the meso-scale flow due to the presence of fractures. af is the fracture radius,

and am is the grain size (the size of pores and micro-cracks). Note that af can be much

larger than am. The frequency-dependent terms are governed by two terms: ( ) 11 −+ fiωτ ,

which is related to fluid flow into and out of fractures, and 
1

1

1
−







+
+
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, which is

related to pore-scale flow (γ is related to the Poisson’ ratio of the matrix and the fluid

compressibility). In the absence of fractures the model returns to the grain-scale squirt
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flow model. With the introduction of a fracture set two characteristic frequencies exist:

the traditional squirt flow frequency which can be estimated from laboratory data,

together with a lower characteristic frequency which depends on the size of the

fractures. A consequence of this is that propagation at seismic frequencies can be very

different from that predicted in the low frequency limits, such as used in Thomsen

(1995), implying that dispersion can occur at seismic frequency, or in other words

seismic frequency can no longer be safely regarded as the low frequency limit.

Using simple algebra, we can obtain expressions of elastic stiffness in terms of

Thomsen’s parameters, or in terms of fracture compliance as used in Liu et al. (2000).

Figure 3 shows the variation of three Thomsen’s anisotropic parameters with frequency

computed for different fracture sizes. The following parameters have been used in our

examples: VP=3.5 km/s, VS=2 km/s, ρ=2.3 g/cm3, ec=0.04, ef=0.04, porosity φ =10%,

and the relaxation time τm=10-7 (gas). The fracture sizes are indicated on each

individual plot. We use f=30 Hz in all cases except where stated otherwise which gives

a P-wave wavelength of λP=116 m, and λS=66 m, and a Ricker wavelet is used in all

synthetics. We can see that as the fracture size increases, or equivalently frequency

increases, all Thomsen’s three parameters decrease, implying anisotropy decreases.

When the size of aligned fractures are in the same order of pores and micro-cracks,

there is little dependence of anisotropy parameters on frequency (i.e. the model reduces

to the static or zero frequency equivalent medium theory). Figure 4 shows the variation

of attenuation with azimuth for qP- and qSV-waves for different fracture sizes. Figures

5 and 6 show the comparison of synthetic seismograms of the horizontal (Figure 5) and

vertical (Figure 6) components for the fracture lengths of 0.1m (solid lines) and 5m

(dashed line). We can clearly the dependence of attenuation and amplitudes on fracture

sizes, suggesting that by careful analysis it should be possible to infer information

about the fracture sizes from attenuation anisotropy and amplitude information, such as

AVO. This is currently under investigation.

4. Synthetic examples

We generate synthetic seismograms using the anisotropic Green’s function (Section 2)

and the complex elastic stiffness from Chapman’s (2003) model described in Section 3.

The more appropriate method would be to modify the reflectivity method to allow

frequency-dependent elastic stiffness. The model is a VSP geometry with an offset of

0.1km, with 100 receivers located at depths of between 0.1km and 2km (spacing is

0.02km). Two horizontal component sources which generate shear-waves are used and

the source is Ricker wavelet with a peak frequency of 30Hz. The fractures have a

length of 5m, and are oriented 60o from the X-direction with a 10o dip. The upper panel

of Figure 7 displays the horizontal four-component data matrix from the in-line (SV)



8

and cross-line (SH) sources. The top rows marked with XX and XY are from in-line

(SV) sources, and the bottom rows marked with YX and YY are from cross-line (SH)

sources. The first letter denotes the source orientation, and the second the receiver

orientation. The data are displayed with relative true amplitudes so that a direct

comparison between different components can be made. We can immediately see that

there is strongly coupled energy in the cross-components, i.e. energy from the in-line

source is recorded in the cross-line receiver (XY) and energy from the cross-line source

is recorded in the in-line receiver (YX). This feature is a direct consequence of the

presence of azimuthal or fracture-induced anisotropy. Conventional analysis of

multicomponent shear-wave data involves simple rotation of horizontal four-

component shear-wave data into the natural co-ordinate through the use of standard

methods such as Alford rotation (Alford 1986), or the linear transform (Li and Crampin

1993) with the aim of separating the two split shear-waves by minimising the off-

diagonal energy. The rotated four-component data are displayed in the lower panel of

Figure 7, which shows clearly that the off-diagonal energy has been significantly

reduced. Once the shear-wave data are rotated into natural co-ordinate systems, the fast

and slow shear-waves are separated. The rotation angle then represents the polarization

angles of the fast split shear-waves, which are interpreted as the fracture orientation. A

cross-correlation can be applied to the fast and slow components to obtain the time-

delays between the two split shear-waves. Figure 8 shows the polarization angles

obtained for three models with different fracture lengths of 1m, 5m, and 10m. Except

for the shallow receivers, the polarizations are generally constant at 60o, which is very

close to the direction of fracture orientation used in the models, and the small

difference up to 2o is due to the 10o dip in the fracture orientation. Figure 9 shows the

variations of time-delays between fast and slow shear-waves. We can immediately see

that as receiver depth increases, time-delays increase linearly. More important for the

purpose of the present study is the clear variation of time-delays with fracture length or

frequency. As fracture size decreases or equivalently frequency increases, time-delay

decreases, similar to the observed variation in Liu et al. (2003).

