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a b s t r a c t

The Amundsen Sea drainage sector of the West Antarctic Ice Sheet (WAIS) is widely regarded as a
candidate for triggering potential WAIS collapse. The grounded ice sheet drains into the Amundsen Sea
Embayment and is thereby buttressed by its fringing ice shelves, which have thinned at an alarming rate.
Satellite-based observations additionally reveal a considerable long-term decrease in sea-ice cover in the
Amundsen Sea over the last two decades although the long-term significance of this trend is unclear due
to the short instrumental record since the 1970s. In this context, investigations of past sea-ice conditions
are crucial for improving our understanding of the influence that sea-ice variability has on the adjacent
marine environment as well as any role it plays in modulating ice shelf and ice sheet dynamics. In this
study, we apply novel organic geochemical biomarker techniques to a marine sediment core from the
western Amundsen Sea shelf in order to provide a valuable long-term perspective on sea-ice conditions
and the retreat of the Getz Ice Shelf during the last deglaciation. We analysed a specific biomarker lipid
called IPSO25 alongside a phytoplankton biomarker and sedimentological parameters and additionally
applied diatom transfer functions for reconstructing palaeo sea-ice coverage. This multi-proxy data set
reveals a dynamic behaviour of the Getz Ice Shelf and sea-ice cover during the deglaciation following the
last ice age, with potential linkages to inter-hemispheric seesaw climate patterns. We further apply and
evaluate the recently proposed PIPSO25 approach for semi-quantitative sea-ice reconstructions and
discuss potential limitations.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Southern Ocean sea-ice cover is one of the most variable fea-
tures on Earth’s surface with extreme seasonal and often consid-
erable interannual changes. Consequently, it plays a key role in the
global climate system by influencing major atmospheric and
oceanic processes (Thomas, 2017). Satellite-based observations of
Antarctic sea ice reveal a positive overall trend in sea-ice extent
from 1979 to 2014 (Comiso et al., 2017; De Santis et al., 2017;
Parkinson and Cavalieri, 2012). Parkinson (2019) recently reported
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a reversal of this trend and note a decrease in Antarctic sea-ice
extent since 2014, reaching record lows in 2017 and 2018. The
positive overall trend, which is still displayed by the 40-y record
(Parkinson, 2019), however, shows huge interannual variabilities
and also large opposing regional trends. These regions include the
Bellingshausen and Amundsen Seas, where a sustained decline in
annual sea-ice cover has been observed since the 1970s, and the
Weddell and Ross Seas, where the area of annual sea-ice cover has
increased during the same time interval (Comiso et al., 2017;
Parkinson and Cavalieri, 2012; Stammerjohn et al., 2012). Conse-
quently, reconstructing regional (palaeo) sea-ice conditions is also
crucial for understanding and interpreting current climate evolu-
tion and for improving predictions of its future (De Santis et al.,
2017; Shepherd et al., 2018). Furthermore, sea-ice seasonality and
sea-ice cover are poorly resolved in current climate models
(Rosenblum and Eisenman, 2017) and proxy-based sea-ice
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reconstructions provide a tool with which to validate and improve
these predictive models (Vaughan et al., 2013).

Sea ice triggers complex feedback mechanisms in the global
climate system. It is a limiting factor for the gas, heat and moisture
exchange between the ocean and atmosphere (Bopp et al., 2003;
Thomas, 2017) and also affects primary productivity and the ther-
mohaline circulation (Perrette et al., 2011; Smith and Nelson, 1986;
Smith, 1987). The bright surface of sea ice is highly reflective (high
albedo) inhibiting oceanic uptake of incoming solar radiation (Hall,
2004; Massom et al., 2001). During sea-ice formation, brines are
released into the water column, building a barrier of denser waters
that preclude incursions of relatively warm deep waters from
entering sub-ice shelf cavities, consequently minimising basal melt
of ice shelves in some regions (e.g. Hellmer et al., 2012). Brines also
make a major contribution to the formation of Antarctic Bottom
Water (AABW) (e.g. Nicholls et al., 2009). Furthermore, Massom
et al. (2018) found that sea-ice presence in the vicinity of weak-
ened or flooded ice shelves acts as a protective buffer by reducing
the destructive effects of ocean swells.

In the Southern Ocean, proxy-based sea-ice reconstructions
mainly rely on analyses of sea-ice associated diatom assemblages
preserved inmarine sediments to determine past positions of mean
seasonal and perennial sea-ice extent and to infer relative shifts in
the duration of the sea-ice/open water seasons (Allen et al., 2011;
Crosta et al., 1998; Gersonde and Zielinski, 2000; Leventer et al.,
1996; Leventer, 1998). Diatom-based transfer functions (TF) have
allowed for quantitative reconstructions of sea-ice concentrations
and sea surface temperatures (SSTs) (Armand et al., 2005; Benz
et al., 2016; Crosta et al., 1998; Esper and Gersonde, 2014a;
Gersonde et al., 2005; Zielinski et al., 1998), but the application of
this TF approach can be limited due to dissolution effects of the thin
silica frustules of diatoms within the water column or after depo-
sition (e.g. Leventer, 1998; Zielinski et al., 1998). Highly branched
isoprenoid (HBI) alkenes, organic geochemical lipids bio-
synthesized by certain diatoms have recently been shown to pro-
vide an alternative and robust proxy to reconstruct past Antarctic
sea ice (Barbara et al., 2010; Collins et al., 2013; Denis et al., 2010;
Etourneau et al., 2013; Mass�e et al., 2011). The di-unsaturated HBI
alkene C25:2 has been measured in Southern Ocean sediments and
recently found to be produced by the Southern Ocean sympagic
tube-dwelling diatom Berkeleya adeliensis, which is commonly
associated with land-fast ice and consolidated platelet ice (Belt
et al., 2016; Riaux-Gobin and Poulin, 2004). Because of its struc-
turally close relationship to thewell-establishedmono-unsaturated
C25:1 HBI, IP25, in the Arctic Ocean (Belt et al., 2007; Belt andMüller,
2013; Belt, 2018), the term IPSO25 (Ice Proxy for the Southern Ocean
with 25 carbon atoms) was introduced (Belt et al., 2016). The Arctic
sea-ice proxy IP25 was proven a reliable proxy for sea-ice conditions
and has since been combined with open-water phytoplankton
biomarkers, such as brassicasterol, dinosterol (Volkman, 1986;
Volkman et al., 1993) or HBI trienes (HBI III; Smik et al., 2016), to
obtain a more accurate picture of prevailing sea-ice conditions
(Müller et al., 2009, 2011). The absence of IPSO25 in the sediments
can be the result of either permanent open-ocean conditions or a
floating ice canopy (either a perennial sea-ice cover or ice-shelf
cover), which prevents light penetration needed for ice algae
growth. In order to avoid misinterpretations, the so called PIP25
index was established, with “P” representing an open-water
phytoplankton biomarker (e.g. Belt and Müller, 2013; Müller
et al., 2011; Xiao et al., 2015).

A common approach in Antarctic waters, so far, is the applica-
tion of a ratio of IPSO25 and an HBI triene (C25:3), which may reflect
the relative contributions of sea-ice and open-water phytoplankton
inputs of organic matter, respectively, to the seabed sediments
(Barbara et al., 2010; Collins et al., 2013; Denis et al., 2010; Mass�e
et al., 2011). Recently, Vorrath et al. (2019) proposed a new
approach for more semi-quantitative reconstructions of sea ice in
Antarctica, following the PIP25 concept initially used in the Arctic.
The so called PIPSO25 index is, similar to PIP25, a combination of the
sea-ice proxy IPSO25 and an open-water phytoplankton biomarker.
The results obtained from surface sediments from the Antarctic
Peninsula are in general agreement with sea-ice distribution data
derived from satellite data and diatom assemblages, and suggest
that the PIPSO25 index may serve as a suitable approach for sea-ice
reconstructions in Antarctica (Vorrath et al., 2019).

Reconstructions of palaeo sea-ice conditions in the Amundsen
Sea are still sparse, yet knowledge about how the environment has
changed is critical to better understand the current trend of
declining sea ice (since the 1970s; Parkinson, 2019; Stammerjohn
et al., 2015) in this climate sensitive area. Well-constrained
proxy-records will lead to a more complete understanding of the
long-term relationship between climate and sea-ice variability that
will help to validate numerical model predictions of future sce-
narios of ice sheet dynamics and ocean-cryosphere interactions.

Here, we present the first biomarker-based palaeo-record for
the western Amundsen Sea Embayment (ASE) shelf documenting
the retreat of the Getz Ice Shelf and the onset of sea-ice coverage
since the last deglaciation. The application of the sea-ice biomarker
lipid IPSO25 alongside the phytoplanktonmarker dinosterol enables
us to reconstruct how the sea-ice/ice shelf cover in the western ASE
has changed and how these changes might be linked to inter-
hemispheric bipolar seesaw climate patterns. We compare our
environmental interpretations based on the results of the organic
geochemical biomarker analyses with interpretations derived from
investigations of sedimentological proxies (Hillenbrand et al., 2010)
and winter sea-ice (WSI) concentrations reconstructed from
diatom TF on marine sediment core PS69/274-1.

2. Regional setting

North of the West Antarctic continental shelf of the Amundsen
Sea, the Antarctic Circumpolar Current (ACC), the largest current
system in the world (Meredith et al., 2011), flows in an eastward
direction. Offshore from the ASE shelf, the Southern Boundary of
the ACC (SBACC) marks the landward limit of the ACC and roughly
divides the Seasonal Sea Ice Zone (affected by winter sea-ice cover)
in the north from the perennial Sea Ice Zone in the south, where
sea-ice cover persists throughout summer (Orsi et al., 1995). Waters
on the continental shelf are characterised by the generally west-
ward flowing Antarctic Slope Current (Mathiot et al., 2011) and are
affected by seasonal (winter) and perennial sea-ice coverage
(Fig. 1).

At present, perpendicular to the coast, relatively warm deep
water, modified Circumpolar Deep Water (mCDW), is locally up-
welling along deep glacially-carved troughs into the sub-ice shelf
cavities of the continental shelf and up to the ice sheet grounding
lines (e.g. Jacobs et al., 2011; Jenkins et al., 2010, 2018; Nakayama
et al., 2013). The inflow of these relatively warm water masses is
considered as a main driver for basal melting of ice shelves in the
ASE (Hillenbrand et al., 2017; Jenkins et al., 2010, 2018; Shepherd
et al., 2004; Thoma et al., 2008).

The inner shelf of the ASE is further characterised by the pres-
ence of two coastal polynyas, the Pine Island Polynya in Pine Island
Bay and the Amundsen Sea Polynya (ASP) north of the Dotson and
westernmost Getz ice shelves (Fig. 1; Alderkamp et al., 2012).
Coastal polynyas play an important role in a number of physical and
biological processes, such as sea-ice production, salt flux, water
mass formation and elevated primary and secondary production,
which is controlled by light availability at these high latitude en-
vironments (Arrigo and Van Dijken, 2003; Arrigo et al., 2015; Kern,



Fig. 1. Map of the Amundsen Sea (indicated by red box in insert map), showing the locations of marine sediment core PS69/274-1 (red diamond) and the nearby surface sediment
sample from site PS69/275-2 (black dot). Summer sea-ice boundaries, polynyas and winter sea-ice boundaries are marked by dashed blue and black lines, respectively (Fetterer
et al., 2016). Southern Boundary of the Antarctic Circumpolar Current (SBACC) is displayed as solid dark grey line and flow direction of the Antarctic Circumpolar Current (ACC)
is indicated by the dark blue arrow. White arrows illustrate the flow direction of the Antarctic Slope Current (Mathiot et al., 2011; Orsi et al., 1995). Abbreviations: WAIS: West
Antarctic Ice Sheet, EAIS: East Antarctic Ice Sheet, WS: Weddell Sea, BS: Bellingshausen Sea, AS: Amundsen Sea, RS: Ross Sea, ASP: Amundsen Sea Polynya, PIP: Pine Island Polynya.
Background bathymetry derived from IBCSO data (Arndt et al., 2013). Insert map shows extent of grounded ice only (i.e., no ice shelves). (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)
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2009; Maqueda et al., 2004; Martin, 2001). The core analysed in
this study is today located within the ASP (~27 000 km2), which is
the most biologically productive polynya in Antarctica (Arrigo and
Van Dijken, 2003; Arrigo et al., 2012; Kim et al., 2015, 2016; Lee
et al., 2017; Yager et al., 2012). In the ASP region, the length of
the sea-ice season has declined by 60 ± 9 days since 1979, which is
attributed to the earlier opening of the ASP in the year by 52 ± 9
days (Yager et al., 2012).

