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Short Title: Revising the BFIHOST catchment descriptor 

ABSTRACT 

The estimate of base flow index (BFI) based on the Hydrology of Soil Types (HOST) classification, 

BFIHOST, provides a measure of catchment responsiveness. BFIHOST is used with other variables to 10 

estimate the median annual maximum flood (QMED) in the UK standard Flood Estimation Handbook 

(FEH) statistical method and is also an explanatory variable in ReFH2, the FEH design hydrograph 

package.  

The current estimates of BFIHOST are derived from a restricted linear model, and a number of issues 

in the catchment dataset have been identified since the original work in 1995. BFI calculated through 15 

base flow separation tends to be underestimated in clay-dominated catchments, and the calculation 

technique performs poorly in ephemeral catchments or those with missing data. The pragmatic 

bounding of BFI coefficients for permeable soils overlying aquifer outcrops is also problematic for 

small catchments. 

This paper investigates alternative regression methods to improve base flow estimates using the HOST 20 

class data for 991 stations (compared to 575 in the original); beta regression was found to give the 

best performance. Combining multiple rare classes into single classes is also shown to improve 
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performance. The new version of BFIHOST was applied to the QMED equation, showing improved 

performance. 

KEYWORDS 25 

base flow, catchment hydrology, regression methods, statistical hydrology 

INTRODUCTION 

The Base Flow Index (BFI) is a widely applied, broad-scale measure used in the United Kingdom for 

measuring variation in the low flow regimes of gauged catchments. The index was originally proposed 

in the 1980s by the Institute of Hydrology (1980) and is a simple separation algorithm that 30 

disaggregates the daily mean flow record for a catchment into low and high frequency components.  

This is achieved by partitioning the daily mean flows into five-day blocks and identifying the minimum 

within each five-day series. The line connecting these minima represents the storage-driven 

component of the hydrograph. BFI is the ratio of the volume of this base flow to the total flow. This is 

shown for two catchments in Figure 1: a permeable, groundwater-dominated chalk catchment in the 35 

south of England and an impermeable catchment from the west of Scotland. The BFI is constrained to 

lie in the interval [0,1] and ranges from around 0.11 for perennial streams draining impermeable 

catchments to 0.98 for streams draining the most permeable catchments.  

The HOST classification and BFIHOST 

It is difficult to overstate the importance of soils and underlying geology in influencing the movement 40 

of water through the landscape at both the site and catchment scales. The Hydrology Of Soil Types 

(HOST) classification of the United Kingdom was developed in the mid-1990s to provide a 

hydrologically relevant classification of soils and parent geology to aid hydrological studies and 

analyses within the UK (Boorman et al., 1995).  The original objective was to replace the five-class 

Winter Rainfall Acceptance Potential (WRAP) mapping of UK soils,  developed in the 1970s following 45 

the Soil Survey Field Handbook classification system (Hodgson, 1974).  
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Figure 1. The base flow separation algorithm of Gustard et al. (1992) applied to two catchments for the water year 2013-

2014. Top: Pang at Pangbourne (groundwater dominated). Bottom: Falloch at Glen Falloch (impermeable upland 50 

catchment) 

The HOST classification is based on a set of conceptual models of the hydrological processes taking 

place within the soils and, where relevant, the underlying geologies. The classification is based on soil 

series, and within these settings soils were differentiated through soil properties and wetness regimes, 

as indicated by the presence of gleying.  This differentiation gave rise to 11 models which were 55 

subdivided into 29 classes based on either the geology of the substrate or other properties.  

Assignment of soil series to these classes was undertaken using a method based on K-means cluster 
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analysis. Although HOST is based on soil series,  for refinement of the classification it was applied as a 

national coverage using the 1:250,000 soil associations (of series) through reconnaissance mapping 

undertaken by the soil survey organisations across the UK at that time. The conceptual classification 60 

of soils was refined by assessing its ability to explain the variation in hydrological characteristics as 

expressed by BFI estimated from data for a sample of 575 gauged catchments across the UK.  These 

catchments were selected on the basis of the quality of the hydrometry of the gauged record and the 

naturalness of the flow regime using the classification scheme of Gustard et al. (1992). A linear 

regression model of the relationship between BFI and the fractional extents of HOST classes across 65 

each catchment in this sample set was then developed and the resulting BFIHOST catchment 

descriptor (here referred to as BFIHOST1995) was developed by applying this model across the UK to a 

1km grid of the fractional extents of each of the 29 HOST classes, and taking an area-weighted average 

over each catchment. 

