
 ‘Ready Mixed’, Improved Nucleic acid 
amplification Assays for the Detection of 

Escherichia coli DNA and RNA 
 

Short Communication/Note 

 

Jonathan S. McQuillan* and Matthew W. Wilson 

 

 

National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK. 

 

 
*Corresponding author 

Email: jonmcq@noc.ac.uk 

Telephone: +44(0)2380 592 715  



Abstract (49 words) 
The selective amplification of E. coli nucleic acid sequences could be used for the 

early warning of faecal contamination in environmental samples. Modified assays for 

E. coli DNA and RNA markers are presented with improved integrity and performance 

over existing methods, and demonstrated using ‘ready mixed’, preserved reagent 

mixtures.  



Main Text (~1,500 words) 
The presence of Escherichia coli (E. coli) in the environment is considered 

globally as probable evidence of faecal contamination, and therefore it is subject to 

statutory surveillance for various water and food safety assurance practices [1]. E. coli 

detection methods are generally culture based, and the provision of timely results is 

limited by the bacterial growth rate; typically they take in excess of 18 hours [2]. This 

increases public health risk, particularly during short-lived, stochastic contamination 

events. Nucleic acid amplification is a culture-independent technique, used to detect 

microorganisms by in vitro replication (amplification) of their DNA or RNA sequences. 

These methods can be employed to detect and enumerate E. coli with a better 

selectivity than cell culture [3], and in a few hours or less. The detection of E. coli 

nucleic acids could complement existing culture-based methods, particularly as rapid, 

‘early warning’ risk indicators.  

In this study, two ‘improved’ nucleic acid amplification assays are reported for 

the specific detection of E. coli DNA or RNA sequence markers. Each assay has been 

demonstrated using a convenient ‘ready mixed’ format whereby complete and dry-

preserved reagent mixtures were prepared in advance, and then activated by simply 

rehydrating the mixtures with a water sample containing E. coli nucleic acids. In one 

assay, the detection of E. coli DNA was achieved using a quantitative real time PCR 

(qPCR) method targeting a fragment of the ybbW gene, based upon a highly selective 

primer set originally described by Walker et al [3]. A prior limitation of this method was 

the use of SYBR Green DNA binding dye for real-time fluorescence detection during 

qPCR. SYBR Green will bind to any DNA sequence which can lead to false-positive 

amplification from the presence of non-specific amplification products or primer duplex 

formation (‘primer-dimers’) [4]. Here, a ybbW-specific fluorometric hydrolysis probe 

was designed and tested in combination with the existing PCR primers to reduce 

background fluorescence signals and the likelihood of false positive amplification. A 

second assay targets E. coli mRNA by amplifying a fragment of the clpB gene 

transcript sequence. The same mRNA target has already been employed for the 

specific detection of E. coli in water samples using isothermal Nucleic Acid Sequence 

Based Amplification or NASBA [5-7]. The mRNA encodes a heat-shock response 

molecular chaperone protein and is induced by gently heating the bacteria prior to 

RNA isolation, enabling sub-single-cell sensitivity [7]. However, NASBA, which was 

recently compared to qPCR methods [3], displays significantly higher run-to-run 



variability than PCR and is unreliable at low template concentration. The reagents are 

also comparatively expensive and not widely available [8]. Accordingly, here the 

method was adapted to work using reverse transcription qPCR for indirect mRNA 

amplification with hydrolysis probe-based real time fluorescence detection. The 

oligonucleotides used in this study were designed using Geneious R10 software 

(Biomatters Ltd, New Zealand) and synthesised by Integrated DNA Technologies (IDT 

Ltd, UK). Hydrolysis probes contained a covalently linked Fluorescein (FAM) at the 5’ 

end, and an Iowa Black (IABk) quencher at the 3’ end, and a secondary, internal ZEN 

quencher, 6 nucleotides from the 5’ terminus. The sequences are shown in Table 1.  