The mean seasonal sea-ice cover in the coastal area of the
western ASE lasted on average 314 days per year during the period
from 1979 to 2013, and annual sea-ice cover between 1993 and
2013 was on average two months shorter than between 1979 and
1992, associated with changes in spring sea-ice retreat
(Stammerjohn et al., 2015). The trend in sea-ice area for the period
from 1979 to 2014 in the Bellingshausen and Amundsen Seas was
the only one that is negative around Antarctica, with an average
decrease of �3.2% ± 1.4% decade�1 (Parkinson, 2019).
3. Material and methods

3.1. Material

Gravity core PS69/274-1 (73.85�S, 117.78�W; 1452 m water
Table 1
Age model for core PS69/274-1 based on radiocarbon dating of the acid insoluble organic
contamination offset (LCO) and calibrated14C ages are given. For the calibration, the LCO
(DR ¼ 900 ± 100 years) (e.g., Berkman and Forman, 1996) were used. Unreliable ages ar

Sample depth [cmbsf] Lithology Lithological unit Conventional 14C

59.5e60.5 Mud D 7 740 ± 39
139.5e140.5 Mud D 14 199 ± 61
231.5e232.5 Diatomaceous ooze C 11 967 ± 49
311.5e312.5 Mud B 24 416 ± 198
depth; recovery 4.51 m) and nearby giant box core PS69/275-2
(73.89�S, 117.55�W; 1472 m water depth), which provided an un-
disturbed seafloor surface sediment sample, were collected
offshore from the westernmost Getz Ice Shelf on the western ASE
shelf (Fig. 1) during RV Polarstern cruise ANT-XXIII/4 in 2006 (PS69;
Gohl, 2007). Sediment core PS69/274-1 was previously divided into
three lithological units by Hillenbrand et al. (2010). Unit I
(0e196 cm) was described as bioturbated and stratified mud and
silty clay, Unit II (196e239 cm) as bioturbated and stratified dia-
tomaceous ooze and diatomaceous mud. Unit III was split into two
subunits with Unit IIIa (239e317 cm) comprising bioturbated mud,
sandy mud and muddy sand (with diatoms) and Unit IIIb
(317e451 cm) comprising strongly laminated to stratified mud,
sandy mud and muddy sand barren of diatoms. In this study, we
adopt the age model of core PS69/274-1 (Table 1) obtained by
radiocarbon dating of the acid-insoluble organic fraction (AIO) of
the sediments and constrained by relative palaeomagnetic in-
tensity (RPI) dating (Hillenbrand et al., 2010; Smith et al., 2011).

The oldest AIO 14C age obtained from a sample at 311.5e312.5
cmbsf (24 543 cal. a BP) is considered unreliable because of sig-
nificant contamination with reworked fossil organic carbon
(Hillenbrand et al., 2010), which is supported by observations that
the proximity of the grounding line during sediment deposition in a
fraction (AIO) and published by Hillenbrand et al. (2010). Conventional14C ages, local
corrected age and the Southern Ocean marine reservoir effect of 1 300 ± 100 years
e highlighted in italics.

age [14C a BP] LCO [a] LCO corr. age [corr.14C a BP] Age model [cal. a BP]

2 650 5 090 4 272
2 650 11 549 11 968
0 11 967 12 681
2 650 21 766 24 534
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proglacial setting leads to high inputs of reworked fossil carbon
(Domack, 1992; Heroy and Anderson, 2007). Due to the relative
coarse resolution of the age model, the proxies are plotted versus
depth and the age model is presented as age constraints on the
depth-axis. However, data presented along an age-axis are pre-
sented in Supplementary Figs. 1 and 22.

3.2. Bulk sediment and biomarker analyses

The sediment samples (avg. of ca 13 g) were stored in glass vials
at �20 �C before and after being freeze-dried and homogenized
with a mortar. Prior to the grinding, the coarse fraction comprising
coarse sand and gravel (>0.5 mm) was removed from the sediment
by sieving and converted into weight percent. After the removal of
inorganic carbon (carbonates, total inorganic carbon) with 500 ml
12 N hydrochloric acid, the analysis of total organic carbon (TOC)
contents was conducted on 0.1 g of sediment and measured with a
carbon-sulphur determinator (CS 2000; Eltra). Standards were
measured for calibration before the sample analyses and after every
tenth sample to ensure accuracy (error ± 0.02%). The weight per-
centages (wt%) of total carbon (TC) and nitrogen (TN) were ana-
lysed using a CNS (Elementar Vario EL III) analyser. The percentage
of carbonate was calculated from the difference between the
amount of TC and organic carbon, using the following equation:
CaCO3 (%) ¼ (TC�TOC) � 8.333. The precision (relative standard
deviation, 1s) of the measurements was better than 4% and accu-
racy better than 1% relative. For biomarker analyses, ca 4 g of the
freeze-dried and homogenized sediment was extracted using
ultrasonication (3 � 15 min) and dichloromethane:methanol
(3 � 6 ml; 2:1 v/v) as solvent. Prior to extraction, the internal
standards 7-hexylnonadecane (7-HND; 20 ml/sample) and 5a-
androstan-3-ol (40 ml for surface sample PS69/275-2, 60 ml for
PS69/274-1) were added for later quantification of HBIs and sterols,
respectively. Fractionation of the extract was achieved by open-
column chromatography, using SiO2 as stationary phase. Elution
of the HBIs and sterols was conducted with 5 ml n-hexane and 8 ml
ethylacetate:n-hexane (20:80 v/v), respectively. Sterols were sily-
lated with 300 ml bis-trimethylsilyl-trifluoroacetamide (BSTFA;
60 �C; 2 h). Compound identification was carried out using a gas
chromatograph (GC; Agilent Technologies 7890B fitted with a 30 m
DB 1MS column, 0.25 mm diameter and 0.25 mm film thickness)
coupled to a mass selective detector (MSD, Agilent Technologies
5977B, with 70 eV constant ionization potential, ion source tem-
perature of 230 �C). For hydrocarbon analysis, the temperature
program of the GC was set to: 60 �C (3 min), 150 �C (rate: 15 �C/
min), 320 �C (rate: 10 �C/min), 320 �C (15 min isothermal) and for
sterol analysis: 60 �C (2 min), 150 �C (rate: 15 �C/min), 320 �C (rate:
3 �C/min), 320 �C (20min isothermal). Helium served as carrier gas.
HBI and sterol compounds were identified based on their GC
retention times and mass spectral characteristics (Belt et al., 2000;
Belt, 2018; Boon et al., 1979). Quantification of each lipid was
achieved by setting the integrated GC-MS peak area in relation to
that of the respective internal standard and by normalizing the
resulting ratios by means of an instrumental response factor ob-
tained for the individual lipid (Belt et al., 2014; Fahl and Stein,
2012). For IPSO25 quantification, the molecular ion (m/z 348) was
used in relation to the fragment ion m/z 266 of the internal stan-
dard 7-HND (Belt, 2018). For sterol quantification, themolecular ion
m/z 500 for dinosterol (4,23,24 trimethyl-5a-cholest-22 E-en-3b-
ol) was compared to the fragment ion m/z 348 of the internal
standard 5a-androstan-3-ol. The masses of IPSO25 and dinosterol
derived by the GC-MS were then converted to sedimentary con-
centrations using the mass of extracted sediment. Concentrations
of IPSO25 and dinosterol were corrected to the TOC contents of each
sample.
Following Müller et al. (2011), we specified the PIPSO25 index by
using the subscript “D” as PDIPSO25 which refers to the use of
dinosterol as phytoplankton biomarker. The PDIPSO25 index was
calculated based on the following equation:

PDIPSO25¼ IPSO25=ðIPSO25 þ ðdinosterol x cÞÞ (1)

with c being a concentration balance factor to account for signifi-
cant concentration differences between IPSO25 and dinosterol
calculated as the ratio of mean IPSO25 concentration to mean
dinosterol concentration (Müller et al., 2011). Means and standard
deviations of IPSO25, PDIPSO25, dinosterol and TOC for each unit and
subunit can be found in Supplementary Table 1.

3.3. Diatom transfer function derived winter sea-ice concentrations

We reconstructed WSI concentrations with a TF developed by
Esper and Gersonde (2014a), applying the Modern Analog Tech-
nique (MAT) (after Hutson, 1980). Statistical details, background of
the method and its performance at different application levels in
comparison with other estimation methods are presented in Esper
and Gersonde (2014a). For this purpose, quantitative diatom slides
were prepared following the standard techniques (Gersonde and
Zielinski, 2000). For diatom counting, the methods of Schrader
and Gersonde (1978) were applied using a Zeiss Axioplan 2 mi-
croscope at 1000x magnification. Diatoms were identified to spe-
cies or species group level and, if possible, to forma or variety level.
The taxonomy follows primarily Hasle and Syvertsen (1996),
Zielinski and Gersonde (1997), and Armand and Zielinski (2001).
Species and species groups used for sea-ice reconstructions exhibit
close relationships to environmental variables (Zielinski and
Gersonde, 1997; Armand et al., 2005; Crosta et al., 2005; Romero
et al., 2005; Esper et al., 2010; Esper and Gersonde, 2014a, b). For
estimating WSI concentrations we applied the TF MAT-D274/28/
6an, comprising 274 reference samples from surface sediments in
the western Indian, the Atlantic and the Pacific sectors of the
Southern Ocean, with 28 diatom taxa and taxa groups, and an
average of 6 analogs (Esper and Gersonde, 2014a). The WSI esti-
mates refer to September sea-ice concentrations averaged over a
time period from 1981 to 2010 at each surface sediment site (Na-
tional Oceanic and Atmospheric Administration, NOAA; Reynolds
et al., 2002, 2007). The reference data set is suitable for our
approach as it uses a 1 deg. by 1 deg. grid, giving a higher resolution
than previously used and results in root mean square errors of
prediction (RMSEP) of 5.52% (Esper and Gersonde, 2014a).

4. Results and discussion

4.1. Reconstruction of the palaeoenvironment from proxies

Based on our organic geochemical records, content of coarse-
grained terrigenous debris >0.5 mm (supplied either by icebergs
or sea ice, or transported at the base of an ice shelf and at some
distance from the grounding line), on the basis of C/N ratios, car-
bonate (CaCO3) as well as TOC content and TF (diatom) results in
addition to previously published magnetic susceptibility, shear
strength, biogenic opal, smectite/chlorite ratios (Sm/Chl ratios) in
the clay fraction and grain size data (Hillenbrand et al., 2010; Smith
et al., 2011), the sediments of core PS69/274-1 can be divided into
four units (A-D), reflecting the palaeoenvironmental changes in the
western ASE since the last deglaciation (Figs. 2e4). These units do
not correspond directly to the three main lithostratigraphic units
defined by Hillenbrand et al. (2010) or the two facies units distin-
guished by Smith et al. (2011) because the biomarker data permit a
more detailed reconstruction of the palaeo-sea surface conditions
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and, for example, the identification of the first retreat of the floating
ice canopy from the core site and the onset of favourable growth
conditions for biomarker synthesizing phytoplankton and sea-ice
diatoms. The biomarker data are the main basis for the new defi-
nition of these units, which are now numbered chronologically
from A to D (with Unit A being the oldest and Unit D being the
youngest), which are then discussed and compared with the
already published data by Hillenbrand et al. (2010) for recon-
structing the palaeoenvironmental changes in the western ASE
(Fig. 3).

4.1.1. Unit A: Floating ice canopy subsequent to grounding line
retreat

In the lowermost unit of the core (Unit A; 451 to 317 cm below
seafloor [cmbsf]), concentrations of the sea-ice biomarker lipid
IPSO25 and of the phytoplankton-derived biomarker dinosterol are
below the detection limit (Fig. 2c and b, respectively). Hence, the
calculation of the PDIPSO25 index is not possible. The absence of
both biomarker proxies suggests that the environmental conditions
were not favourable either for open-water phytoplankton nor for
IPSO25 producing sea-ice diatoms. In previous studies, the absence
of sea ice and phytoplankton-derived biomarkers in marine sedi-
ments has been interpreted to relate to a very thick ice cover (Belt,
2018; Müller et al., 2009).

