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Abstract

Conversion from arable cropping systems to perennial bioenergy crops is increasing across Europe to
meet market energy demands, but our understanding of how this land use change is affecting below-
ground diversity and C allocation remains limited. Here, we assessed the impact of conversion from
arable cropland to Miscanthus and Short Rotation Coppice (SRC) willow in UK bioenergy commercial
plantations on earthworm community structure and abundance. At this same location we then
conducted an in-situ 3CO; pulse-chase labelling experiment in the two bioenergy plantations to trace
the fate of recently photosynthetically assimilated carbon into roots, bulk soil, soil microbial (PLFA)
and earthworm communities. Results showed that land conversion from annual arable crops to both
Miscanthus and SRC willow perennial bioenergy crops led to severe reductions of soil earthworm
abundance and biomass. SRC willow had higher microbial biomass relative to Miscanthus, whereas
Miscanthus provided a better habitat for a more functionally diverse earthworm community. Transfer
of labile C compounds to soil pools was faster under Miscanthus supporting activity of bacterial grazers
in the soil food chain, whereas a fungal-driven detrital decomposition processes dominated under SRC
willow plantations. Taken together, these findings indicate that plant identity in land conversions have
a strong influence not only on the abundance and structure of soil communities but also on which
basal resources (root exudates, dead organic matter or microbial derived compounds) are

preferentially consumed, and ultimately on the rates of mobilisation of these different C pools.

Keywords: Miscanthus; SRC willow; 13C pulse labelling; Earthworms; Bacteria; Fungi; Bioenergy crops

1. Introduction

Bioenergy and biofuel production from temperate, perennial bioenergy crops has been proposed
as one strategy to mitigate greenhouse gas emissions in the transport and energy generation sectors

across Europe. Converting annually arable lands to perennial cropping systems can result in
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substantial reductions of CO, and N,O emissions, erosion and nutrient leaching, and in greater soil
organic matter storage (e.g. Fazio and Monti, 2011; Schmer et al., 2014; McCalmont et al., 2017; Zhu
etal., 2018). In addition, farmland biodiversity (both above- and below-ground) seems to benefit from
increased spatial and structural heterogeneity provided by these agro-ecosystems with low
mechanical and chemical input (e.g. Everaars et al., 2014; Bourke et al., 2014; Schrama et al., 2014;
Haughton et al., 2016; Petrovan et al., 2017; McCalmont et al., 2017; Platen et al., 2017; Landis et al.,
2018). However, the observed impacts may vary depending on the crop type, previous land-use and
the years under cultivation (Schrama et al., 2014; Dauber et al., 2015, Petrovan et al., 2017). This is
because ultimately vegetation drives the amount and quality of plant inputs to soils as well as exerting
influence on soil abiotic conditions, which in turn shape below-ground heterotrophic communities

(van der Putten et al., 2013; Barney, 2014; Oates et al., 2016).

In the UK, 129,000 hectares of agricultural land were used to grow bioenergy crops in 2017
(equivalent to just over 2% of total arable land), with 0.1-0.2% of this land dedicated to grow
Miscanthus and short rotation coppice (SRC) willow for the heat and electricity energy markets
(DEFRA, 2019). Unlike the conventional agricultural cultivations, these lignocellulosic crops are tall
plants (3 m for Miscanthus and up to 8 m for SRC willow), which are planted in low density plantations
and have deeper rooting systems extending up to 2.5 m depth, although the maximum root density
concentrates around 0.36 and 1.2 m for SRC willow and Miscanthus, respectively (Finch et al., 2009).
Miscanthus x giganteus (commonly known as “Giant or Elephant grass”) is a warm season C4 grass
native to Asia and the result of a naturally occurring triploid hybrid between the diploid Miscanthus
sinensis and the tetraploid Miscanthus sacchariflorus (Stewart et al., 2009). Various willows species
(Salix spp.) are used as biomass crops, with the majority of them being native to China (Weih, 2013).
They are C3 plants like the majority of the plants in Europe and their higher quality litter (i.e. lower
C:N ratio) decomposes within a year (Harris et al. 2017), whilst that of Miscanthus tends to accumulate
on the soil surface (3—7 Mg dry matter ha™ yr'?; reviewed by Amougou et al., 2012). Although both

crops can form mycorrhizal associations, they associate with different groups: Miscanthus associates
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exclusively with arbuscular mycorrhizae (AM) whilst in SRC willow, although capable to host both
arbuscular and ectomycorrhizae (ECM), usually ECM dominate (Kahle et al., 2005). This distinction not
only refers to differences in mycorrhizal anatomy, but also to their enzymatic capabilities (broader in
the case of ECM, allowing them to forage from labile and recalcitrant organic pools) and hence,
controlling the amount of nutrients allocated in the roots and exuded to the surrounding soil
(Churchland and Grayston, 2014). Therefore, conversions of arable crops to these perennial bioenergy
crops involve not only changes to above-ground plant communities with different C metabolic

pathways, but also to below-ground heterotrophic communities.