5. Estimating fracture size from VSP data

We apply the model of Chapman (2003) to estimate fracture density and fracture size

from 9C VSP data from the Bluebell Altamont field in the Uinta basin, Utah. The field

contains a fractured gas reservoir, the Green River formation, which has in general low

porosity and permeability. Production from the reservoir is believed to be primarily

controlled by size, orientation and concentration of natural fractures (Lynn et al. 1999).

Therefore it is vital to obtain estimates of these parameters from seismic data.
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Analysis of the VSP data for frequency dependent anisotropy is discussed in Liu

et al. (2003). It was found that the time-delay between the split shear waves measured

in the Green River formation systematically decreases with frequency over a frequency

band of 5 to 40 Hz. Here we propose a new method to estimate the fracture size in

addition to fracture orientation and density from the shear wave data.

The model was first simplified as discussed in Chapman et al. (2003) and

calibrated with laboratory data from Rathore et al. (1995). As a result we may obtain an

estimate of the time-scale parameter τm for microscopic fluid flow. Then we apply

petrophysical corrections according to rock and fluid properties of the Green River

formation to the τm-value, so that it may be used as a defined input parameter for our

modelling. The remaining two fitting parameters are the fracture density and the

fracture radius. The inversion for those two parameters comprises the following steps:

� Measuring the time-delay over a depth interval for various frequency bands

from the VSP data.

� Scanning through a range of fracture densities and sizes, computing the

predicted time-delay over depth for each centre frequency of the chosen

frequency bands.

� Computing the RMS error over all centre frequencies for each pair of fracture

density and fracture radius.

� Finding the minimum of the error function.

Figure 10 shows the computed relative error over a large range of fracture densities and

sizes. We can see that there is a well-defined minimum around a fracture radius of 1.5

m and a fracture density of 0.038, where the error is less then 5%. The plot also

demonstrates that there are considerable differences in estimated fracture density

between a high frequency model such as Hudson’s (1981) (upper end of the figure) and

a low frequency model such as Thomsen’s (1995) equant porosity model (lower end of

the figure). Figure 11 displays the same plot as Figure 10 zoomed into the region of the

minimum. We find a fracture density of 0.0375 and a fracture radius of 1.34 m for the

minimum relative error.

We use those values to compute frequency dependent elastic coefficients for the

Green River formation and build a 1D-model for the computation of synthetic

seismograms. The fractures in the model are striking N43W as found from the real

data, and they are rotated 20º off the vertical plane. We use a new version of the full

wave modelling program ANISEIS®, which can handle frequency dependent elastic

coefficients, to compute synthetic seismograms.

Figure 12 and 13 show the inline and crossline components from the real data in

comparison with the synthetic seismograms for the Green River formation,
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respectively. The synthetic data are then processed in the same way as the real data (see

Liu et al. 2003). The fast and slow shear waves are separated by performing a 4-

component Alford rotation. We filter the data into different frequency bands to estimate

polarization angles and time-delays.

Figure 14 shows the polarization angle of the S1 waves (the fast shear waves) for

the chosen frequency bands over the depth interval of the Green River formation. They

have a constant value of around 44º, which departs from the angle of the fracture strike

by 1º because of the dip of the fractures. Figure 15 displays the time-delays obtained

for each frequency range from the synthetic data (solid lines). For comparison, the

dashed lines show the time-delays found in the real data. The modelling results show

very good agreement with the real data. In general the slopes of the lines corresponding

to the synthetic data are slightly lower and the error appears to be higher at low

frequencies. In other words, the change of time-delays with frequency and the

anisotropy are slightly smaller than that estimated from real data. However, in terms of

the parameter of interest, the fracture radius, the error in the results only corresponds to

a change of about 20 cm, which is not significant.

It is the aim of future work to clarify what causes the slight differences between

the results and to establish a revised and accurate procedure for the inversion. In the

above method we assume the time-delays for each frequency band to be representative

for the centre frequency of that band. It is, however, some kind of average of the time-

delays for all frequencies contained in the data, weighted by the frequency spectra of

the source wavelet and the bandpass filter. Since the change in anisotropy with

frequency is not linear, that average will not correspond to the time-delay of the centre

frequency of a particular band. The time frequency analysis proposed by Liu et al.