Such an ice cover would also explain the lack of diatom frustules
in the corresponding sediments, which, together with the lack of
bioturbation, was also attributed to ice-shelf or permanent sea-ice
cover by Hillenbrand et al. (2010) (Fig. 3). Assuming that the core
site was covered by a floating ice canopy during deposition of this
unit we assigned a maximum PDIPSO25 value of 1 to these samples
to maintain the sea-ice scaling of the PDIPSO25 results and aid
visualisation (displayed as triangles in Figs. 2 and 3).

TOC and biogenic opal contents in Unit A are extremely low,
varying around 0.1 wt% and 1 wt%, respectively (Figs. 2d and 3c),
with the low opal content either reflecting the rare presence of
fragments of siliceous microfossils (i.e., too tiny for being identified
under a microscope) or being an artefact caused by the partial
leaching of clay minerals or volcanic glass (e.g. Müller and
Schneider, 1993). These low TOC and opal values thus indicate a
time interval of low or absent biological production. The unit is
characterised by the highest magnetic susceptibility values
measured on the core, varying between 300 and 500� 10�5 SI units
(Fig. 3f), which points to a high input of terrigenous detritus from a
nearby grounding line (see Hillenbrand et al., 2010; Smith et al.,
2011). Clay mineral data from neighbouring gravity core PS69/
275-1 (for site location, see Fig. 1), reveal high chlorite contents
in sediments deposited as subglacial till or proximal to the
grounding line (Ehrmann et al., 2011). Therefore, the relatively low
Sm/Chl ratio around 0.6 in Unit A sediments of core PS69/274-1
(Fig. 3d; Smith et al., 2011) probably indicates sediment deposi-
tion not far away from the grounding line.

The grain size composition of Unit A is mainly dominated by
mud (ca 80wt%), but shows two distinct maxima in gravel and sand
contents (<60 wt%) at 400 and 320 cmbsf (Smith et al., 2011), with
coarse-grained debris >0.5 mm peaking at the same depths
(<1.8 wt%; Fig. 3h and g). Such maxima in gravel and sand contents
can be interpreted as the result of two episodes, when either freely
drifting icebergs transported ice-rafted debris (IRD) to the core
location or when the core site was located closer to the grounding
line and affected by rain-out of debris from the base of an ice shelf.
Hillenbrand et al. (2010) observed lamination and stratification in
the corresponding core interval but also reported absence of di-
atoms. Based on the findings from the productivity proxies (TOC,
biogenic opal and dinosterol contents), we conclude that Unit Awas
deposited under a floating ice canopy formed either by perennial
sea-ice cover or part of the Getz Ice Shelf (Fig. 4; Unit A). The coarse-
grained debris peaks together with the clay mineral data indicate a
position of the core site not far away from the grounding line,
suggesting that the site was most likely covered by an ice shelf.
According to the oldest reliable AIO 14C age from 232 cmbsf depth,
Unit A must have been deposited earlier than 12.7 cal. ka BP, with
the RPI age model for core PS69/274-1 constraining its deposition
to the time before 13 ka (Table 1; Hillenbrand et al., 2010). We
therefore conclude that the deposition of Unit A took place during
the last deglaciation, subsequent to grounded ice-retreat (Smith
et al., 2011). Grounded ice-retreat from the inner Antarctic conti-
nental shelf during that time has also been reported for other areas.
For example, a reconstruction by Milliken et al. (2009) reveals
initial decoupling of the ice sheet from Maxwell Bay (South Shet-
land Island) at ca 14 cal. ka BP, whilst a study by Sjunneskog and
Taylor (2002) on a diatom abundance record from Palmer Deep
(inner shelf west of the Antarctic Peninsula) indicates that groun-
ded ice-retreat there occurred at ca 13.2 ka BP. Minzoni et al. (2017)
report grounding line retreat from Ferrero Bay (inner shelf of the
eastern ASE) before ~11 cal. ka, which coincides with WAIS retreat
from inner Pine Island Bay (Hillenbrand et al., 2013). Given the
deposition of Unit A, under a floating ice canopy, not far away from
the grounding line, we assume that it was deposited at very high
sedimentation rates, which are expected to be at least an order of
magnitude higher than at more distal locations (Andrews, 1987;
Domack and Mcclennen, 1996). Interestingly, Milliken et al. (2009)
report extremely low sedimentation rates in a similar setting with
sedimentation under a permanent floating ice canopy in Maxwell
Bay, which highlights the need to consider geomorphological fea-
tures and the relative distance to the grounding line of an ice shelf.

4.1.2. Unit B: Dynamic ice front
In Unit B, from 317 to 239 cmbsf, concentrations of the sea-ice

biomarker lipid IPSO25 range from 4 to 8 mg*g OC�1 and are
significantly higher than in the underlying Unit A, except for an
interval around 275 cmbsf, where the lipid is absent (Fig. 2c).
Concentrations of the phytoplankton-derived biomarker dinosterol
show a similar pattern; increased values of 200e400 mg*g OC�1

(Fig. 2b) relative to Unit A, interrupted by its absence at ca 275
cmbsf. The PDIPSO25 index varies between 0.4 and 0.8 (Fig. 2a).

The overall higher concentrations of both biomarker proxies in
sediments from Unit B, when compared to those in sediments of
Unit A, suggest more favourable environmental conditions for
phytoplankton and IPSO25 producing sea-ice diatoms, which we
interpret as a result of break-up or retreat of the Getz Ice Shelf and
establishment of seasonally open marine conditions (Fig. 4; Unit B).
Ice shelf break-up conditions would also explain the low but sig-
nificant diatom frustule concentrations in Unit B (cf. Hillenbrand
et al., 2010). This conclusion is supported by our diatom TF which
indicates a WSI concentration of ca 90% during the deposition of
this unit (Fig. 3a).

Also, TOC, CaCO3 and biogenic opal contents in Unit B sediments
range from 0.2 to 0.4 wt%, 1e3 wt% and 2 wt%, respectively, and
thus are higher than in the underlying sediments (Figs. 2 and 3),
indicating increased marine productivity. The magnetic suscepti-
bility generally decreases upwards throughout the unit to
200e350 � 10�5 SI units, suggesting a reduction in the supply of
terrigenous detritus or increase in supply of biogenic material. A
peak of 350 � 10�5 SI units at ca 275 cmbsf interrupts the
decreasing trend, pointing to a higher terrigenous input as it is
evident from a coinciding distinct maximum in coarse-grained
debris >0.5 mm (1.7 wt%; Fig. 3). The grain-size is dominated by
mud (>90 wt%) throughout Unit B (Fig. 3h), pointing to a grounding
line distal glacimarine depositional setting (Hillenbrand et al.,
2010; Smith et al., 2011). According to the RPI age model, Unit B



Fig. 2. Contents of PDIPSO25 (a), dinosterol (b), IPSO25 (c) and TOC (d) in sediment core PS69/274-1. AMS 14C age constraints in calib. a before present (BP) in dark grey; unreliable
age given in italics (Hillenbrand et al., 2010). Interval highlighted by dashed grey line marks the Antarctic Cold Reversal (ACR; Jouzel et al., 1995). Biomarker concentrations and
calculated PDIPSO25 value of the surface sample (box core PS69/275-2) indicated by dots with black circle and label in respective color. Triangles in PDIPSO25-curve: thick ice cover,
maximum value of 1 assigned to these samples. Core is divided into four units as indicated in the lowermost and topmost bar: Unit A: floating ice canopy (blue shading), Unit B:
dynamic ice front, Unit C: reduced sea ice/sea-ice re-expansion (red shading), Unit D: seasonal sea ice. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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is older than 12.7 cal. ka. Importantly, our new biomarker record
provides greater detail than previous sedimentological studies
(Hillenbrand et al., 2010; Smith et al., 2011), by revealing the onset
of seasonal open-marine productivity at 317 cmbsf. This is shown
by the rapid increase of both biomarkers from 317 to ca 280 cmbsf
and intermediate to high PDIPSO25 values. Based on a new study on
marine sediments from the Antarctic Peninsula (Vorrath et al.,
2019), such changes can result from a transition from extensive
sea-ice cover to marginal sea-ice/ice-edge conditions. A similar
transition from a floating ice canopy to sea-ice dominated condi-
tions from ca. 14.1e14.8 ka to 10.1 ka BP has also been reported by
Milliken et al. (2009) for Maxwell Bay.

We attribute the lack of both biomarkers from 278 to 269 cmbsf
and the peak in magnetic susceptibility in this depth interval to a
thick ice coverage, probably caused by an ice-shelf re-advance or
the predominance of a perennial sea-ice cover and consequently
also assign a maximum PDIPSO25 value of 1 to these samples (dis-
played as triangles in Figs. 2 and 3). As Milliken et al. (2009) do not
report (or resolve) such a specific cooling interval in Maxwell Bay,
we note that this suggested re-advance in ice-cover at our relatively
more ice-shelf proximal core site may result from changes in local
oceanic and/or atmospheric circulation patterns or a rapid ice-shelf
surge. However, taking account of the coarse resolution of the age
model of core PS69/274-1, we contemplate that this hypothesised
re-advance of the Getz Ice Shelf or development of perennial sea-
ice cover tentatively may have been associated with the atmo-
spheric cooling during the Antarctic Cold Reversal (ACR), which
interrupted warming in Antarctica during the last deglaciation and
lasted from 14.5 to 12.9 ka BP (Blunier et al., 1997; Blunier and
Brook, 2001; Jouzel et al., 1995; WAIS Divide Project Members,
2013). The ACR coincided with the abrupt warming of the
Bølling-Allerød interstadial in the North Atlantic and was charac-
terised by Southern Ocean cooling and Antarctic sea ice reversing
its deglacial retreat trend because of interhemispheric coupling
mechanisms (Skinner et al., 2010). These opposing climate trends of
the two hemispheres are proposed to be driven by oceanic and/or
atmospheric processes and referred to as the bipolar seesaw
(Anderson et al., 2009; Broecker, 1998; Pedro et al., 2011). Hitherto,
the temporal and spatial extent of the ACR is mainly documented in
Antarctic ice cores (e.g. Pedro et al., 2016), while only few marine
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records document re-advances of (sub-) Antarctic glaciers and
elevated WSI concentrations during this time period (Bianchi and
Gersonde, 2004; Graham et al., 2017; Xiao et al., 2016). Xiao et al.
(2016), for example, compiled high resolution diatom composi-
tion records from the Antarctic Zone of Atlantic andWestern Indian
sectors of the Southern Ocean and determined the variability in
summer sea surface temperatures and sea-ice conditions of the
past 30 ka. They report a cooling observed in all investigated cores
at 14-12 ka. Graham et al. (2017) used sea-floor geophysical data
and marine sediment records off South Georgia and conclude on a
cooling between 15.2 and 13.3 ka, both linking these cooling events
to the ACR, revealing that this climate pattern extended up into the
Atlantic sector of the Southern Ocean. Hence, locations more distal
to the ice sheet (such as Southern Ocean pelagic records) seem to
reflect atmospheric climate patterns rather than local trends, whilst
locations in closer proximity to the ice shelf (such as our record),
are much more likely influenced by, for example, a local or rapid
ice-shelf surge.

Interestingly, in the sediments at ca 280 cmbsf, directly under-
lying the horizon of absence of both biomarkers, we observe a
higher concentration of dinosterol as well as relative maxima in the
TOC and CaCO3 contents and in the Sm/Chl ratios (Fig. 3e and d).
These peaks can be attributed to a short but significant warming
period characterised by more open water conditions and higher
productivity. Antarctic ice cores, such as the WAIS Divide Ice Core,
and marine records from the Scotia Sea and the eastern Atlantic
sector of the Southern Ocean (Xiao et al., 2016), also revealed a
significant warming prior to the ACR during the Antarctic Isotope
Maximum (AIM) 1 (Cuffey et al., 2016; WAIS Divide Project
Members, 2013), which could have caused an increase in primary
productivity reflected in higher dinosterol, TOC and CaCO3 contents
and of Sm/Chl ratios observed in core PS69/274-1 just shortly
before the onset of the ACR. These elevated productivity proxies
during AIM 1 argue against a perennial sea-ice or ice-shelf cover at
the core site, though seasonal (winter/spring) sea ice must have
occurred as it is indicated by the presence of IPSO25 and diatom TF
derived WSI concentrations of ca 90%.