Reaction mixtures were prepared in sterile, nuclease-free PCR tubes 

(LightCycler 8-tube strips, Roche Molecular Systems Inc.). The qPCR reactions were 

prepared to contain 20mM Tris-HCl (pH8.3), 100mM KCl, 1.5mM MgCl2, 2mM each 

dNTPs, 80nM each primer, 40nM hydrolysis probe, 0.2% (w/v) Sucrose, 0.2% (w/v) 

Trehalose and 2U of GoTaq G2 DNA polymerase (Promega, UK); the final volume 

was 100µL. The RT-qPCR reactions were prepared using the GoTaq Probe 1-Step 

RT-qPCR System (Promega, UK) following the manufacturers recommended protocol 

except that the final 20µL reactions were mixed with 80µL of RT-PCR grade water to 

a final volume of 100µL. The mixtures were frozen at -80oC, and then lyophilised using 

a sterile vacuum chamber in tandem with an a ZL(8L) Lyophilisation Instrument 

(SPScientific, UK). The vacuum chamber was decontaminated before use by applying 

DNAaway (Sigma, UK) and RNaseZap (Thermofisher, UK) chemicals according to the 

manufacturers recommended method, to remove contaminating DNA and RNase 

respectively. Lyophilisation took place for precisely 16 hours at <200 µBar, at which 

point the mixtures had formed a crystalline, white powder. Air for re-pressurisation 

passed through a 0.2 micron Sterivex filtration unit (Millipore, USA).  Decontamination 

was assessed by no template control reactions showing null amplification. After 

varying periods of time in storage at room temperature, the lyophilised reaction 

mixtures were activated by adding a 20µL solution of E. coli DNA or RNA containing 

a known quantity of the target sequence. The DNA template was prepared from 

genomic DNA isolated from a type strain of E. coli (NCTC 9001), exactly as described 

by Walker et al [3]. RNA template was prepared by in vitro, T7 RNA Polymerase-driven 

expression of a truncated clpB gene sequence fused to a 5’ T7 promoter sequence. 

Full details of the template preparation are given in the supporting information. The 

template samples were quantified, and stock solutions were prepared to contain an 



estimated 105 to 10 copies per 20 microliters. Each qPCR reaction was carried out 

using a LightCycler 96 qPCR instrument (Roche, UK) with an initial denaturation of 

95oC for 2 minutes, followed by 40 cycles of 95oC for 20 seconds and 60oC for 60 

seconds. The RT-qPCR reactions were carried out as described above, except for the 

inclusion of an initial reverse transcription step of 42oC for 15 minutes prior to thermal 

cycling.   

When prepared and performed exactly as described above, the preserved 

mixtures could be used to amplify between 10 and 105 estimated target sequence 

copies, as shown in Figure 1. Furthermore, the integrity and reliability of each method 

was improved when compared to prior versions. For example, the use of a ybbW-

specific hydrolysis probe (this study) in place of SYBR green [3] for real-time detection 

of the ybbW target eliminated background fluorescence and false-positive 

amplification over a 40 Cycle PCR, as shown in the supporting information Figure S1. 

In addition, the detection of clpB mRNA by RT-qPCR (this study) in place of NASBA 

(multiple prior studies; [3, 5, 7]) markedly reduced the variability between replicate 

reactions and different runs, as shown in the supporting information Figure S2. Each 

‘improved’ assay was able to detect at least 10 estimated copies of the target 

sequence, but when the template was diluted further only a portion of the replicate 

reactions generated amplification curves (data not shown), and so the limit of 

quantification (LOQ) was taken to be ≥10 estimated copies for each assay. The 

relationship between template sequence copy number and Ct was linear over 5 orders 

of magnitude, with a typical linear fit (R2) of 0.9934 (clpB RT-qPCR) and 0.9991 (ybbw 

qPCR). The efficiency of the primers was determined using the method of Pfaffl [9] 

and found to be 1.94 (ybbW) and 1.83 (clpB), when using freshly prepared mixtures. 

Storage for up to 4 weeks did not impact the LOQ of the qPCR, albeit the amplification 

rate was reduced (Ct was increased). However, preservation increased the LOQ for 

the RT-qPCR to 100 estimated copies. After 4 weeks the amplification efficiency for 

each oligonucleotide set was 1.78 (ybbW) and 1.67 (clpB); the linear relationship (R2 

≥ 0.99) was unaffected by storage. After 6 weeks in storage there was a significant 

loss in reagent activity, and only the samples containing the highest tested number of 

target sequence copies (105 per reaction) could be amplified (not shown). Accordingly, 

the ‘shelf-life’ of the preserved mixtures used in this study was considered to be up to 

4 weeks.  