Table 1 presents the HOST classification scheme, together with the model coefficients for BFIHOST 70 

and the percentage of the United Kingdom land surface that each class represents. In general, 

catchment permeability grades from left to right and top to bottom and on the whole this pattern is 

reflected in the BFIHOST model coefficients, with some notable exceptions. For example, the drained 

and eroded peats of classes 11 and 28  had higher BFIHOST than surrounding classes, not following 

this trend.  To ensure model coefficients lay in an acceptable range, the regression was also bounded 75 

to prevent the coefficients taking values greater than 1 or  less than 0.17. In the final model, additional 

constraints were placed on the sandstone and sand-dominated HOST classes 3 and 5 such that the 

coefficient value for both classes was constrained; class 3 restricted to having a value above 0.9, class 

5 capped to having a value below 0.9.  

Notwithstanding these criticisms, BFIHOST has been a well-used catchment descriptor.  It is a key 80 

descriptor in the Flood Estimation Handbook (FEH) catchment descriptor equation for estimating the 

index variable QMED, the median of the annual maximum flood series, in ungauged catchments 
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(Kjeldsen et al., 2008) and informs three out of the four model parameters in the design package for 

the ReFH2 event-based rainfall-runoff model (Wallingford Hydrosolutions, 2016a).  It has also proved 

to be a key catchment descriptor for explaining the variation in parameter values for generalised 85 

rainfall-runoff models for estimating both daily mean flows (Young, 2006; Young et al., 2006) and 

extreme flood events (Calver et al., 1999).  

The BFIHOST catchment descriptor has also found wide application in environmental management, 

for example, in the development of environmental standards for abstraction as part of the 

implementation of the Water Framework Directive in the UK (SNIFFER, 2006). Another example is its 90 

use in understanding the role of hydrology in explaining the interactions between dissolved organic 

carbon and nitrogen in rivers (Heppell et al., 2017). 

Operational use of research outputs often identifies limitations, and the BFIHOST model is no 

exception. In impermeable catchments (low BFI) such as those found in upland peat-dominated 

catchments, BFIHOST1995 tends to overestimate at low gauged BFI values (Figure 2). This can be seen 95 

in Table 1 in the high coefficient for class 11 compared to the overall trend. On the other hand, HOST 

classes 23 and 25, which represent clay-based soils, show much lower values of BFIHOST than the 

overall trend would suggest. In such impermeable catchments, those with a BFI less than 0.2 are often 

associated with ephemerality and zero flow in summer months.

 100 
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Figure 2: Comparison of gauged BFI estimates with BFIHOST1995 (Boorman et al., 1995) using present dataset of 991 

catchments.
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Substrate 
Hydrogeology 

MINERAL SOILS  PEAT SOILS 
Groundwater or 
aquifer 

No impermeable or 
gleyed layer within 
100cm 

Impermeable layer within 100cm or gleyed 
layer at 40-100cm 

Gleyed layer within 40cm All 

Weakly consolidated, 
microporous, by pass 
flow uncommon 
(Chalk)  

Normally 
present and at 
>2m 

1  1.000 (4.31)   
 

13 1.000 (0.87) 14 0.380 (0.66) 15 0.380 (9.93) 

Weakly consolidated, 
microporous, by pass 
flow uncommon 
(Limestone) 

2  1.000 (2.12) 

Weakly consolidated, 
macroporous, by pass 
flow uncommon 

3 0.900 (1.58)  

Strongly consolidated, 
non or slightly porous. 
By-pass flow common. 

4 0.791 (3.33) 

Unconsolidated, 
macroporous, by-pass 
flow very uncommon. 

5 0.900 (5.07) 

Unconsolidated, 
microporous, by-pass 
flow very common. 

6 0.645 (2.61) 

Unconsolidated, 
macroporous, by-pass 
flow very uncommon. 