4.1.3. Unit C: Reduced sea-ice cover followed by sea-ice re-
expansion

Unit C in core PS69/274-1 (239-150 cmbsf) can be divided into
two subunits (C1 and C2). Subunit C1 (239-196 cmbsf) comprises a
diatomaceous ooze consisting of very well-preserved frustules of
Corethron pennatum, which are considered open-water diatoms
indicative of ice-free conditions (Maddison et al., 2005) and pro-
vided two AIO 14C ages of 12.7 cal. ka BP, consistent with the RPI age
constraints (Hillenbrand et al., 2010). The lower half of the subunit
is not resolved by the biomarker data, while the upper half is
characterised by the absence of the sea-ice biomarker IPSO25
(Fig. 2c). Concentrations of the phytoplankton-derived biomarker
dinosterol vary slightly around a value of 180 mg*g OC�1, also not
resolving the lower half of the subunit (Fig. 2b). The calculated sea-
ice index PDIPSO25 is 0, indicating the absence of spring sea-ice
cover and predominantly open water conditions during spring
and summer (Fig. 2a; Belt, 2018; Müller et al., 2011). The relatively
low dinosterol concentrations could be explained by unfavourable
preservation conditions for organic compounds in the diatoma-
ceous ooze, where an aggregation between fine-grained detritus
and organic matter is severely restricted by the absence of silt and
clay particles. Alternatively, either a limited nutrient supply in the
open ocean could have reduced the productivity of dinosterol
synthesizing phytoplankton species or exceptionally high sedi-
mentation rates could have led to a dilution of the biomarker signal
(i.e. dinosterol) within the sediment (Belt, 2018; Lizotte, 2001). Sea-
ice concentrations derived from diatom TF show a similar trend
within subunit C1 and point towards a reduced WSI cover, even
though the WSI concentration still ranges from 65 to 80% (Fig. 3a).

The alleged discrepancy in the reconstructed sea surface con-
ditions, under which subunit C1 was deposited, can be attributed to
the different seasons represented by the two sea-ice proxies: While
the sea-ice index PDIPSO25 indicates a reduced sea-ice cover during
spring and summer, the diatom TF derived WSI concentration re-
veals reduced but still existing sea-ice cover during the winter
months (Fig. 3a). With values between 0.4 and 0.6 wt%, 3 wt% and
40 wt%, respectively, the TOC, CaCO3 and biogenic opal contents in
subunit C1 are even higher than in underlying Unit B (Fig. 3). Taking
into account that the opal content determined for the sediments of
subunit C1 is most likely underestimated because the leaching
method applied for its measurement (Hillenbrand et al., 2010) is
better suited for quantifying low opal contents (Müller and
Schneider, 1993), the productivity proxies indicate high primary
productivity, consistent with reduced sea-ice cover during spring
and summer inferred from the biomarker data. The magnetic sus-
ceptibility values show an absolute minimum of <10� 10�5 SI units
(Fig. 3f), pointing to a very low content of terrigenous components
and highlighting the biogenic composition of this subunit. The
diatom TF derived WSI data, the biogenic opal and the magnetic
susceptibility do, unlike the biomarker record, resolve the lower
half of the subunit, suggesting the onset of reduced sea ice during
spring and summer at around 12.7 cal. ka BP (239 cmbsf). A similar
observation was made by Sjunneskog and Taylor (2002), whose
diatom abundance record from Palmer Deep suggests that open
water primary productivity commenced at 12.8 ka BP. The grain
size distribution shows no significant change, unlike the phase of
ice shelf break-up/retreat recorded in Unit B.

Based on these findings we conclude that during deposition of
subunit C1 spring and summer sea-ice cover reached its minimum
(Fig. 4; Unit C) promoting a higher diatom productivity and the
deposition of the diatomaceous ooze. We tentatively suggest that
the drastic decrease in spring/summer sea-ice coverage was linked
to Antarctic warming that coincided with the onset of the Younger
Dryas stadial in the Northern Hemisphere from 12.9-11.7 ka BP
(centred at 12.85 ka BP; e.g. Denton et al., 2010). As already noted
for the ACR, the environmental conditions at core site PS69/274e1
may have been subject to local oceanic and atmospheric controls
rather than to global teleconnections and attempts to relate these
observations to interhemispheric feedback mechanisms certainly
require more data from the Amundsen Sea and robust chronolo-
gies. However, the assignment of this minimum sea-ice/high pro-
ductivity interval with the Younger Dryas is supported by AIO 14C
dates obtained from the diatomaceous ooze in subunit C1 and in
other cores recovered offshore from the westernmost Getz Ice Shelf
(Hillenbrand et al., 2010, Figs. 2 and 3).

The reliability of these ages is considered high for three reasons:
(1) AIO 14C ages obtained from sediments with very high biogenic
contents, such as the very pure diatomaceous ooze of subunit C1,
provide reliable dates because of high contents of fresh organic
matter (e.g., Andrews et al., 1999); (2) themarine setting distal from
the ice sheet grounding line implies that it is less affected by
contamination with reworked fossil organic matter (Hillenbrand
et al., 2010); and (3) confirmation by the RPI age model
(Hillenbrand et al., 2010).

In subunit C2 from 196 to 150 cmbsf, concentrations of IPSO25

range from 6 to 16 mg*g OC�1 and are significantly higher than in
the underlying subunit C1. The phytoplankton-derived biomarker
dinosterol also shows significantly higher concentrations of
300e600 mg*g OC�1, relative to the underlying subunit. The
calculated sea-ice index PDIPSO25 values around 0.7 resemble those
in Unit B, which was deposited during the post-LGM break-up/
retreat of the Getz Ice Shelf (Fig. 2a). Rising IPSO25 concentrations



Fig. 3. Winter sea-ice concentrations based on diatom transfer functions (a), PDIPSO25 (b), biogenic opal (c), CaCO3 and smectite/chlorite ratio (d), TOC and C/N ratio (e), magnetic
susceptibility and shear strength (f), content of coarse-grained terrigenous debris (>0.5 mm; determined on distinct biomarker samples prior grinding; g) and contents of mud
(0e63 mm; white infill), sand (63 mm-2 mm; grey infill) and gravel (>2 mm; black infill; h) for sediment core PS69/274-1. AMS 14C age constraints in calib. a BP in dark grey;
unreliable age given in italics (Hillenbrand et al., 2010). Interval highlighted by dashed grey line marks the Antarctic Cold Reversal (ACR; Jouzel et al., 1995). Calculated PDIPSO25

value of the surface sample (multi-core PS69/275-2) indicated by blue dot with black circle and label in respective color. Triangles in PDIPSO25-curve: thick ice cover, maximum
value of 1 assigned to these samples. Core is divided into four units as indicated in the lowermost and topmost bar: Unit A: floating ice canopy (blue shading), Unit B: dynamic ice
front, Unit C: reduced sea ice/sea-ice re-expansion (red shading), Unit D: seasonal sea ice, as indicated in Fig. 2. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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point to a re-expansion of spring sea-ice cover, while the strong
increase and high concentrations in dinosterol point to either ice-
free summer sea surface conditions or sustained ice-edge phyto-
plankton blooms. Primary production in marginal ice zones (MIZ)
can exceed that of the permanently open ocean (Belt, 2018; Lizotte,
2001) and would explain themaximum concentration of dinosterol
in subunit C2. Since diatom derived TF reconstructions for this
subunit indicate aWSI concentration of 90%, we assume that sea ice
prevailed also during spring (promoting IPSO25 synthesis) but
retreated in summer (permitting phytoplankton growth). TOC
concentrations vary around an average value of 0.4 wt%, whilst
magnetic susceptibility values are also relatively constant (mean
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value of 150� 10�5 SI units; Fig. 3e and f). Likewise, there is no
significant change in grain sizes in comparison to that of subunit C1,
with mainly silt and clay being deposited (Fig. 3h).

Based on these findings we conclude that subunit C2 reflects a
time of sea-ice re-expansion during spring, which allowed for a
high production of IPSO25. We suggest that this interval of sea-ice
re-expansion coincided with the end of the Younger Dryas stadial
in the Northern Hemisphere, which is roughly consistent with the
AIO 14C date of 11 989 cal. a BP (Hillenbrand et al., 2010, Figs. 2 and
3).
4.1.4. Unit D: Seasonal sea-ice cover environment
The uppermost Unit D (150-0 cmbsf) spans the time after ca 12

ka BP (Hillenbrand et al., 2010) and is marked by highly variable
biomarker concentrations. It can be divided into two subunits (D1
and D2).

In subunit D1 (150-80 cmbsf) concentrations of the sea-ice
biomarker IPSO25 are characterised by low values of ca 1 mg*g
OC�1 (Fig. 2c), while concentrations of the phytoplankton-derived
biomarker dinosterol are more variable (100e400 mg*g OC�1;
Fig. 2b). The generally low PDIPSO25 values of 0e0.4 suggest a
reduced sea-ice cover during deposition of subunit D1 (Fig. 2a). In
contrast, the diatom derived TF reconstructions indicate maximum
WSI concentrations of ca 92% (Fig. 3a). These contrasting re-
constructions highlight the potential limitations of the PDIPSO25
proxy, which are discussed in more detail in section 5. At 140 cmbsf
core depth, a minimum observed in both biomarker proxies co-
incides with a TOC minimum and elevated magnetic susceptibility
values and gravel content (Fig. 3). The high values in magnetic
susceptibility are in this case likely due to less dilution from
biogenic material rather than increased terrigenous flux associated
with IRD input or advance of the grounding line. Shear strength
data in core PS69/274-1 show a significant increase from 3 to 9 kPa
in subunit D1 (Fig. 3f), which is also observed in other cores
offshore from the westernmost Getz Ice Shelf (Hillenbrand et al.,
2010; Smith et al., 2011) and possibly results from the slightly
coarse-grained composition of this sediment interval as it is
Fig. 4. Schematic cross-section showing the core location of sediment core PS69/274-1, illus
the Getz Ice Shelf. Note that reconstruction refers to spring/summer sea-ice conditions. Produ
coarse-grained debris >0.5 mm at grounding line (GL); WAIS: West Antarctic Ice Sheet. (For i
Web version of this article.)
evident from the elevated gravel contents.
The upper subunit D2 (80-0 cmbsf) shows highly variable con-

centrations of the sea-ice biomarker IPSO25 ranging between 0 and
12 mg*g OC�1 (Fig. 2c), while intermediate concentrations of the
phytoplankton-derived biomarker dinosterol vary from 200 to
500 mg*g OC�1 (Fig. 2b). The sea-ice index PDIPSO25 fluctuates be-
tween 0 and 0.7 (Fig. 2a), indicating highly variable sea-ice condi-
tions. Diatom-based TF reveals WSI concentrations between 73 and
90% (Fig. 3a). TOC contents reach highest concentrations in the
record (0.8 wt%; Fig. 3e), indicating relatively high productivity
during this time interval, which is also supported by the increase in
biogenic opal concentration throughout subunit D2 with values
from 2 to 7 wt% (Fig. 3c). Magnetic susceptibility values slightly
decrease upwards throughout the subunit from ca 200 to
120 � 10�5 SI units, while the grain size remains unchanged with
almost 100% mud content (Fig. 3f and h). The decreasing magnetic
susceptibility values may refer to a reduced input of siliciclastic
material resulting in lower sedimentation rates, which in turn may
have led to a relative enrichment in biogenic material.