The inclusivity and specificity of each oligonucleotide set (primers and probe) 

was evaluated to determine whether the modifications made to existing methods, as 

described in this study, had any impact on their selectivity for E. coli. This was done 

according ot the method of Walker et al [3] by PCR amplification of DNA sequences 

extracted from a panel of E. coli strains, and non-E. coli bacterial species, full details 

of which can be found in the supporting information Table S1. PCRs were carried out 

as described above, but using freshly prepared (i.e., not preserved) reaction mixtures. 

Each assay was 100% inclusive of 76 unique E. coli strains including 72 strains 

belonging to the ECOR collection, which is considered to represent genotypic variation 

in E. coli  [10, 11]. The ybbW qPCR was able to exclude 22 non-E. coli bacterial strains. 

The clpB assay was mostly specific for E. coli, except that it was able to detect DNA 

extracted from closely related species Shigella spp., Escherichia albertii and 

Escherichia fergosonii. Overall, our results were in agreement with those reported by 

Walker et al [3], who carried out the same tests on unmodified versions of these 

assays, indicating that the changes described in this study did not negatively impact 

the selectivity of each method.  

In summary, the methods described here can be used to amplify (detect) E. coli 

DNA and RNA sequence markers at concentrations ranging from ≤10 to 100,000 

copies, with a strong linear correlation for quantification. Each method was based on 

existing, state of the art nucleic acid amplification tests for E. coli, but including critical 

modifications to improve integrity and reliability. The use of the dry-preserved reaction 

format constitutes a streamlined, one-step testing process, suited to automation, and 

where the potential for human error and contamination are significantly reduced. This 

work was funded by the Natural Environment Research Council, grant NE/R013721/1.  
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Table 1. Oligonucleotides used in this study. 

Name Sequence (5’ – 3’) Reference 

ybbW forward primer TGATTGGCAAAATCTGGCCG 

ybbW reverse primer GAAATCGCCCAAATCGCCAT 

ybbW hydrolysis probe 

FAM-

CCGCCG[ZEN]AAAACGATATAGATGCA

CGG- IABkFQ* 

This study 

clpB forward primer GCGACAATCCGGTCTTCA This study 

clpB reverse primer AAATCCACATTTCTGACGAGG [7] 

clpB hydrolysis probe 

FAM-

CTTCCA[ZEN]GGCGAATCACTTTACCC

GG-IABkFQ* 

This study 

  



 

 
Figure 1. The oligonucleotides shown in Table 1 were used to amplify ybbW DNA 

sequences by qPCR and clpB RNA sequences by RT-qPCR using dry-preserved 

reaction mixtures which had been stored for up to 4 weeks without refrigeration. After 

1 week (), 2 weeks () or 4 weeks () the mixtures were rehydrated with water 

containing DNA or RNA template at an estimated concentration of between 10 and 

100,000 copies. For comparison, the open circles () indicate reactions prepared 

using fresh reagents which had not been preserved, but did contain an equivalent 

amount of Trehalose and Sucrose sugars. The results show the mean threshold cycle 

(Ct) versus template copy number from quadruplicate reactions. The error bars, where 

visible, show the standard error of the mean (n=4). No symbol represents a null 

amplification.



Supporting Information 
 

 
Figure S1. Fluorescence plots from qPCR reactions using the ybbW-specific primers 

and either SYBR Green () or the hydrolysis probe () for real-time detection. The 

same DNA template was added to each reaction, and was negative for the ybbW 

target sequence. In each case, use of agarose gel electrophoresis (not shown) 

confirmed that no reaction product had been formed. However, the use of SYBR green 

led to a false-positive result, probably due to the accumulation of primer duplex or non-

specific amplification products during the later stages of the reaction. In contrast, use 

of the hydrolysis probe generated a correct (null) result over the 40 cycle reaction. The 

results show the mean of triplicate reactions. The error bars, where visible, show the 

standard error of the mean. 

  



 
Figure S2. Amplification of clpB mRNA using NASBA (top image) or RT-qPCR 

(bottom image). The results show the mean from replicate reactions. The error bars 

show the standard deviation, n=5. 