Soil fauna play a key role in decomposition processes and, among them, macrofauna (earthworms)
are considered to be key “ecosystem engineers” because they create biogenic structures (burrows
and casts) that represent important habitats for other soil organisms (Lavelle et al., 2016). According
to their feeding and burrowing strategies, they can be classified into three different ecological groups
(sensu Bouché, 1977): epigeic worms burrow and feed on soil upper layers, anecic worms that
incorporate fresh organic residues deposited at the soil surface along the soil profile, and endogeic
worms feeding on more mineralised organic matter in the deeper soil layers. They are very sensitive
to agricultural practices and as result, their populations have been shown to be severely reduced by
intensive management of soils (Tsiafouli et al., 2015; Briones and Schmidt, 2017). This has also led to
their consideration as “biological indicators” of the status of agroecosystems (Perés et al., 2008; Van
Eekeren et al., 2008; Postma-Blaauw et al., 2010). From this, it is expected that in these no till soils
that receive low external inputs (in terms of mineral fertilisers and herbicides), earthworm activities
will be enhanced. Indeed, several studies have reported increases in earthworm abundance and
diversity under perennial bioenergy crops (Felten and Emmerling, 2011; McCalmont et al., 2017).
However, planting species with low litter quality (such as Miscanthus spp.) could result in a higher
competition for N between soil microorganisms and these soil invertebrates (Ernst et al., 2009) leading
to individual biomass reductions (McCalmont et al.,, 2017), and ultimately slowing down

decomposition processes (Ernst et al., 2009; Amougou et al., 2012).
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Because plant identity plays a critical role in rhizosphere responses (Emery et al., 2017), and both
biomass and biofuels can be derived from different energy crops with different functional traits (e.g.
grasses vs. trees, C4 vs. C3 pathways), it is crucial to get a better understanding of the dynamics of C
flow and storage below-ground under different types of crops. In situ isotopic tracer studies provide
guantitative information on C transfers from plant tissues to the surrounding soil and thereby, how
much C can be translocated by soil organisms. More specifically, field *CO, pulse labelling experiments
have allowed estimations of the residence times of photoassimilated carbon into rhizosphere biota
(e.g. Ostle et al., 2007; Seeber et al., 2012; Crotty et al., 2014; Huang et al., 2015). Nevertheless, very
few have been performed in bioenergy crops (Tavi et al., 2013; Chaudhary and Dick, 2016; Elias et al.,
2017) and our study is the first one trying to link soil macrofauna and rhizosphere carbon flow in these

systems.

In this study, we firstly assessed the impact of land conversion from arable to Miscanthus and SRC
willow on earthworm communities, and then used a combination of natural abundance 6*3C and §*°N
measurements and 3CO, labelling to track assimilation of recently fixed photosynthates into
rhizosphere organisms. We hypothesised that lower physical disturbance under no tilled soils would
enhance earthworm abundance and functional diversity in agreement with previous studies (Briones
and Schmidt, 2017). We also anticipated that, due to differences in root morphology and associated
symbionts as well as in litter quality, earthworm and microbial (PLFA) community structures would
differ between Miscanthus and SRC willow. The study took advantage of a parallel study performed
at the same site (Elias et al., 2017) which found a higher below-ground C allocation under SRC willow
(relative to Miscanthus) that was rapidly assimilated by fungi. We therefore predicted higher
heterotrophic activities under this plantation and a rapid assimilation of labile C by soil biota through

fungal grazing.
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2. Materials and methods

2.1. Bioenergy crops

The research sites were two adjacent commercial bioenergy plantations of Miscanthus giganteus
(11.56 ha) and short rotation coppice (SRC) willow (Salix viminalis L.; 9.43 ha) in Lincolnshire, UK.
Meteorological data obtained from the nearest weather station (RAF Scampton, Lincoln; 53° 18’ 1”N,
0° 32’ 30"W) showed mean annual minimum and maximum temperatures of 5.9 °C and 13.1 °C

respectively (1971-2000) and a mean annual rainfall of 605 mm (1963 to 2004; Drewer et al., 2012).

Both crops were planted in 2006 and 2000, respectively, on arable land that was previously
managed on a rotation of 1-year oilseed rape followed by 3 years winter wheat. Directly prior to
conversion, both bioenergy crop fields had 3 years of wheat cultivation (Drewer et al., 2012). Although
the two bioenergy crops did not receive any N fertilizer in the duration of the project (or during the
establishment phase), the annual crop received three to four applications of N-fertilizer every spring
(equalling to 186, 189, and 209 kg N ha* yr! in 2009, 2010 and 2011, respectively). Despite these N
additions, the soil analyses revealed no significant differences in the total soil N content between the

three fields (Table 1).