(2003) will probably be an appropriate method to obtain input data for the inversion. It

is desirable to define the frequency dependence of anisotropy with more than four

frequency values, especially in the range where the time-delay changes very rapidly

with frequency. An error and sensitivity analysis will also be necessary.

Although the details of the inversion and the processing are still to be defined, we

have already obtained a very satisfactory result. The estimated fracture radius of 1.34 m

(or fracture length of 2.68 m) corresponds to fracture lengths observed in cores and

FMS images, which extended 2 to 3 m into the vertical/sub-vertical direction. The

estimated fracture density of 0.0375 lies in the middle of the values that would be

obtained by using Thomsen’s (1995) and Hudson’s (1981) models, respectively.

Analysing frequency dependent anisotropy using the model of Chapman (2003) allows

us not only to obtain an improved estimate of the fracture density, but also to measure a

fracture length, which is of great interest for the description of reservoirs and which

enables us to discriminate between fracture and non-fracture induced anisotropy.
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6. Discussion on potential of estimating fracture sizes from seismic anisotropy

The application of seismic anisotropy is so far limited by the necessary theoretical

constraints of dilute concentrations and very small scale-size to wavelength ratios, as

heterogeneous and fractured porous rock may be characterised by observations in

different critical wavelength ranges, each reflecting different physical mechanisms.

This limitation has not been satisfactorily addressed until very recently (see references

cited in the Introduction). The observations of frequency-dependent anisotropy by

Marson-Pidgeon and Savage (1997); Chesnokov et al. (2002), and Liu et al. (2003)

provide a new challenge to theoreticians. Note that change in shear-wave polarizations

has been reported by Fouch and Fischer (1998), and they interpret this as different

responses of shear-waves to different alignments with different scales in the rock-mass.

If two scales are present, say, micro-cracks are aligned in different directions from

aligned macro-fractures, low frequency would expect to give polarization of macro-

fractures, and high frequency would give direction of micro-cracks, however such a

model is not yet available. The nearest analogue is the combination of two crack sets

(conjugate fracture sets), which has been studied by Liu et al. (1992). It was found that

polarization of the fast split shear-wave would give a crack-density weighted average

direction between the conjugate sets. It would be interesting to extend the model of

Chapman (2003) to allow aligned micro-cracks and aligned fractures in different

directions.

Scattering of seismic waves has long been recognised to be frequency-dependent

(e.g. Leary and Abercrombie 1994, Wu 1981). It has also been realised that

heterogeneities will produce apparent anisotropy. Shapiro et al. (1994), and Werner and

Shapiro (1999) demonstrate that anisotropy differs for waves with different frequencies

in finely-layered media. This leads to the conclusion that any heterogeneous material

with a certain alignment or an ordered distribution must behave like an anisotropic

medium to elastic waves at some frequencies. The presence of a heterogeneous medium

can produce frequency-dependent anisotropy, in which the influence of heterogeneities

decreases as frequency increases. The scale of heterogeneities needs to be small enough

to cause effective anisotropy instead of scattering. This requires a quasi-homogeneous

propagation regime which can be expressed mathematically as ka <0.1, where k is the

wavenumber, and a is the scalelength of the heterogeneities.

The model of Chapman (2003) and Chapman et al. (2003) as used in this paper

assumes a set of aligned meso-scale fractures in porous media. The fractures can be

much larger than the cracks and pores, but are much smaller than the wavelength. This

is in contrast to the early models of Hudson et al. (1996) and Thomsen (1995) as

discussed in Hudson et al. (2001). Coupled fluid flow motion occurs on two scales: the

grain scale and the scale of the fractures. A consequence of this is that the predicted
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anisotropy becomes frequency-dependent, with the form of the dependence related

directly to the fracture size. Previous estimates of the squirt flow frequency have given

high values, typically between the sonic and ultrasonic bands, which leads to the

suggestion that at seismic frequencies there should be little dispersion. In the presence

of larger scale fractures, substantial frequency dependence can be expected in the

seismic frequency ranges, and therefore it is not safe to treat seismic frequency as a low

frequency limit. The percentage of anisotropy change can be up to 5 to 10% for gas

filled, and 2% for brine-filled fractures. Note that an alternative model has been

developed by Tod (2003) as used by Tod and Liu (2002) in which a fluid flow

mechanism between elliptical cracks (bed-limited cracks) is proposed. This model

produces a frequency-dependence in the resulting effective material parameters, and

hence in the shear-wave splitting. The models of Chapman (2003) and Tod (2003, b)

have at least one feature in common, that is the significance of the effects of multi-scale

fluid flow is emphasised in contrast to the wave scattering which earthquake

seismologists prefer to use.

