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Microthesis: Dynamical systems methods for waves
in fluids: stability, breaking and mixing

FRANCISCO DE MELO VIRÍSSIMO

Waves are everywhere in nature and play a key role in a range of natural phenomena, from ocean circulation
to weather forecast. Mathematical models for these are helpful in understanding the real world and my PhD
thesis focuses on studying di�erent aspects of waves in �uids using dynamical systems techniques.

Waves in �uids

When compared to mechanical (e.g. sound waves)
or electromagnetic waves, waves in �uids present
an additional and substantial di�erence: while (for
instance) both sound and light waves normally do
not interact with each other, waves in �uids do inter-
act with each other, usually in a very complex way.
This behaviour is re�ected by the mathematics of
the problem: sound and light waves are linear phe-
nomena, modelled by linear equations, which satisfy
the principle of superposition; on the other hand,
waves in �uids are usually highly nonlinear. Their fun-
damental model is the Navier–Stokes equations. All
these complications motivated the famous quote of
Richard Feymann, made in 1963 in one of his lectures
at Caltech:

[Water waves] that are easily seen by every-
one and which are usually used as an example
of waves in elementary courses [...] are the
worst possible example [...]; they have all the
complications that waves can have.

Strati�ed �ows and internal waves

It turns out that most waves in geophysical �uid
mechanics are internal, and their existence is linked
to strati�ed �ows. These are ubiquitous in nature,
with the ocean and the atmosphere as prime exam-
ples. Even though modelled by incompressible equa-
tions, most geophysical �ows are density-strati�ed,
meaning that the density can change due to the con-

centration of sediments, substances or di�erences
in the temperature in various parts of the �ow.

Internal ocean waves in the State of Washington, USA.

The strati�cation is the main mechanism behind the
existence of internal waves in strati�ed �ows. The
simplest example is of waves propagating on the
interface between two layers of �uid (salty and fresh
water for example).

Three-layer shallow water �ows

Since strati�cation is intrinsically linked to internal
waves, there needs to be at least one interface for
a �ow to generate and propagate such waves. Most
mathematical studies so far considered the particu-
lar case of a two-layer �ow, in which there is exactly
one interface.
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My PhD work focussed on the strongly nonlinear
non-dispersive setting of three layers [2] (and thus
two interfaces) in a channel bounded by horizontal
rigid walls, and also on the study of a model with the
same setting but without the upper rigid lid [3].

Schematic representation of a three-layer channel.

Both of these are important cases as they capture
a class of slow (so-called mode 2) internal waves, in
addition to a class of fast (mode 1) waves. Mode 2
waves, although less common than mode 1 waves,
have now been observed in the ocean and have
attracted a lot of interest from the scienti�c commu-
nity.

Dynamics and stability

As expected, the dynamics of waves in a three-layer
setting is much richer than in a two-layer �ow. In [2],
it was shown that a particular set of pure mode 2
solutions forms an invariant subspace in the phase
space. This means that if a solution is initially a pure
mode 2, then it will remains a mode 2 until it either
breaks or loses stability, which is not the case for
pure mode 1 solutions.

A question of crucial interest concerns the long term
well-posedness (or nonlinear stability) of the model.
In other words, does an initially wave-like (so-called
hyperbolic) solution remain hyperbolic until it breaks?
The answer is yes for a two-layer system, but for
three-layer systems it still an open question. Partial
results could be proven for a three-layer �ows. In
particular, on the set of pure mode 2 solutions, the
three-layer system is equivalent to the two-layer sys-
tem, meaning that for each solution of the two-layer
problem, there exists a unique three-layer equiva-
lent solution and vice-versa. Therefore, all non-linear
stability results in [1] apply to pure mode 2 solutions.
It was also shown that the full hyperbolic region is
not invariant under the �ow.

Mixing and entrainment

Layered-strati�ed �ows, although driven primarily by
the density di�erences between the layers, have the
capacity to alter the underlying strati�cation. Most
studies assume that the �ow remains with the orig-
inal density strati�cation over time. Although this
can be the case in many applications, shallow water
waves tend to break and can change the strati�-
cation. At this point, the movement of particles in
the �ow can become quite turbulent, leading to mix-
ing and entrainment processes (think of a breaking
wave on the beach, for example). These are usually
guided by small scale motions that are di�cult to
model in detail. Part of my work was to model break-
ing waves using carefully selected conservation laws
which avoid small-scale dynamics [4].
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