The soil of the three fields was a silty clay loam (3% sand, 60% silt and 37% clay, on average; Table
1) with a low soil water content (ranging from 33 to 37%, on average), being slightly higher under the
two bioenergy plantations than in the adjacent annual arable field (Table 1). Total C and N were also
very low in all three fields (1.64 %C and 0.27 %N in Miscanthus, 1.56 %C and 0.24 %N in SRC willow
and 1.80 %C and 0.29 %N in the arable soil; Table 1). Bulk density was 1.48 +0.11 g cm™ in Miscanthus,
1.45+0.11 g cm in SRC willow and 1.25 + 0.09 g cm™ in the arable system (Table 1). Finally, the soil
pH values indicated that the three soils were slightly acidic, with the lowest values being measured

under Miscanthus than in the other two systems (Table 1).
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2.2. Pre-'3C pulse measurements

Earthworms were collected from each plantation (four quadrats of 50 cm x 50 cm x 10 cm deep)
by hand-sorting. Additional samples were also taken from the adjacent arable soil to test the effects
of changes in land use on earthworm abundance and biomass. All specimens collected were identified

to species level under a microscope, counted and weighed (fresh biomass).

Leaf litter samples were also collected at both Miscanthus and SRC willow experimental plots,
transferred to labelled bags and immediately stored in a cool box. Samples were subsequently frozen
(-20 °C), before being oven dried at 60 °C and cryo — milled (SPEX SamplePrep, Freezer/Mill 6770) to a

fine powder for isotopic analysis.

Three soil cores (2.5 cm diameter gouge auger; Eijkelkamp Agrisearch Equipment, Giesbeek,
Netherlands) were taken from each experimental plot, sectioned into two depths (0-10 cm and 10-20
cm) and frozen at -20 °C within 2 h of collection. These were subsequently freeze-dried (Christ alpha
1-4 LD Plus) and then sieved to 2 mm. Stones were removed while root and rhizome samples were
transferred to glass vials. The remaining soil was ball milled (Fritsch Planetary Mill Pulviresette 5) to a
fine powder. Picked roots were washed, oven dried at 60 °C and cryo — milled (SPEX SamplePrep,
Freezer/Mill 6770) to a fine powder. Bulked subsamples of the 0-10 and 10-20 cm freeze dried ground

soil were used for PLFA analyses to determine the microbial community structure under each system.

Finally, natural abundance 6%3C and 8N signatures of plant litter, roots/rhizomes, soils, and

earthworms collected from each bioenergy plantation were also obtained.

2.3. 3CO; pulse labelling experiment

Within each plantation, four rectangular pulse chambers (6 m long x 2.5 m wide x 3 m high) were
erected over the entire experimental plot (for full description of the experimental set-up see Elias et

al., 2017). Briefly, a chamber volume of 45 m3 allowed for the inclusion of two double rows of willow
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trees 1.5 m apart, whilst Miscanthus giganteus was randomly distributed in the 15 m? area. Clear
polythene sheeting, allowing 90% of photosynthetically active radiation to penetrate, was placed over
the frame and sealed at ground level. One 6.5 Kw water cooled, split air conditioning unit (Andrew
Sykes, UK) and 2 tripod mounted fans were installed within the chambers to counter ambient
temperature increases during the 3C pulse and to ensure homogeneous distribution of *CO,. Pulse
labelling commenced August 23rd, 2012 at ca. 08:20 am by introducing 17 L of 99 atom% pure *3CO,
(CK Gases, UK) to each chamber at atmospheric pressure (within 3 L Tedlar bags), via a length of
polythene flexible tubing. This was added in 3 sequential batches over a period of ca. 3 h in order to
counter an above ambient CO, concentration increase. During the pulsing period (4.5 h), §'3C isotopic
delta values and total CO; concentration was monitored across all chambers using a G-2131i Series
Isotopic CRDS (Cavity Ring Down) system (Picarro Inc, CA, USA) coupled to a multiplex, vacuum

manifold, flow-through system fitted in a mobile laboratory (McNamara et al., 2002; Elias et al., 2017).

2.4. Post — 3CO; pulse sampling

Previous studies have shown that the incorporation of dietary C into earthworm body tissues is
typically slower than in microbes (>20 days; Ostle et al., 2007; Dungait et al., 2008), and for this
reason, our sampling dates were chosen to maximise the incorporation of the *3C label into the soil
biota (either via aboveground litter or belowground roots/rhizomes). Since senescence of willow
leaves occurred between 42 and 76 days (Elias et al., 2017), root/rhizomes and soil samples (including
for PLFA) as well as earthworms were sampled 21, 28, 42 and 76 days after labelling. The last sampling

coincided with the end of the senescence period of willow leaves (October 2012).