Concentrations of the coarse grains >0.5 mm are relatively
constant throughout Unit D, with a few distinct peaks up to 1.2 wt%
in subunit D2 (Fig. 3g; 26 cmbsf, 12.5 cmbsf). Based on these
findings, we assume that Unit D in core PS69/274-1 was deposited
in a seasonally open marine (i.e. only sea-ice covered during winter
and spring) setting similar to today, while the overall co-occurrence
and the in-phase changes of both biomarkers are potentially
attributable to the establishment of the ASP (Fig. 4; Unit D)
favouring both IPSO25 producing sea-ice diatom productivity as
well as ice-edge phytoplankton blooms (cf. Belt, 2018). In this re-
gard, we refer to Campagne et al. (2015) who reveal that each
calving event of the Mertz Glacier Tongue (East Antarctica) since
the last 250 years results in elevated abundances of IPSO25 followed
by a slow decrease of the sea-ice proxy and a concomitant increase
of open-water proxies. Campagne et al. (2015) and Nihashi and
Ohshima (2015) both conclude that local, rather than regional/
global dynamics, such as the calving and regrowth of glacier
tongues or landfast sea ice, play an important role in the formation
trating the four general phases (Unit A-D) of sea-ice cover evolution and the retreat of
ction areas of IPSO25 are shown in blue, phytoplankton dinosterol in green and input of
nterpretation of the references to color in this figure legend, the reader is referred to the
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and variability of polynya conditions and the resulting sedimentary
biomarker/proxy records. Constraining polynya dynamics, howev-
er, is very challenging, since it is still debated, for example, whether
the high productivity within the ASP is really archived in the un-
derlying sediments (Kim et al., 2016) or not (Lee et al., 2017). Hence,
it is important to make this subject a focus of future research. The
limited availability of Holocene age constraints for core PS69/274-1
impedes direct comparisons with other marine records, from e.g.
the Antarctic Peninsula, documentingwarming and cooling periods
such as the Mid Holocene Climatic Optimum or the Neoglacial (e.g.
Heroy et al., 2008; Milliken et al., 2009; Sjunneskog and Taylor,
2002). However, we note that also the overall trends in IPSO25,
dinosterol and TOC in Unit D do not exhibit significant similarity
with records from the Antarctic Peninsula and hence tentatively
suggest that the environment at the core site was controlled by
local, potentially ASP, conditions.

5. Applicability of the combined open-water phytoplankton
biomarker and IPSO25 approach

The PIPSO25 approach combines information on ocean surface
conditions derived from sea-ice algae and open-water phyto-
plankton. In this respect, it has the potential to be a powerful semi-
quantitative tool for reconstructing sea-ice cover during the past.
However, it is apparent that this novel proxy also has its limitations
that need to be considered in order to establish robust in-
terpretations. Most open-water phytoplankton biomarkers have
multiple source organisms and are not specific to certain environ-
ments. Although dinoflagellates are the major source of the herein
used open-water phytoplankton dinosterol, it is not unique to these
organisms and is also found in diatoms (Volkman et al., 1993;
Volkman, 2006). Despite the different sources of dinosterol, it can
still be considered a useful proxy for open water environments,
since it has not yet been found in any other organisms of sympagic
origin (Belt et al., 2018). Furthermore, selective degradation of
IPSO25 and phytoplankton biomarkers likely influences the ratio
between their source and sedimentary environments (Rontani
et al., 2019a, b). More in-situ studies investigating the transport
and preservation of HBIs and sterols under varying oceanographic
conditions (including different sedimentation rates) are needed to
address these aspects.

Despite the need for further investigations to overcome these
specific knowledge gaps, the combined approach of PIPSO25 can
help circumvent misleading interpretations, such as over-/un-
derestimations of sea-ice cover on the basis of high/low IPSO25
concentrations in the sediments. It is, however, important to
carefully interpret the PIPSO25 index when, for instance, fluctua-
tions of IPSO25 and the phytoplankton biomarker are in-phase. On
the basis of work in the Arctic, Müller et al. (2011) demonstrated
that coevally high (for marginal ice zone conditions) or low (for a
perennial sea-ice cover) concentrations of both biomarkers can
lead to similar PIP25 values, despite the very different sea-ice con-
ditions. The same principle also applies to the PIPSO25 index, sug-
gesting the need to interpret these data alongside other proxies.

Unit D1 (150-80 cmbsf) in core PS69/274-1, for instance, is
characterised by intervals of very low concentrations of both bio-
markers, which usually reflects unfavourable environmental con-
ditions for sea ice diatoms as well as for phytoplankton. In general,
these unfavourable environmental conditions are related to a very
thick, perennial (sea) ice cover limiting light availability required
for photosynthesis. The calculated low PDIPSO25 values for this in-
terval, however, point to a reduced sea-ice cover. This severe un-
derestimation of sea-ice cover is revealed by the contrasting very
high WSI concentrations (up to 90%) derived from diatom TF. This
scenario of a more extensive sea-ice cover than inferred from the
PDIPSO25 index is additionally supported by relatively low TOC
concentrations and high magnetic susceptibility values. It is
therefore important to carefully interpret the PIPSO25 index not
only in combination with other biomarker records but also along-
side other proxy records, such as diatom TF data and sedimento-
logical parameters.

6. Summary and conclusions

Changes in ice shelf/sea-ice cover in the western ASE since the
post-LGM deglaciation have been reconstructed using the sea-ice
proxy IPSO25 and the phytoplankton-derived biomarker dinos-
terol. For a semi-quantitative reconstruction of ice cover, the
phytoplankton-IPSO25 index (PDIPSO25) was applied and compared
to bothWSI concentrations derived from diatom TF reconstructions
and environmental constraints deduced from sedimentological
data.

The Getz Ice Shelf and sea-ice cover in the study area show a
dynamic behaviour since the last deglaciation with a first break-up
or retreat of the ice shelf and the establishment of a dynamic ice
front just before 13 cal. ka BP. During the break-up/retreat phase,
the biomarker proxy records tentatively suggest either a brief re-
advance of the ice shelf or the temporary establishment of a
perennial sea-ice cover, which could be linked to atmospheric
cooling during the Antarctic Cold Reversal. Following this episode,
the biomarker records reveal a phase with significantly reduced
sea-ice cover during spring and summer around 12.7 cal. ka BP,
which was characterised by deposition of a relatively pure diato-
maceous ooze. This phasemay be linked to awarming in Antarctica,
which potentially coincided with the onset of the Younger Dryas
stadial in the Northern Hemisphere, and may thus document inter-
hemispheric climate coupling via the bipolar seesaw. After the
predominantly open marine phase, a re-expansion of spring sea ice
occurred in the western ASE and was followed by highly variable
sea-ice conditions throughout the Holocene.

Our study demonstrates that pairing IPSO25 and a phyto-
plankton biomarker has the potential to provide a valuable proxy
for the assessment of past sea-ice environments in Antarctica.
However, to obtain robust palaeoenvironmental information, we
recommend that the biomarker lipids are applied alongside other
proxies, including diatom TF and TOC data and sedimentological
parameters.

Data availability

Datasets related to this article can be found online on PANGAEA
Data Publisher for Earth & Environmental Science (doi:10.1594/
PANGAEA.904263).

Declaration of competing interest

None.

Acknowledgements

Denise Diekstall, Maximilian Mues, Robert Grosser and Mandy
Kuck are kindly acknowledged for laboratory support.We thank the
captain, crew and science party of RV Polarstern cruise PS69. Simon
Belt is acknowledged for providing the 7-HND internal standard for
HBI quantification. N.L. and J.Mwere funded through the Helmholtz
Research Grant VH-NG-1101. J.A.S and C.D.H were funded by NERC
grant NE/M013081/1. G.K. was funded through the research pro-
gram PACES II: Polar Regions and Coasts in the changing
EarthSystem.

http://10.1594/PANGAEA.904263
http://10.1594/PANGAEA.904263


N. Lamping et al. / Quaternary Science Reviews 228 (2020) 106103 11
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.quascirev.2019.106103.

References

Alderkamp, A.-C., Mills, M.M., van Dijken, G.L., Laan, P., Thur�oczy, C.-E., Gerringa, L.J.,
de Baar, H.J., Payne, C.D., Visser, R.J., Buma, A.G., 2012. Iron frommelting glaciers
fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): phyto-
plankton characteristics and productivity. Deep Sea Res. Part II Top. Stud.
Oceanogr. 71, 32e48.

Allen, C.S., Pike, J., Pudsey, C.J., 2011. Last glacialeinterglacial sea-ice cover in the SW
Atlantic and its potential role in global deglaciation. Quat. Sci. Rev. 30,
2446e2458.

Anderson, R., Ali, S., Bradtmiller, L., Nielsen, S., Fleisher, M., Anderson, B., Burckle, L.,
2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in
atmospheric CO2. Science 323, 1443e1448.

Andrews, J.T., 1987. Late quaternary marine sediment accumulation in fiord-shelf-
deep-sea transects, Baffin island to Baffin Bay. Quat. Sci. Rev. 6, 231e243.

Andrews, J.T., Domack, E.W., Cunningham, W.L., Leventer, A., Licht, K.J., Jull, A.T.,
DeMaster, D.J., Jennings, A.E., 1999. Problems and possible solutions concerning
radiocarbon dating of surface marine sediments, Ross Sea, Antarctica. Quat. Res.
52, 206e216.

Armand, L., Zielinski, U., 2001. Diatom species of the genus Rhizosolenia from
Southern Ocean sediments: distribution and taxonomic notes. Diatom Res. 16,
259e294.

Armand, L.K., Crosta, X., Romero, O., Pichon, J.-J., 2005. The biogeography of major
diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palae-
ogeogr. Palaeoclimatol. Palaeoecol. 223, 93e126.

Arndt, J.E., Schenke, H.W., Jakobsson, M., Nitsche, F., Buys, G., Goleby, B., Rebesco, M.,
Bohoyo, F., Hong, J.K., Black, J., Greku, R., Udintsev, G., Barrios, F., Reynoso-
Peralta, W., Morishita, T., Wigley, R., 2013. The International Bathymetric Chart
of the Southern Ocean (IBCSO) Version 1.0 - a new bathymetric compilation
covering circum-Antarctic waters. Geophys. Res. Lett. 40, 3111e3117. https://
doi.org/10.1002/grl.50413.

Arrigo, K.R., Van Dijken, G.L., 2003. Phytoplankton dynamics within 37 Antarctic
coastal polynya systems. J. Geophys. Res. 108 (C8), 3271. https://doi.org/10.1029/
2002JC001739.

Arrigo, K.R., Lowry, K.E., van Dijken, G.L., 2012. Annual changes in sea ice and
phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep Sea Res. Part
II Top. Stud. Oceanogr. 71e76, 5e15.

Arrigo, K.R., van Dijken, G.L., Strong, A.L., 2015. Environmental controls of marine
productivity hot spots around Antarctica. J. Geophys. Res.: Oceans 120,
5545e5565.

Barbara, L., Crosta, X., Mass�e, G., Ther, O., 2010. Deglacial environments in eastern
Prydz Bay, East Antarctica. Quat. Sci. Rev. 29, 2731e2740.

Belt, S.T., Allard, W.G., Mass�e, G., Robert, J.-M., Rowland, S.J., 2000. Highly branched
isoprenoids (HBIs): identification of the most common and abundant sedi-
mentary isomers. Geochem. Cosmochim. Acta 64, 3839e3851.

Belt, S.T., Mass�e, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel
chemical fossil of palaeo sea ice: IP25. Org. Geochem. 38, 16e27.

Belt, S.T., Müller, J., 2013. The Arctic sea ice biomarker IP25: a review of current
understanding, recommendations for future research and applications in palaeo
sea ice reconstructions. Quat. Sci. Rev. 79, 9e25.

Belt, S.T., Brown, T.A., Ampel, L., Cabedo-Sanz, P., Fahl, K., Kocis, J.J., Masse, G.,
Navarro-Rodriguez, A., Ruan, J., Xu, Y., 2014. An inter-laboratory investigation of
the Arctic sea ice biomarker proxy IP25 in marine sediments: key outcomes and
recommendations. Clim. Past 10, 155e166.

Belt, S.T., Smik, L., Brown, T.A., Kim, J.H., Rowland, S.J., Allen, C.S., Gal, J.K., Shin, K.H.,
Lee, J.I., Taylor, K.W.R., 2016. Source identification and distribution reveals the
potential of the geochemical Antarctic sea ice proxy IPSO25. Nat. Commun. 7,
12655. https://doi.org/10.1038/ncomms12655.

Belt, S.T., Brown, T.A., Smik, L., Assmy, P., Mundy, C., 2018. Sterol identification in
floating Arctic sea ice algal aggregates and the Antarctic sea ice diatom Berke-
leya adeliensis. Org. Geochem. 118, 1e3.

Belt, S.T., 2018. Source-specific biomarkers as proxies for Arctic and Antarctic sea
ice. Org. Geochem. 125, 277e298.

Benz, V., Esper, O., Gersonde, R., Lamy, F., Tiedemann, R., 2016. Last Glacial
Maximum sea surface temperature and sea-ice extent in the Pacific sector of
the Southern Ocean. Quat. Sci. Rev. 146, 216e237.