Multi-scale fluid interaction resulting in frequency-dependent anisotropy is a very

interesting phenomenon. We argue that both scattering and fluid-flow may contribute to

observed frequency-dependent anisotropy. However, we suggest that meso-scale

fractures in porous rocks are more likely to be the dominant cause in at least fractured

hydrocarbon reservoirs. Our study has an important implication for characterisation of

natural fractures in that fracture sizes, which control the fluid flow, may potentially be

predicted from seismic anisotropic measurement (note that metre-scale fractures are

normally regarded as fluid flow units by reservoir engineers). In other words, we may

potentially go beyond the static equivalent medium theories to extract information about

fracture sizes and fluid properties in addition to fracture orientation and fracture density.

7. Conclusions

We have presented results demonstrating the dependence of seismic anisotropic

parameters on frequency using the model of Chapman (2003). We also show synthetic

seismograms using far-field analytic expressions of Green’s function in anisotropic

media. We emphasise the wave dispersion at low frequency, and have therefore

restricted ourselves to seismic frequency bands in all examples. Our results can explain

observed variation of shear-wave anisotropy with frequency in terms of multi-scale

fluid flow in fractured porous rock. Synthetic seismograms and modelling of real VSP

data reveal the variation of time-delays between split shear-waves with fracture size,

and that as fracture length increases or frequency increases, shear-wave anisotropy

decreases. Our study has indicated the great potential of using anisotropy measurements

to estimate the fracture sizes, which are ultimately needed in reservoir simulation. In the
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future, we still need to investigate this model further to better understand the effects of

multi-scale fractures on AVO, FVO (frequency variation with offset as used in Lynn et

al. 1999, and Shen et al. 2002), and attenuation anisotropy on AVO. We will pay

particular attention to see how P-waves can be used to estimate fracture sizes.
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Figure 1. Comparison of synthetic seismograms of the horizontal components

computed using the isotropic Green’s function (solid lines) and anisotropic Green’s

function (dashed line). The isotropic model is described in the text.
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Figure 2. Comparison of synthetic seismograms of the vertical components computed

using the isotropic Green’s function (solid lines) and anisotropic Green’s function

(dashed line). The isotropic model is described in the text.
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Figure 3. Variation of three Thomsen’s anisotropic parameters with frequency

computed for different fracture sizes (see text for parameters used).
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Figure 4. Variations of attenuation Q-1 of qP and qSV-waves with azimuths computed

for different fracture sizes.
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Figure 5. Comparison of synthetic seismograms of the horizontal components for the

fracture length of 0.1m (solid lines) and 5m (dashed line). The model is described in the

text.
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Figure 6. Comparison of synthetic seismograms of the vertical components for the

fracture length of 0.1m (solid lines) and 5m (dashed line). The model is described in the

text.
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Figure 7. Synthetic four-component data before (top) and after rotation. The top rows

with XX and XY are from in-line sources, the bottom rows with YX and YY are from

cross-line sources. The first letter denotes the source orientation, and the second the

receiver orientation.
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Figure 8. Variations of polarizations of fast split shear-waves with receiver numbers

(depth) computed from synthetic four-component data for three different fracture sizes.

The angles are relative to the in-line component.
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Figure 9. Variations of time-delays of split shear-waves with receiver numbers (depth)

computed from synthetic four-component data for three different fracture sizes.
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Figure 10. RMS error between predicted and measured time-delay/depth, evaluated

over four frequency values for a range of fracture densities and sizes. There is a well-

defined minimum, where the error is less than 5%.
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Figure 11. The same as Figure 10 zoomed into the area of small relative error. The

white dot indicates the minimum at a fracture density of 0.0375 and a fracture radius of

1.34 m. These values were used to compute frequency dependent elastic coefficients

for the Green River formation and generate synthetic data.
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 Figure 12: 4C VSP data from the Bluebell Altamont field. Selected traces correspond

to the depth interval of the Green River formation. ‘X’ stands for ‘radial’ and ‘Y’ for

‘transverse’; the first letter indicates the source direction and the second one the

geophone component. There is strong energy in the crossline components, indicating

shear wave splitting in the Green River formation.
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Figure 13: Synthetic 4C data for the Green River formation. The synthetic seismograms

correlate well with the real data (compare to Figure 12).
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Figure 14. Polarization angles obtained from the synthetics for each frequency band

after Alford rotation. The values are almost constant at 44º.
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Figure 15. Time-delays estimated from the synthetic data for each frequency band

(solid lines) in comparison with the results from the real data (dashed lines). The

modelling results match the real data well. The errors are not significant in terms of the

estimated values of fracture density and radius. The cause for the slight discrepancy

will be a matter of future investigation.
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