On each sampling occasion, four soil cores were taken using the same methodology described
above. Similarly, the soil samples collected were frozen at -20 °C, subsequently freeze - dried and
finally sieved (< 2mm) to obtain the root/rhizome and soil material for further isotopic analyses.

Earthworms were hand-sorted in the field from four quadrats (25 x 25 x 10 cm) and identified to
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species level under a microscope. Thereafter, the gut of every specimen was removed and the tissues
washed with deionised water to remove any soil particles. Earthworm tissue samples were then frozen
at -20 °C for at least 24 h prior to freeze-drying and then weighed using a Sartorius (UK) microbalance

to determine their dry weight.

2.5. Bulk isotopic analyses of soil, litter, root/rhizomes, and earthworm samples

83C and 86N measurements of soils, earthworm tissues and plant materials (leaf litter and
roots/rhizomes) were performed by weighing subsamples of each of these materials into tin capsules
followed by combustion using a CarloErba elemental analyser. Resultant CO, and N, was analysed for
813C and 6N, respectively, using a Dennis Leigh technology IRMS at the NERC Life Sciences Mass
Spectrometry Facility, CEH Lancaster. Beet sucrose (-26.46%o) was used as an instrument standard for
8!3C and n-Carbobenzyloyx-L-aspartic acid (-5.55%o) for §1°N were used as an instrument standards.
The standard deviation for duplicate and QC samples was not more than 0.47%. for §'3C and 1.07 for
%C, and not more than 0.69%. for 8°N and 0.05 for %N, resulting in an analytical precision of 0.22%o

for 8'3C and 0.53%o for 6°N.

Isotopic values are expressed in delta notation:

&"X = (Rsample / Rstandard - 1) x 1000 (%o)

where X = C (carbon) or N (nitrogen) and R = 3C/*2C for C and >N/*N for N.

All 813C results are expressed relative to the international standard Pee Dee Belemnite and all §*°N

results are expressed relative to the international standard of atmospheric air.

2.6. PLFA extraction and *3C - PLFA analyses

PLFA biomarkers were extracted as part of the total lipid extract of freeze-dried soil samples using

a modified Bligh-Dyer extraction (White et al., 1979). For full description of the PLFA extraction
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procedure and full QA/QC see Elias et al. (2017). Identification of PLFA's was carried out on a GC
(Agilent Technologies 6890) fitted with a mass selective detector (Agilent technologies 5973). The
terminal and mid-chain branched fatty acids C15:0i, C15:0a, C16:0i, C17:0i and C17:0a were used as
indicators of Gram-positive bacteria (Whitaker et al.,, 2014). Cyclopropyl saturated and
monounsaturated fatty acids 16:1w7c, 7,8 cyclic C17:0, C18:1w7c and 7,8 cy-C19:0 were used as
indicators of Gram negative bacteria (Rinnan and Baath, 2009). The fatty acids C18:2w6,9¢c and
18:1w9c were taken as indicators of fungi (Kaiser et al., 2010). Total microbial biomass was taken as
the sum of all identified PLFA's (n = 17; C16:0, C16:1w5c, 10Me-C16:0, C17:0, 10Me-C17:0 and C18:0

plus those 11 listed above).

Each of the individual PLFA's identified above were analysed for 6'C using GC - combustion -
isotope ratio mass spectrometry (GC-C-IRMS) (Isoprime Ltd). The PLFA §'3C values were corrected for
the addition of the extra carbon atom introduced to the molecule during methylation, using a
correction factor obtained by CF - EA - IRMS measurement on the derivatising methanol and
application of the mass balance equation of Jones et al. (1991). For more details of the instrumental

set up, see Elias et al. (2017).

2.7. Mass balance calculations and statistics

All enriched results were converted to atom% excess (please see supplementary material for the
detailed descriptions of these calculations). To determine the preferential C substrate utilization (i.e.
soil or root-derived) by microorganisms and earthworms, the following equation was used to calculate
the fractional input (F) of C from the 3C pulse source into Miscanthus (M) and willow (W) C pools

(Ostle et al., 2007; Crotty et al., 2011; see also supplementary material):

Fy = (B*Cy — Cnav)/(P*Czy — BChazv)

10
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where Y = crop: M (Miscanthus) or W (willow), Z = sample (soil or root sources), *Cy is the atom%
excess value of the C assimilated into the microbe/earthworm tissues under each crop after labelling
and BCyay is the atom% excess value of C assimilated in the reference population (natural abundance,
pre-pulse); 13Czy is the atom% excess value of the soil and root/rhizome under M. giganteus or willow
after labelling and *3Cyazy is the natural abundance atom% excess value of the soil and root/rhizome
samples taken before pulse-labelling (baseline, pre-pulse) under each vegetation type. This calculation
assumes equal isotopic fractionation by humification of Cs plants and C,4 plants (Schneckenberger and

Kuzyakov, 2007).