Berkman, P.A., Forman, S.L., 1996. Pre-bomb radiocarbon and the reservoir correc-
tion for calcareous marine species in the Southern Ocean. Geophys. Res. Lett. 23,
363e366.

Bianchi, C., Gersonde, R., 2004. Climate evolution at the last deglaciation: the role of
the Southern Ocean. Earth Planet. Sci. Lett. 228, 407e424.

Blunier, T., Schwander, J., Stauffer, B., Stocker, T., D€allenbach, A., Indermühle, A.,
Tschumi, J., Chappellaz, J., Raynaud, D., Barnola, J.M., 1997. Timing of the Ant-
arctic Cold reversal and the atmospheric CO2 increase with respect to the
younger Dryas event. Geophys. Res. Lett. 24, 2683e2686.

Blunier, T., Brook, E.J., 2001. Timing of millennial-scale climate change in Antarctica
and Greenland during the last glacial period. Science 291, 109e112.

Boon, J.J., Rijpstra, W.I.C., de Lange, F., De Leeuw, J., Yoshioka, M., Shimizu, Y., 1979.
Black Sea sterolda molecular fossil for dinoflagellate blooms. Nature 277,
125e127.

Bopp, L., Kohfeld, K.E., Le Qu�er�e, C., Aumont, O., 2003. Dust impact on marine biota
and atmospheric CO2 during glacial periods. Paleoceanography 18 (2), 1046.
https://doi.org/10.1029/2002PA000810.

Broecker, W.S., 1998. Paleocean circulation during the last deglaciation: a bipolar
seesaw? Paleoceanography 13, 119e121.

Campagne, P., Crosta, X., Houssais, M.-N., Swingedouw, D., Schmidt, S., Martin, A.,
Devred, E., Capo, S., Marieu, V., Closset, I., 2015. Glacial ice and atmospheric
forcing on the Mertz Glacier Polynya over the past 250 years. Nat. Commun. 6,
6642. https://doi.org/10.1038/ncomms7642.

Collins, L.G., Allen, C.S., Pike, J., Hodgson, D.A., Weckstr€om, K., Mass�e, G., 2013.
Evaluating highly branched isoprenoid (HBI) biomarkers as a novel Antarctic
sea-ice proxy in deep ocean glacial age sediments. Quat. Sci. Rev. 79, 87e98.

Comiso, J.C., Gersten, R.A., Stock, L.V., Turner, J., Perez, G.J., Cho, K., 2017. Positive
Trend in the Antarctic sea ice cover and associated changes in surface tem-
perature. J. Clim. 30, 2251e2267.

Crosta, X., Pichon, J.J., Burckle, L., 1998. Application of modern analog technique to
marine Antarctic diatoms: reconstruction of maximum sea-ice extent at the
Last Glacial Maximum. Paleoceanography Paleoclimatol. 13, 284e297.

Crosta, X., Romero, O., Armand, L.K., Pichon, J.-J., 2005. The biogeography of major
diatom taxa in Southern Ocean sediments: 2. Open ocean related species.
Palaeogeogr. Palaeoclimatol. Palaeoecol. 223, 66e92.

Cuffey, K.M., Clow, G.D., Steig, E.J., Buizert, C., Fudge, T., Koutnik, M.,
Waddington, E.D., Alley, R.B., Severinghaus, J.P., 2016. Deglacial temperature
history of West Antarctica. Proc. Natl. Acad. Sci. 113, 14249e14254.

Denis, D., Crosta, X., Barbara, L., Mass�e, G., Renssen, H., Ther, O., Giraudeau, J., 2010.
Sea ice and wind variability during the Holocene in East Antarctica: insight on
middleehigh latitude coupling. Quat. Sci. Rev. 29, 3709e3719.

Denton, G.H., Anderson, R.F., Toggweiler, J., Edwards, R., Schaefer, J., Putnam, A.,
2010. The last glacial termination. Science 328, 1652e1656.

De Santis, A., Maier, E., Gomez, R., Gonzalez, I., 2017. Antarctica, 1979e2016 sea ice
extent: total versus regional trends, anomalies, and correlation with climato-
logical variables. Int. J. Remote Sens. 38, 7566e7584.

Domack, E., 1992. Modern carbon-14 ages and reservoir corrections for the Ant-
arctic Peninsula and Gerlache Strait area. Antarct. J. U. S. 27, 63e64.

Domack, E.W., Mcclennen, C.E., 1996. Accumulation of glacial marine sediments in
fjords of the Antarctic Peninsula and their use as late Holocene paleoenvir-
onmental indicators. Found. Ecol. Res. West Antarct. Peninsula 70, 135e154.

Ehrmann, W., Hillenbrand, C.-D., Smith, J.A., Graham, A.G., Kuhn, G., Larter, R.D.,
2011. Provenance changes between recent and glacial-time sediments in the
Amundsen Sea embayment, West Antarctica: clay mineral assemblage evi-
dence. Antarct. Sci. 23, 471e486.

Esper, O., Gersonde, R., Kadagies, N., 2010. Diatom distribution in southeastern
Pacific surface sediments and their relationship to modern environmental
variables. Palaeogeogr. Palaeoclimatol. Palaeoecol. 287, 1e27.

Esper, O., Gersonde, R., 2014a. New tools for the reconstruction of Pleistocene
Antarctic sea ice. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 260e283.

Esper, O., Gersonde, R., 2014b. Quaternary surface water temperature estimations:
new diatom transfer functions for the Southern Ocean. Palaeogeogr. Palae-
oclimatol. Palaeoecol. 414, 1e19.

Etourneau, J., Collins, L.G., Willmott, V., Kim, J.-H., Barbara, L., Leventer, A.,
Schouten, S., Damst�e, J.S., Bianchini, A., Klein, V., 2013. Holocene climate vari-
ations in the western Antarctic Peninsula: evidence for sea ice extent pre-
dominantly controlled by changes in insolation and ENSO variability. Clim. Past
9, 1431e1446.

Fahl, K., Stein, R., 2012. Modern seasonal variability and deglacial/Holocene change
of central Arctic Ocean sea-ice cover: new insights from biomarker proxy re-
cords. Earth Planet. Sci. Lett. 351, 123e133.

Fetterer, F., Knowles, K., Meier, W., Savoie, M., Windnagel, A.K., 2016. Updated Daily.
Sea Ice Index, Version 2. [Median Sea Ice Extent 1981-2010]. NSIDC: National
Snow and Ice Data Center, Boulder, Colorado USA. https://doi.org/10.7265/
N5736NV7 [24 July 2017].

Gersonde, R., Zielinski, U., 2000. The reconstruction of late Quaternary Antarctic
sea-ice distributiondthe use of diatoms as a proxy for sea-ice. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 162, 263e286.

Gersonde, R., Crosta, X., Abelmann, A., Armand, L., 2005. Sea-surface temperature
and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial
Maximumda circum-Antarctic view based on siliceous microfossil records.
Quat. Sci. Rev. 24, 869e896.

Gohl, K., 2007. The expedition ANTARKTIS-XXIII/4 of the research vessel Polarstern
in 2006. In: Berichte zur Polar-und Meeresforschung (Reports on Polar and
Marine Research), Bremerhaven, Alfred Wegener Institute for Polar and Marine
Research, vol. 557, p. 166. https://doi.org/10.2312/BzPM_0557_2007.

Graham, A.G.C., Kuhn, G., Meisel, O., Hillenbrand, C.-D., Hodgson, D.A., Ehrmann, W.,
Wacker, L., Wintersteller, P., dos Santos Ferreira, C., R€omer, M., White, D.,
Bohrmann, G., 2017. Major advance of South Georgia glaciers during the Ant-
arctic Cold Reversal following extensive sub-Antarctic glaciation. Nat. Commun.
8, 14798. https://doi.org/10.1038/ncomms14798.

Hall, A., 2004. The role of surface albedo feedback in climate. J. Clim. 17, 1550e1568.
Hasle, G.R., Syvertsen, E.E., 1996. Marine diatoms. In: Tomas, C.R. (Ed.), Identifying

Marine Diatoms and Dinoflagellates. Academic Press Limited, London,
pp. 5e385.

Hellmer, H.H., Kauker, F., Timmermann, R., Determann, J., Rae, J., 2012. Twenty-first-
century warming of a large Antarctic ice-shelf cavity by a redirected coastal

https://doi.org/10.1016/j.quascirev.2019.106103
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref1
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref1
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref1
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref1
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref1
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref1
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref1
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref2
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref2
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref2
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref2
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref2
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref3
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref3
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref3
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref3
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref4
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref4
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref4
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref5
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref5
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref5
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref5
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref5
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref6
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref6
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref6
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref6
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref7
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref7
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref7
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref7
https://doi.org/10.1002/grl.50413
https://doi.org/10.1002/grl.50413
https://doi.org/10.1029/2002JC001739
https://doi.org/10.1029/2002JC001739
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref10
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref10
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref10
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref10
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref10
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref11
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref11
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref11
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref11
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref12
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref12
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref12
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref12
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref13
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref13
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref13
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref13
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref13
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref14
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref14
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref14
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref14
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref15
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref15
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref15
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref15
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref16
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref16
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref16
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref16
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref16
https://doi.org/10.1038/ncomms12655
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref18
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref18
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref18
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref18
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref19
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref19
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref19
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref20
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref20
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref20
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref20
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref21
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref21
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref21
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref21
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref22
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref22
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref22
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref23
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref23
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref23
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref23
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref23
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref23
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref24
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref24
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref24
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref25
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref25
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref25
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref25
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref25
https://doi.org/10.1029/2002PA000810
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref27
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref27
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref27
https://doi.org/10.1038/ncomms7642
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref29
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref29
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref29
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref29
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref29
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref29
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref30
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref30
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref30
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref30
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref31
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref31
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref31
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref31
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref32
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref32
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref32
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref32
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref33
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref33
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref33
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref33
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref34
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref34
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref34
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref34
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref34
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref34
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref35
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref35
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref35
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref36
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref36
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref36
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref36
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref36
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref37
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref37
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref37
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref38
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref38
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref38
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref38
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref39
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref39
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref39
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref39
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref39
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref40
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref40
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref40
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref40
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref41
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref41
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref41
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref42
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref42
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref42
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref42
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref43
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref43
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref43
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref43
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref43
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref43
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref43
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref44
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref44
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref44
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref44
https://doi.org/10.7265/N5736NV7
https://doi.org/10.7265/N5736NV7
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref46
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref46
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref46
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref46
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref46
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref47
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref47
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref47
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref47
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref47
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref47
https://doi.org/10.2312/BzPM_0557_2007
https://doi.org/10.1038/ncomms14798
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref50
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref50
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref51
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref51
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref51
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref51
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref52
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref52


N. Lamping et al. / Quaternary Science Reviews 228 (2020) 10610312
current. Nature 485, 225e228.
Heroy, D.C., Anderson, J.B., 2007. Radiocarbon constraints on Antarctic Peninsula ice

sheet retreat following the last glacial maximum (LGM). Quat. Sci. Rev. 26,
3286e3297.

Heroy, D.C., Sjunneskog, C., Anderson, J.B., 2008. Holocene climate change in the
Bransfield Basin, Antarctic Peninsula: evidence from sediment and diatom
analysis. Antarct. Sci. 20, 69e87.

Hillenbrand, C.D., Smith, J.A., Kuhn, G., Esper, O., Gersonde, R., Larter, R.D., Maher, B.,
Moreton, S.G., Shimmield, T.M., Korte, M., 2010. Age assignment of a diatoma-
ceous ooze deposited in the western Amundsen sea embayment after the last
glacial maximum. J. Quat. Sci. 25, 280e295.

Hillenbrand, C.-D., Kuhn, G., Smith, J.A., Gohl, K., Graham, A.G., Larter, R.D.,
Klages, J.P., Downey, R., Moreton, S.G., Forwick, M., 2013. Grounding-line retreat
of the west Antarctic ice sheet from inner Pine island Bay. Geology 41, 35e38.