Table S1. Selectivity Testing 
 
Species Collection Strain clpB RT-qPCR ybbW qPCR 

Escherichia coli ECOR 1-72 + (72) + (72) 
Escherichia coli NCTC 9001 + + 
Escherichia coli NCTC 12241 + + 
Escherichia coli NCTC 13216 + + 
Escherichia coli NCTC 12900 + + 

Aeromonas caviae NCTC 10852 - - 
Citrobacter freundii NCTC 9750 - - 
Citrobacter koseri NCTC 10786 - - 
Enterobacter aerogenes NCTC 10006 - - 
Enterococcus faecalis NCTC 775 - - 
Enterococcus faecium NCTC 7171 - - 
Escherichia albertii NCTC 17582 + - 
Escherichia fergusonii NCTC 12128 + - 
Escherichia hermanii NCTC 12129 - - 
Escherichia vulneris NCTC 12130 - - 
Klebsiella pneumoniae NCTC 9633 - - 
Listeria monocytogenes NCTC 11994 - - 
Pantoea agglomerans NCTC 9381 - - 
Pseudomonas aeruginosa NCTC 10332 - - 
Salmonella bongori DSMZ 13772 - - 
Salmonella Nottingham NCTC 7832 - - 
Shigella boydii DSMZ 7532 + - 
Shigella flexneri DSMZ 4782 + - 
Shigella sonnei DSMZ 5570 + - 
Shimwellia blattae NCTC 12127 - - 
Vibrio cholera NCTC 8042 - - 
Vibrio parahaemolyticus NCTC 10885 - - 

(+) positive amplification; (-) negative amplification. 

  



DNA and RNA Template Preparation 
Genomic DNA standards were prepared from an E. coli type strain (NCTC 9001), 

according to the method of Walker et al. Briefly, the E. coli were revived from storage at -80oC 

and cultured in Luria Broth at 37oC. An exponentially dividing culture was harvested by 

centrifugation (5,000 g for 5 minutes) and resuspended in Maximum Recovery Diluent for 1 

hour. Then, the cells were centrifuged again, and the cell pellet was used to prepare a 

genomic DNA extract using the GeneElute Bacterial Genomic DNA Isolation Kit (Sigma, UK). 

The DNA was eluted and stored in Tris-EDTA buffer (pH 8.0) at -20oC. The mass of DNA in the 

extract was estimated by Qubit Fluorometric Quantification in tandem with the Qubit dsDNA 

high-sensitivity assay kit (ThermoFisher, UK), and used to estimate the number of genome 

copies. A series of genome copy number standards were prepared by diluting the extract in 

RT-PCR grade water (Promega, UK) to between 10 and 105 copies per microlitre. Standards 

were prepared from a stock DNA solution immediately prior to use.  

RNA Standards were prepared as follows. First, a fragment of the clpB gene sequence 

was amplified by PCR using forward primer 5’- 

AATTCTAATACGACTCACTATAGGGAGAAGGTACTGGACGGCGACAATC-3’ and reverse primer 

5’-ATGGAGAAACACTCGGTGTC-3’. The forward primer had a T7 RNA Polymerase promoter 

sequence (shown in bold), followed by a short ‘spacer’ (shown underlined), upstream of the 

target-binding sequence, which generated a dsDNA PCR product which could be used to 

synthesise template RNA using T7 RNA Polymerase. The PCR product was purified using the 

GeneElute PCR Purification Kit (Sigma, UK) and used directly for RNA synthesis using the Hi 

Scribe T7 RNA Synthesis Kit (NEB, USA) according to the manufacturers recommended 

protocol. The synthesised RNA was purified using the RNeasy Mini Kit (Qiagen, UK), and 

contaminating dsDNA was eliminated using RQ1 RNase-Free DNase (Promega, UK) according 

to the manufacturers recommended protocol. DNA elimination was confirmed by a null Taq-

based PCR. The DNA-free RNA was subsequently purified a second time using the RNeasy 

Clean-up procedure. The mass of RNA was estimated using a BioAnalyser Instrument, and the 

RNA 6000 Nano Kit (Agilent, UK). This was used to estimate the number of copies based upon 

the RNA sequence. A series of RNA copy number standards were prepared by diluting the 

RNA sample in RT-PCR grade water to between 10 and 105 copies per microlitre. Standards 

were prepared from stock RNA solution immediately prior to use.  

 



 