The final quantities of pulse derived 3C incorporation into microbial PLFAs and earthworms were
finally expressed as pulse-derived 3C (mg C per mg total dry matter) using the following equation

(Ostle et al., 2007):

pulse - mg C per mg total dry matter = Fy X biomass-C

where biomass-C (mg C per mg total dry matter) is the amount of carbon within the biomass of a

sample (dry weight).

Analyses of Variance (ANOVA) was used to evaluate differences in microbial communities and
earthworm groups across land use type (i.e. arable, Miscanthus and SRC willow). Repeated measures
ANOVA was used to determine the influence of time and type of bioenergy crop (Miscanthus and SRC
willow) on pulse- derived *3C content (mg C per mg total dry matter) of PLFAs and earthworm tissue
samples. Normality and homogeneity of variances were checked using the Shapiro-Wilk test and the

Levene’s test, respectively, and data were log transformed (log10 (x+1)) when necessary.

All statistical analyses were performed using SAS System Release 9.3 (SAS Institute Inc., Cary, NC).
Differences for all analyses were considered significant when P<0.05. The data are presented as means

of four replicates + S.E. unless stated otherwise.
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3. Results

3.1. Effects of land use change on earthworm and microbial communities

Both SRC willow and Miscanthus plantations had significantly lower earthworm abundance (81 and
87% reduction respectively; p = 0.0012) and biomass (64 and 75%, respectively; p = 0.0013) relative
to the adjacent arable field (Fig. 1). This land use change also resulted in the alteration of the functional
structure of their communities (p < 0.0001), with significant decreases in the abundance of epigeic
and endogeic worms under both SRC willow and Miscanthus and the total absence of anecics under

SRC willow (Fig. 2).

Miscanthus soils not only contained more earthworms but also a higher species richness relative
to SRC willow (Figs. 1 and 3a). In contrast, total PLFA concentrations were higher under SRC willow
relative to Miscanthus (prungi = 0.0003, paacteria = 0.0253, pep = 0.0459, pen = 0.0169, punspecific = 0.0019).
Fungal PLFA’s concentrations in particular were almost double those measured in Miscanthus (Fig.
3b). However, bacteria was the dominant group in both plantations (54 and 56% of the total PLFA

concentrations: Fig. 3b).

3.2. Natural abundance isotopic composition of below-ground communities under Miscanthus and SRC

willow

Natural abundance 6%C values of Miscanthus and SRC willow below-ground tissues were a
reflection of the two different photosynthetic pathways (C3 and C4 metabolism), with Miscanthus
rhizomes showing a 3C enrichment of ca. 15 delta units compared to the C3 willow roots (p < 0.0001;
Fig. 4). In contrast, the soils supporting these two plantations were very similar in their isotopic
signatures (Fig. 4), suggesting that C4 inputs from Miscanthus are not yet measurable in the bulk C3
dominated soil. These results were consistent across the two soil layers sampled here (pgeptn > 0.05).

Therefore, samples from different depths were pooled in further statistical analyses.

12
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Surprisingly, the identity of plant species had very little effect on the natural abundance values of
microbial communities, with the exception of fungi (Fig. 5). Thus, Fungal PLFA were more enriched
under Miscanthus compared to SRC willow, suggesting a closer association with the rhizomatous
system of this perennial grass (Fig. 5b). By contrary, the natural abundance values of the other three
microbial groups were, on average, similar to those measured in the bulk soils under the two crops
(Fig. 5). The only exception to this were the Gram negative bacteria in the willow plantations, by being
significantly 3C depleted compared to the bulk soil, although showing a higher isotopic enrichment

than the willow roots (Fig. 5a).

Earthworm populations showed a distinct preference for the different substrates available (Fig. 6).
All individuals collected under Miscanthus were enriched in 83C (> -15%0) compared to those
measured under SRC willow (<-24%o) (Fig. 6). Furthermore, 8°N isotopic ratios clearly differentiated
the different earthworm ecological groupings, with the epigeic worms feeding preferentially on fresh
plant inputs (litter), and endogeics assimilating the most mineralised soil organic matter at both
systems (Fig. 6). Moreover, the isotopic values of the anecic species collected under this C4 crop were
closer to the rhizome isotopic values than to the litter, suggesting that they were feeding on root
exudates or on the microorganisms living around the Miscanthus rhizome system. Interestingly, 8°N
values of the endogeic worms, although relatively close to those of the soils, were higher under
Miscanthus than under SRC willow indicating greater assimilation of more humified substrates (Fig.