Hillenbrand, C.-D., Smith, J.A., Hodell, D.A., Greaves, M., Poole, C.R., Kender, S.,
Williams, M., Andersen, T.J., Jernas, P.E., Elderfield, H., Klages, J.P., Roberts, S.J.,
Gohl, K., Larter, R.D., Kuhn, G., 2017. West Antarctic Ice Sheet retreat driven by
Holocene warm water incursions. Nature 547, 43e48.

Hutson, W.H., 1980. The Agulhas current during the late pleistocene: analysis of
modern faunal analogs. Science 207, 64e66.

Jacobs, S.S., Jenkins, A., Giulivi, C.F., Dutrieux, P., 2011. Stronger ocean circulation and
increased melting under Pine Island Glacier ice shelf. Nat. Geosci. 4, 519e523.

Jenkins, A., Dutrieux, P., Jacobs, S.S., McPhail, S.D., Perrett, J.R., Webb, A.T., White, D.,
2010. Observations beneath pine island glacier in west Antarctica and impli-
cations for its retreat. Nat. Geosci. 3, 468e472.

Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T.W., Lee, S.H., Ha, H.K.,
Stammerjohn, S., 2018. West Antarctic ice sheet retreat in the Amundsen sea
driven by decadal oceanic variability. Nat. Geosci. 11, 733e738.

Jouzel, J., Vaikmae, R., Petit, J., Martin, M., Duclos, Y., Stievenard, M., Lorius, C.,
Toots, M., M�eli�eres, M., Burckle, L., 1995. The two-step shape and timing of the
last deglaciation in Antarctica. Clim. Dyn. 11, 151e161.

Kern, S., 2009. Wintertime Antarctic coastal polynya area: 1992e2008. Geophys.
Res. Lett. 36, L14501. https://doi.org/10.1029/2009GL038062.

Kim, M., Hwang, J., Kim, H.J., Kim, D., Yang, E.J., Ducklow, H.W., La Hyoung, S.,
Lee, S.H., Park, J., Lee, S., 2015. Sinking particle flux in the sea ice zone of the
Amundsen shelf, Antarctica. Deep Sea Res. Oceanogr. Res. Pap. 101, 110e117.

Kim, M., Hwang, J., Lee, S.H., Kim, H.J., Kim, D., Yang, E.J., Lee, S., 2016. Sedimentation
of particulate organic carbon on the Amundsen Shelf, Antarctica. Deep Sea Res.
Part II Top. Stud. Oceanogr. 123, 135e144.

Lee, S., Hwang, J., Ducklow, H.W., Hahm, D., Lee, S.H., Kim, D., Hyun, J.H., Park, J.,
Ha, H.K., Kim, T.W., 2017. Evidence of minimal carbon sequestration in the
productive Amundsen Sea polynya. Geophys. Res. Lett. 44, 7892e7899.

Leventer, A., Domack, E.W., Ishman, S.E., Brachfeld, S., McClennen, C.E., Manley, P.,
1996. Productivity cycles of 200e300 years in the Antarctic Peninsula region:
understanding linkages among the sun, atmosphere, oceans, sea ice, and biota.
Geol. Soc. Am. Bull. 108, 1626e1644.

Leventer, A., 1998. The fate of Antarctic “sea ice diatoms” and their use as paleo-
environmental indicators. Antarct. Sea Ice. Biol. Process., Interact. Var. 121e137.

Lizotte, M.P., 2001. The contributions of sea ice algae to Antarctic marine primary
production. Am. Zool. 41, 57e73.

Maddison, E.J., Pike, J., Leventer, A., Domack, E.W., 2005. Deglacial seasonal and sub-
seasonal diatom record from Palmer Deep, Antarctica. J. Quat. Sci.: Pub. Quat.
Res. Assoc. 20, 435e446.

Maqueda, M.M., Willmott, A.J., Biggs, N.R.T., 2004. Polynya dynamics: a review of
observations and modeling. Rev. Geophys. 42, RG1004. https://doi.org/10.1029/
2002RG000116.

Martin, S., 2001. Polynyas. In: Steele, J.H. (Ed.), Encyclopedia of Ocean Sciences,
second ed. Academic Press, Oxford, pp. 540e545.

Mass�e, G., Belt, S.T., Crosta, X., Schmidt, S., Snape, I., Thomas, D.N., Rowland, S.J.,
2011. Highly branched isoprenoids as proxies for variable sea ice conditions in
the Southern Ocean. Antarct. Sci. 23, 487e498.

Massom, R.A., Eicken, H., Hass, C., Jeffries, M.O., Drinkwater, M.R., Sturm, M.,
Worby, A.P., Wu, X., Lytle, V.I., Ushio, S., 2001. Snow on Antarctic sea ice. Rev.
Geophys. 39, 413e445.

Massom, R.A., Scambos, T.A., Bennetts, L.G., Reid, P., Squire, V.A., Stammerjohn, S.E.,
2018. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell.
Nature 558, 383e389.

Mathiot, P., Goosse, H., Fichefet, T., Barnier, B., Gall�ee, H., 2011. Modelling the sea-
sonal variability of the Antarctic Slope current. Ocean Sci. 7, 455e470.

Meredith, M.P., Woodworth, P.L., Chereskin, T.K., Marshall, D.P., Allison, L.C.,
Bigg, G.R., Donohue, K., Heywood, K.J., Hughes, C.W., Hibbert, A., 2011. Sustained
monitoring of the Southern Ocean at Drake passage: past achievements and
future priorities. Rev. Geophys. 49, RG4005. https://doi.org/10.1029/
2010rg000348.

Milliken, K., Anderson, J., Wellner, J., Bohaty, S., Manley, P., 2009. High-resolution
Holocene climate record from Maxwell Bay, South Shetland islands, Antarctica.
GSA Bull. 121, 1711e1725.

Minzoni, R.T., Majewski, W., Anderson, J.B., Yokoyama, Y., Fernandez, R.,
Jakobsson, M., 2017. Oceanographic influences on the stability of the Cosgrove
ice shelf, Antarctica. Holocene 27, 1645e1658.

Müller, P.J., Schneider, R., 1993. An automated leaching method for the determi-
nation of opal in sediments and particulate matter. Deep Sea Res. Oceanogr. Res.
Pap. 40, 425e444.

Müller, J., Mass�e, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditions in the
Fram Strait over the past 30,000 years. Nat. Geosci. 2, 772e776.
Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., Lohmann, G., 2011. Towards
quantitative sea ice reconstructions in the northern North Atlantic: a combined
biomarker and numerical modelling approach. Earth Planet. Sci. Lett. 306,
137e148.

Nakayama, Y., Schr€oder, M., Hellmer, H.H., 2013. From circumpolar deep water to
the glacial meltwater plume on the eastern Amundsen Shelf. Deep Sea Res.
Oceanogr. Res. Pap. 77, 50e62.

Nicholls, K.W., Østerhus, S., Makinson, K., Gammelsrød, T., Fahrbach, E., 2009. Ice-
ocean processes over the continental shelf of the southern Weddell Sea,
Antarctica: a review. Rev. Geophys. 47, RG3003. https://doi.org/10.1029/
2007RG000250.

Nihashi, S., Ohshima, K.I., 2015. Circumpolar mapping of Antarctic coastal polynyas
and landfast sea ice: relationship and variability. J. Clim. 28, 3650e3670.

Orsi, A.H., Whitworth III, T., Nowlin Jr., W.D., 1995. On the meridional extent and
fronts of the Antarctic Circumpolar Current. Deep Sea Res. Oceanogr. Res. Pap.
42, 641e673.

Parkinson, C.L., Cavalieri, D.J., 2012. Antarctic sea ice variability and trends,
1979e2010. Cryosphere 6, 871e880. https://doi.org/10.5194/tc-6-871-2012.

Parkinson, C.L., 2019. A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic. Proc.
Natl. Acad. Sci. 116, 14414e14423.

Pedro, J.B., Van Ommen, T., Rasmussen, S., Morgan, V.I., Chappellaz, J., Moy, A.D.,
Masson-Delmotte, V., Delmotte, M., 2011. The last deglaciation: timing the bi-
polar seesaw. Clim. Past 7, 671e683.

Pedro, J.B., Bostock, H.C., Bitz, C.M., He, F., Vandergoes, M.J., Steig, E.J., Chase, B.M.,
Krause, C.E., Rasmussen, S.O., Markle, B.R., 2016. The spatial extent and dy-
namics of the Antarctic Cold Reversal. Nat. Geosci. 9, 51e55.

Perrette, M., Yool, A., Quartly, G.D., Popova, E.E., 2011. Near-ubiquity of ice-edge
blooms in the Arctic. Biogeosciences 8, 515e524.

Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., Wang, W., 2002. An improved
in situ and satellite SST analysis for climate. J. Clim. 15, 1609e1625.

Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., Schlax, M.G., 2007.
Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20,
5473e5496.

Riaux-Gobin, C., Poulin, M., 2004. Possible symbiosis of Berkeleya adeliensis Medlin,
Synedropsis fragilis (Manguin) Hasle et al. and Nitzschia lecointei Van Heurck
(Bacillariophyta) associated with land-fast ice in Ad�elie Land, Antarctica.
Diatom Res. 19, 265e274.

Romero, O.E., Armand, L.K., Crosta, X., Pichon, J.J., 2005. The biogeography of major
diatom taxa in Southern Ocean surface sediments: 3. Tropical/Subtropical
species. Palaeogeogr. Palaeoclimatol. Palaeoecol. 223, 49e65.

Rontani, J.-F., Smik, L., Belt, S.T., Vaultier, F., Armbrecht, L., Leventer, A., Armand, L.K.,
2019a. Abiotic degradation of highly branched isoprenoid alkenes and other
lipids in the water column off East Antarctica. Mar. Chem. 210, 34e47.

Rontani, J.-F., Smik, L., Belt, S.T., 2019b. Autoxidation of the sea ice biomarker proxy
IPSO25 in the near-surface oxic layers of Arctic and Antarctic sediments. Org.
Geochem. 129, 63e76.

Rosenblum, E., Eisenman, I., 2017. Sea ice trends in climate models only accurate in
runs with biased global warming. J. Clim. 30, 6265e6278.

Schrader, H., Gersonde, R., 1978. Diatoms and silicoflagellates. In: Zachariasse, W.J.,
Riedel, W.R., Sanfilippo, A., Schmidt, R.R., Brolsma, M.J., Schrader, H.J.,
Gersonde, R., Drooger, M.M., Broekman, J.A. (Eds.), Micropaleontological
Methods and Techniques - an Exercise on an Eight Meter Section of the Lower
Pliocene of Capo Rossello, Sicily, vol. 17. Utrecht Micropaleontol. Bull,
pp. 129e176.

Shepherd, A., Wingham, D., Rignot, E., 2004. Warm ocean is eroding West Antarctic
ice sheet. Geophys. Res. Lett. 31, L23402. https://doi.org/10.1029/
2004GL021284.

Shepherd, A., Fricker, H.A., Farrell, S.L., 2018. Trends and connections across the
Antarctic cryosphere. Nature 558, 223e232.

Sjunneskog, C., Taylor, F., 2002. Postglacial marine diatom record of the Palmer
deep, Antarctic Peninsula (ODP Leg 178, Site 1098) 1. Total diatom abundance.
Paleoceanography 17 (PAL 4e1-PAL), 4e8.

Skinner, L.C., Fallon, S., Waelbroeck, C., Michel, E., Barker, S., 2010. Ventilation of the
deep Southern Ocean and deglacial CO2 rise. Science 328, 1147e1151.

Smik, L., Cabedo-Sanz, P., Belt, S.T., 2016. Semi-quantitative estimates of paleo Arctic
sea ice concentration based on source-specific highly branched isoprenoid al-
kenes: a further development of the PIP25 index. Org. Geochem. 92, 63e69.

Smith, W.O., Nelson, D.M., 1986. Importance of ice edge phytoplankton production
in the Southern Ocean. Bioscience 36, 251e257.

Smith Jr., W.O., 1987. Phytoplankton dynamics in marginal ice zones. Oceanogr. Mar.
Biol. 25, 11e38.