6).

3.3. Below-ground translocation of recently photosynthesised *3C carbon

Translocation of photosynthetically assimilated *3C into plant roots was detected over the whole
studied period, but the difference in 3C enrichment between the two crops only became significant
76 days after labelling (Repeated measures ANOVA for the time factor p = 0.0092 and for the
interaction crop*time: p =0.0367), with SRC willow roots increasing their isotopic enrichment by three
fold, when compared to Miscanthus rhizomes (average enrichments of 0.023613+ 0.005384 (S.E.) and
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0.0070316+0.0014288 3C %atom excess in SRC willow and Miscanthus, respectively). For bulk soils,
significant differences between crops occurred slightly earlier, on day 42 (Repeated measures ANOVA
for the time factor p = 0.2049 and for the interaction crop*time: p = 0.0423); however, on this
occasion, soils under Miscanthus showed a higher enrichment than those under willow (average
enrichments of 0.002192984+0.000511258 (S.E.) and 0.0001418+0.000334361 *3C %atom excess in
Miscanthus and SRC willow soils, respectively).

Peak enrichment of pulse derived *C from both roots and soils into microbial PLFA was only
significant 42 days after labelling. Only two groups, Gram (-) bacteria and Unspecific PLFA collected
under SRC willow showed significant differences in 3C recovery compared with the same microbial
groups under Miscanthus on that date (Repeated measures ANOVA for the time factor: pey = 0.0007,
Punspecific = 0.0222 for root-derived **C and pen = 0.0022, punspecific = 0.0308 for soil-derived 3C).
However, the enrichment was far more pronounced when the incorporated photosynthate carbon

was derived from soil rather than from roots (Fig. 7).

Earthworms followed a similar pattern as microbial communities since the populations under
willow exhibited a significantly higher *C enrichment on day 42, when the highest amounts of tracer
were also observed in the soils. Although a significant *C enrichment were also observed in the
earthworm tissues after 76 days that could be attributed to a greater assimilation of labelled C
substrates derived from the Miscanthus rhizomes, this incorporation was also less marked than that

from SRC willow soils (Fig. 8).

4. Discussion

4.1. Land use effects on rhizosphere biota

In this study, we found that land conversion from annual arable crops to perennial bioenergy

plantations of Miscanthus and SRC willow caused significant reductions in the abundance and biomass
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of earthworm communities. This finding contrasts with previous results indicating that earthworm
densities and diversity are higher under these perennial crops than in classical arable soils, as result of
decreasing land use intensity (Makeschin, 1994; Felten and Emmerling, 2011; Lagerlof et al., 2011,
Stauffer et al., 2014). At the two bioenergy crops, the only disturbance was caused by the annual
harvests for Miscanthus and three yearly harvest for SRC willow. However, the least disturbed SRC
willow contained the lowest earthworm abundances and number of species. Clearly, other factors
besides land management have a more predominant role in structuring earthworm communities at

the investigated site.

The most dominant ecological group in the three agriculture systems were endogeic earthwormes.
This dominance of endogeic worms in agricultural soils has been consistently reported in the literature
(reviewed by Briones and Schmidt, 2017) and it is because these species concentrate their activities in
mineral soil layers where they are less exposed to disturbances, compared to the more exposed
epigeic and anecic worms that feed on the soil surface. These ecological groups are very sensitive to
agricultural management and drastic declines have been observed in both tilled and no tilled soils (e.g.
Briones and Schmidt, 2017; Lago et al., 2019). However, the significant reduction of these surface
feeders observed at the two bioenergy plantations cannot be solely due to agricultural practices (i.e.
fertilisation, weeds control, etc.). The lignin content of the perennial biomass crop litter is high: 27.6%
of ash-free dry mass in the case of SRC willow (Slapokas and Granhall, 1991) and 28% in the cell walls
of M. gigantheus (Lygin et al., 2011). In addition, Miscanthus litter is not a nutritious food source due
its high C:N ratios (83-100; Amougou et al., 2012). These non-palatable substances repel
phytophagous insects and can also hamper microbial and earthworm attack (Slapokas and Granhall,
1991). However, it has been suggested that the extensive litter cover at ground level under Miscanthus
can provide earthworms with a greater soil surface moisture retention and protection from predation
(McCalmont et al., 2017). This could explain why higher earthworm numbers and biomass (and in

particular of those species concentrating their activities at the soil surface) were collected under this
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grass species than under SRC willow, although the differences between the two crops were not

significant.

In contrast to earthworms, the soils under SRC willow contained more microorganisms, in
particular higher concentrations of total fungi and bacteria, which is consistent with the idea that
hyphal exudations from ECM trees support a more diverse and active bacterial populations (Tedersoo
et al., 2009, Bomberg et al., 2011, Churchland and Grayston, 2014; Taylor et al., 2016). These findings
have been used as a solid evidence for stronger rhizosphere effects under ECM stands (Yin et al., 2014)
due to their broad enzymatic capabilities for mining nutrients from soil organic matter (Cheeke et al.,

2017).

4.2. Effects of bioenergy plantations on C transfers through detrital food webs

In the parallel study performed at the same site (Elias et al., 2017) no significant differences in the
transfer rates of labelled assimilates from leaves and stems to roots were observed between these
two perennial crops. However, in this study we observed significant differences in the below-ground
C allocation dynamics in the rhizosphere, with enrichment peaks in roots/rhizomes and bulk soils
occurring at different times at each crop. The shorter time lag in the case of Miscanthus soils could be
related to a greater exudation of more labile compounds in AM soils than in ECM soils (Finzi and
Canham, 1998; Finzi et al., 1998). Consequently, ECM plants like SRC willow tend to invest more in
fungal biomass than AM stands (Cheeke et al., 2017) that are strong sinks for recent photosynthates
(Elias et al., 2017). Furthermore, since ECM associations have also greater capabilities than AM and
soil bacteria to degrade recalcitrant substrates, they can survive in nutrient poor environments

(Wardle et al., 2004).

In addition, it is thought that ECM stands tend to reduce decomposition rates by producing

recalcitrant compounds which often bind N and hence, depriving soil decomposers from this essential
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nutrient (the so-called “slow decay hypothesis”; Averill et al., 2014; Averill, 2016; but also see Craigg
et al., 2018). Earthworm populations were less abundant and diverse under SRC willow suggesting
that nutrient availability might be limiting the activities of these invertebrates under this crop. Both
earthworms and microbes (PLFA) assimilated more 3C derived from bulk soil relative to root pools,
suggesting that the food webs in these agricultural soils are detritus-based, relying on humified soil
organic matter than on recent root exudates. The higher dominance of endogeic species in the
earthworm communities, which are mainly soil feeders (as reflected in their higher *N isotopic
signatures), supports this conclusion. Indeed, previous work has shown that in the case of micro-
foodwebs, the turnover of organic resources from the previous crop cycle can be sufficient to support

their energy demands for at least two growing seasons (Glavatska et al., 2017).

Unlike the fungal energy channel, bacteria are more dependent on recent photosynthates (Garcia-
Pausas and Paterson, 2011) and represent the “fast cycle” (Moore et al., 2003). In support of this, the
parallel study covering a much longer period (Elias et al., 2017) showed that the 3C enrichment in
bacterial PLFA was greater under Miscanthus relative to SRC willow. Since bacteria are considered to
be an important food source fuelling energy to soil invertebrates (Crotty et al., 2011; Briones et al.,
2014), this could explain the more abundant and functionally diverse earthworm populations
observed under Miscanthus. On the other hand, the strong variation in earthworm 6N observed
between the two plantations indicates the existence of some spatial variation in earthworm feeding
strategies, with endogeic worms collected under Miscanthus feeding on more degraded organic
matter than under SRC willow. This could indicate that these species are rather generalist consumers
able to feed on different sources depending on availability or environmental conditions. By being less
selective, they can also better adapt to land conversion changes (Crotty et al., 2014). In contrast to
primary decomposers (feeding directly on plant litter/detritus with adhering fungi and bacteria), such
as the epigeic worms, secondary decomposers feed on microbes and microbial compounds (Scheu
and Falca, 2000; Schmidt et al., 2004; Chahathaghi et al., 2005). Furthermore, since bioturbation
activities by earthworms have shown to trigger the change in microbial communities from fungal to
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bacterial dominance (Frouz et al., 2013), greater soil mixing due to the presence of deep burrowers
(anecic worms) might have enhanced the bacterial channel under Miscanthus. Therefore, our dual 3C,
15N analyses of earthworm communities confirmed not only previous observations indicating that non-
predatory invertebrates tend to form a continuum from primary to secondary decomposers, but also
that a land use change to SRC willow or Miscanthus could result in a shift to either more detrital or

more microbial diets, respectively (Chahathaghi et al., 2005).