Smith, J.A., Hillenbrand, C.-D., Kuhn, G., Larter, R.D., Graham, A.G., Ehrmann, W.,
Moreton, S.G., Forwick, M., 2011. Deglacial history of the west Antarctic ice
sheet in the western Amundsen sea embayment. Quat. Sci. Rev. 30, 488e505.

Stammerjohn, S., Massom, R., Rind, D., Martinson, D., 2012. Regions of rapid sea ice
change: an inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39,
L06501. https://doi.org/10.1029/2012GL050874.

Stammerjohn, S., Maksym, T., Massom, R., Lowry, K., Arrigo, K., Yuan, X., Raphael, M.,
Randall-Goodwin, E., Sherrell, R., Yager, P., 2015. Seasonal sea ice changes in the
Amundsen Sea, Antarctica, over the period of 1979e2014. Elem Sci. Anth 3.
https://doi.org/10.12952/journal.elementa.000055.

Thoma, M., Jenkins, A., Holland, D., Jacobs, S., 2008. Modelling circumpolar deep
water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys.
Res. Lett. 35, L18602. https://doi.org/10.1029/2008GL034939.

http://refhub.elsevier.com/S0277-3791(19)30653-5/sref52
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref52
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref53
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref53
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref53
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref53
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref54
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref54
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref54
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref54
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref55
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref55
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref55
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref55
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref55
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref56
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref56
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref56
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref56
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref57
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref57
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref57
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref57
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref57
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref58
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref58
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref58
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref59
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref59
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref59
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref60
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref60
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref60
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref60
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref61
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref61
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref61
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref61
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref62
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref62
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref62
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref62
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref62
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref62
https://doi.org/10.1029/2009GL038062
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref64
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref64
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref64
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref64
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref65
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref65
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref65
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref65
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref66
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref66
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref66
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref66
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref67
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref67
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref67
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref67
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref67
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref67
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref68
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref68
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref68
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref69
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref69
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref69
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref70
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref70
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref70
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref70
https://doi.org/10.1029/2002RG000116
https://doi.org/10.1029/2002RG000116
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref72
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref72
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref72
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref73
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref73
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref73
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref73
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref73
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref74
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref74
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref74
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref74
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref75
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref75
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref75
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref75
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref76
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref76
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref76
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref76
https://doi.org/10.1029/2010rg000348
https://doi.org/10.1029/2010rg000348
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref78
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref78
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref78
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref78
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref79
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref79
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref79
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref79
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref80
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref80
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref80
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref80
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref81
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref81
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref81
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref81
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref82
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref82
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref82
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref82
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref82
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref83
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref83
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref83
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref83
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref83
https://doi.org/10.1029/2007RG000250
https://doi.org/10.1029/2007RG000250
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref85
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref85
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref85
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref86
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref86
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref86
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref86
https://doi.org/10.5194/tc-6-871-2012
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref88
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref88
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref88
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref88
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref89
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref89
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref89
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref89
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref90
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref90
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref90
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref90
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref91
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref91
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref91
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref92
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref92
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref92
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref93
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref93
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref93
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref93
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref94
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref94
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref94
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref94
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref94
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref94
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref95
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref95
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref95
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref95
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref96
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref96
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref96
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref96
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref97
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref97
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref97
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref97
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref98
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref98
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref98
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref99
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref99
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref99
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref99
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref99
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref99
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref99
https://doi.org/10.1029/2004GL021284
https://doi.org/10.1029/2004GL021284
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref101
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref101
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref101
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref102
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref102
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref102
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref102
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref102
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref103
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref103
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref103
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref103
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref104
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref104
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref104
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref104
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref104
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref105
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref105
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref105
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref106
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref106
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref106
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref107
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref107
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref107
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref107
https://doi.org/10.1029/2012GL050874
https://doi.org/10.12952/journal.elementa.000055
https://doi.org/10.1029/2008GL034939


N. Lamping et al. / Quaternary Science Reviews 228 (2020) 106103 13
Thomas, D.N., 2017. Sea Ice. John Wiley & Sons.
Vaughan, D.G., Comiso, J.C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P.,

Murray, T., Paul, F., Ren, J., 2013. Observations: cryosphere. Clim. Change 2103,
317e382.

Volkman, J.K., 1986. A review of sterol markers for marine and terrigenous organic
matter. Org. Geochem. 9, 83e99.

Volkman, J.K., Barrett, S.M., Dunstan, G.A., Jeffrey, S.W., 1993. Geochemical signifi-
cance of the occurrence of dinosterol and other 4-methyl sterols in a marine
diatom. Org. Geochem. 20, 7e15.

Volkman, J.K., 2006. Lipid markers for marine organic matter. In: Marine Organic
Matter: Biomarkers, Isotopes and DNA. Springer, pp. 27e70.

Vorrath, M.-E., Müller, J., Esper, O., Mollenhauer, G., Haas, C., Schefuß, E., Fahl, K.,
2019. Highly branched isoprenoids for Southern Ocean sea ice reconstructions:
a pilot study from the Western Antarctic Peninsula. Biogeosciences 16,
2961e2981.

WAIS Divide Project Members, 2013. Onset of deglacial warming in West Antarctica
driven by local orbital forcing. Nature 500, 440e444.
Xiao, W., Esper, O., Gersonde, R., 2016. Last glacial-holocene climate variability in

the Atlantic sector of the Southern Ocean. Quat. Sci. Rev. 135, 115e137.
Xiao, X., Fahl, K., Müller, J., Stein, R., 2015. Sea-ice distribution in the modern Arctic

Ocean: biomarker records from trans-Arctic Ocean surface sediments. Geo-
chem. Cosmochim. Acta 155, 16e29.

Yager, P.L., Sherrell, R.M., Stammerjohn, S.E., Alderkamp, A.-C., Schofield, O.,
Abrahamsen, E.P., Arrigo, K.R., Bertilsson, S., Garay, D.L., Guerrero, R., 2012.
ASPIRE: the Amundsen Sea Polynya international research expedition. Ocean-
ography 25, 40e53.

Zielinski, U., Gersonde, R., 1997. Diatom distribution in Southern Ocean surface
sediments (Atlantic sector): implications for paleoenvironmental re-
constructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 129, 213e250.

Zielinski, U., Gersonde, R., Sieger, R., Fütterer, D., 1998. Quaternary surface water
temperature estimations: calibration of a diatom transfer function for the
Southern Ocean. Paleoceanography Paleoclimatol. 13, 365e383.

http://refhub.elsevier.com/S0277-3791(19)30653-5/sref111
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref111
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref112
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref112
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref112
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref112
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref113
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref113
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref113
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref114
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref114
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref114
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref114
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref115
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref115
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref115
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref116
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref116
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref116
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref116
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref116
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref116
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref117
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref117
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref117
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref118
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref118
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref118
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref119
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref119
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref119
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref119
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref120
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref120
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref120
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref120
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref120
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref121
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref121
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref121
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref121
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref122
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref122
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref122
http://refhub.elsevier.com/S0277-3791(19)30653-5/sref122


Update

Quaternary Science Reviews
Volume 234, Issue , 15 April 2020, Page 

 https://doi.org/10.1016/j.quascirev.2020.106260DOI:

 https://doi.org/10.1016/j.quascirev.2020.106260


lable at ScienceDirect

Quaternary Science Reviews 234 (2020) 106260
Contents lists avai
Quaternary Science Reviews

journal homepage: www.elsevier .com/locate/quascirev
Corrigendum
Corrigendum to “Highly branched isoprenoids reveal onset of
deglaciation followed by dynamic sea-ice conditions in the western
Amundsen Sea, Antarctica” [Quat. Sci. Rev. 228 (2020) 106103]

Nele Lamping a, *, Juliane Müller a, b, c, Oliver Esper a, Claus-Dieter Hillenbrand d,
James A. Smith d, Gerhard Kuhn a

a Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Alten Hafen 26, 27568, Bremerhaven, Germany
b Department of Geosciences, University of Bremen, Klagenfurter Straße, 28359, Bremen, Germany
c Marum - Center for Marine Environmental Sciences, Leobener Straße 8, 28359, Bremen, Germany
d British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
After publication of the article, the authors noticed a mistake in the concentration calculations of the two biomarker lipids IPSO25 and
dinosterol. The volume of the internal standards 7-hexylnonadecane and 5a-androstan-3-ol had incorrectly been calculated twice. Hence,
the absolute concentrations of IPSO25 are erroneously higher by factor 20 and the concentrations of dinosterol are erroneously higher by
factor 60. The calculated PDIPSO25 index is not affected by these changes.

In 4.1.2. Unit B: Dynamic ice front
The value for IPSO25 was reported as 4e8 mg*g OC�1, but should now be corrected to 0.2e0.4 mg*g OC�1.
The value for dinosterol was reported as 200e400 mg*g OC�1, but should now be corrected to ca 2e7 mg*g OC�1.

In 4.1.3. Unit C: Reduced sea-ice cover followed by sea-ice re-expansion
In subunit C1, the value for dinosterol was reported as 180 mg*g OC�1, but should be corrected to 3 mg*g OC�1.
In subunit C2, the value for IPSO25 was reported as 6e16 mg*g OC�1, but should be corrected to 0.3e0.8 mg*g OC�1.
In subunit C2, the value for dinosterol was reported as 300e600 mg*g OC�1, but should be corrected to 5e10 mg*g OC�1.

In 4.1.4. Unit D: Seasonal sea-ice cover environment
In subunit D1, the value for IPSO25 was reported as ca 1 mg*g OC�1, but should be corrected to ca 0.05 mg*g OC�1.
In subunit D1, the value for dinosterol was reported as 100e400 mg*g OC�1, but should be corrected to ca 1e7 mg*g OC�1.
In subunit D2, the value for IPSO25 was reported as 0e12 mg*g OC�1, but should be corrected to 0e0.2 mg*g OC�1.
In subunit D2, the value for dinosterol was reported as 200e500 mg*g OC�1, but should be corrected to ca 3e8 mg*g OC�1.

Please note that the values of the IPSO25 and dinosterol axes in Fig. 2. and the corresponding supplementary figure plotted versus age
(printed below) are now corrected.

Datasets uploaded to PANGAEA Data Publisher for Earth & Environmental Science have also been corrected (https://doi.org/10.1594/
PANGAEA.904263).

The changes have no impact on the scientific results and reasoning presented in the paper.
DOI of original article: https://doi.org/10.1016/j.quascirev.2019.106103.
* Corresponding author. Am Alten Hafen 26, 27568, Bremerhaven, Germany.

E-mail addresses: nele.lamping@awi.de (N. Lamping), juliane.mueller@awi.de (J. Müller), oliver.esper@awi.de (O. Esper), hilc@bas.ac.uk (C.-D. Hillenbrand), jaas@bas.ac.uk
(J.A. Smith), gerhard.kuhn@awi.de (G. Kuhn).

https://doi.org/10.1016/j.quascirev.2020.106260
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Fig. 2. Contents of PDIPSO25 (a), dinosterol (b), IPSO25 (c) and TOC (d) in sediment core PS69/274-1. AMS 14C age constraints in calib. a
before present (BP) in dark grey; unreliable age given in italics (Hillenbrand et al., 2010). Interval highlighted by dashed grey line marks the
Antarctic Cold Reversal (ACR; Jouzel et al., 1995). Biomarker concentrations and calculated PDIPSO25 value of the surface sample (box core
PS69/275-2) indicated by dots with black circle and label in respective color. Triangles in PDIPSO25-curve: thick ice cover, maximumvalue of
1 assigned to these samples. Core is divided into four units as indicated in the lowermost and topmost bar: Unit A: floating ice canopy (blue
shading), Unit B: dynamic ice front, Unit C: reduced sea ice/sea-ice re-expansion (red shading), Unit D: seasonal sea ice. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)
Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.quascirev.2019.106103.
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