Taken together these findings indicate that plant identity plays a key role in soil web structure and
function by providing a greater (Miscanthus) or lower (SRC willow) number of trophic niches. This
resulted in a fungal driven food chain under SRC willow and a bacterially derived soil fauna feeding
channel under Miscanthus. This is in agreement with previous studies showing that plant type can act
as a top-down driver of soil food web functioning (Crotty et al., 2014; Elias et al., 2017), and that the
continuous supply of quality food throughout the year could have a more influential role in shaping
earthworm communities than absence of ploughing alone (e.g. Schmidt et al., 2003: Roarty et al.,
2017). Therefore, not only can land conversions and agricultural practices have a strong influence in
the abundance and structure of soil communities (Tsiafouli et al., 2015; Briones and Schmidt, 2017),
the crop species planted could stimulate the consumption of different basal resources (root exudates,
dead organic matter or microbially derived compounds). This together with “feeding flexibility”
exhibited by soil organisms (Briones et al., 2010) that also allows them to rely on “older” organicinputs
from previous crop cycles (Schrama et al., 2014; Glavatska et al., 2017) determines their resilience to

habitat and management changes.
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Table 1 Summary of soil properties of the different crops (SD = standard deviation)

Bulk Total Total Cla Silt Sand Soil
pH SD Density SD N SD cim P (‘y;’ SD P v P moisture  SD
(g/cm?) (%) ° ° ° ° (%)
Arable 6.68 0.15 a 1.25 009 a 029 004 a 180 0.28 a 40.03 497 a 57.46 4.28 a 251 091 a 33.18 1.89 a
Miscanthus 597 058 b 1.48 0.11 b 027 003 a 164 036 a 3444 18 b 6261 198 b 295 103 a 36.83 173 b
SRC Willow 6.75 0.14 a 1.45 0.11 b 024 002 a 156 0.23 a 3551 0.72 ab 60.85 1.06 ab 3.63 0.82 a 3598 199 b
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Figure legends

Figure 1. Earthworm density (a) and biomass (b) recorded in soils (0-10 cm) under the different land
uses. Error bars are S.E. and different letters indicate significant differences between cropping

systems.

Figure 2. Earthworm community structure (ecological groupings) recorded in soils (0-20 cm) under the
different land uses: Error bars are S.E. and different letters indicate significant differences between

cropping systems per ecological grouping.

Figure 3. Relative earthworm species composition (a) and microbial community structure (b)
determined from % of earthworm species abundances and PLFA assigned to functional groups relative
to total values in Miscanthus and SRC willow soils (pre-labelling). Earthworm species: Aporrectodea
caliginosa (Ac), Aporrectodea rosea (Ar), Aporrectodea longa (Al), Allolobophora chlorotica (Ah),
Lumbricus rubellus (Lr), Lumbricus castaneus (Lc), Lumbricus spp. (Lsp). Microbial groups: Gram
positive (G+) - (C15:0i, C15:0a, C16:0i C17:0i and C17:0a), Gram Negative (G-) - (16:1u7c, 7,8 cyclic
C17:0, C18:1u7c and 7,8 cy-C19:0), Fungi - (C18:2u6,9c and C18:1u9c), Unspecified (nonspecific) -
(C13:0, C14:0, C14:1u5c, C15:0, C15:1u5c, C16:0, 10Me-C16:0, C16:1u7t, C16:1u9c, C16:1u5c, C17:0,
10Me-C17:0, C18:0i, C17:1u7c, C18:0a, C18:0, 10Me-C18:0, C18:1u7t, C18:1ul2c, C18:1u5c, C18:2ubt,
9,10-cy-C19:0, C19:1ul2c, C20:0, C18:3ubc, C20:1u9c, C18:3u3c, C20:2ubc, C22:0, C20:3ubc,

C20:4ubc, C20:5u3c, C24:0).

Figure 4. Natural abundance isotopic signatures of belowground vegetation and bulk soil sampled at
0-10 and 10-20 cm in SRC willow and Miscanthus. Error bars are S.E. and different letters indicate

significant differences between plant and soil samples per soil layer.

Figure 5. Natural abundance C isotopic signatures of PLFA microbial groupings, belowground

vegetation and bulk soil sampled between 0 and 20 cm depth in SRC willow (a) and Miscanthus (b).
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Box plot chart showing the median and quartiles (25" and 75%). Different letters indicate significant

differences between samples.

Figure 6. Natural abundance isotopic signatures (**C and *N) of earthworm ecological groupings
(epigeics — EPI, anecics — ANE, endogeics — END) sampled between 0 and 10 cm depth in SRC willow
(W, white symbols) and Miscanthus (M, black symbols) together with the potential food sources (soil-

S, roots-R and litter-L). Error bars are S.E.

Figure 7. Root (a) and soil (b) pulse derived 3C incorporation into Gram negative and Unspecific PLFA
collected under SRC willow and Miscanthus on day 42 after labelling. Box plot chart showing the

median and quartiles (25" and 75%™).

Figure 8. Root (a) and soil (b) pulse derived 3C incorporation into earthworms collected under SRC
willow and Miscanthus during the 76 days sampling period. Error bars are S.E. and the asterisk

indicates significant differences between cropping systems.
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