Normally 
present and at 
≤ 2m 

7 0.792 (1.01) IAC’ <12.5 IAC’ ≥12.5 Drained  Undrained 

Unconsolidated, 
microporous, by-pass 
flow common. 

8 0.560 (1.62) 9 0.734 (3.68) 10 0.520 (2.21) 11 0.927 (0.55) 12 0.170 (2.94) 

Slowly permeable No significant 
groundwater 
or aquifer 

16 0.778 (0.43) IAC’ >7.5 IAC’ ≤7.5 24 0.312 (13.85) 26 0.244 (2.49) 
18 0.518 (5.40) 21 0.340 (4.02) 

Impermeable (hard) 17 0.609 (9.28) 19 0.469 (2.16) 22 0.315 (1.10)  27 0.259 (0.83) 
Impermeable (soft)  20 0.524 (0.69) 23 0.218 (1.31) 25 0.170 (3.64)  
Eroded Peat    28 0.581 (0.58) 
Raw Peat  29 0.226 (5.73) 

Table 1: HOST classification (small upper numbers) with BFIHOST coefficients listed (percentage land cover in brackets). Based on Boorman et al., 1995. IAC’ = integrated air capacity. 103 
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Another problem associated with some HOST classes is linked to their relative rarity within the dataset. 104 

For example, HOST class 11 is only observed in 0.55% of the original 1995 dataset, and was also seen 105 

to be frequently co-located with permeable soils and so is likely poorly modelled by BFIHOST1995 due 106 

to having some possible correlation with other soil types. It is hoped that using a larger more varied 107 

dataset may alleviate this. 108 

Finally, the need to artificially change model coefficients (in the cases of classes 1,2,3,5 and 13) 109 

suggests that the model was not chosen carefully enough in the outset. An important part of model 110 

development is the choice of model form, be that linear regression, a more generalised additive model 111 

or even a more physically-based mathematical hydrological model. The parameter estimates in 112 

permeable soil classes represent a theoretical upper limit where the parameter values take a bounded 113 

value of 1. In practice, BFI estimates from gauged records may approach this theoretical limit but even 114 

the flow regimes of the most permeable catchments exhibit some direct response to rainfall and thus 115 

a value of 1 is not attained.  116 

In this paper, the aim is to tackle these issues and produce a more robust model of base flow index. 117 

To achieve this, a more physically appropriate model will be investigated to avoid the need for capping 118 

coefficients. Secondly, methods will be investigated to improve the base flow estimates of the rarer 119 

HOST classes, by combining single HOST classes into groups. Thirdly, models focusing on the low-BFI 120 

catchments will be explored to improve the estimates in the peat and clay catchments. This will be 121 

then demonstrated through an application to estimation  of  QMED through the FEH catchment 122 

descriptor equation. 123 

DATA 124 

Station selection 125 

The catchment dataset used in the 1995 development of the HOST classification was constrained to 126 

using catchments with flow records that were believed to be of good hydrometric quality and 127 

relatively free from artificial influence (Gustard et al., 1992), and applied to all gauged flow records 128 
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held by the National River Flow Archive (NRFA).  However, information on water use and return was 129 

fragmented in England and Wales, and in Scotland and Northern Ireland there was no requirement to 130 

regulate abstraction until 2006.  A necessarily conservative approach was taken to the selection of 131 

study catchments.  Due to differences in the mapping and assignment of HOST classes within Northern 132 

Ireland compared to England, Scotland and Wales, catchments in Northern Ireland were not included. 133 

Instead, we feel that future work should be undertaken to properly develop a Northern Ireland-134 

specific BFIHOST model. 135 

A focus of the current study was to develop a much larger sample set of appropriate gauged records 136 

to inform the research. The NRFA holds flow records for UK gauged catchments judged by the 137 

measuring authorities as of a suitable hydrometric quality for public release. On the basis that BFI is 138 

relatively insensitive to hydrometric quality (pp. 24, Gustard et al., 1992), all stations were considered 139 

as being of a suitable hydrometric quality. The records for 1223 catchments with a minimum of 10 140 

years of daily mean flow record were reviewed and 991 catchments selected according to the 141 

following criteria: 142 

 the absence of significant upstream impounding reservoirs; 143 

 less than 2% missing days in the record; 144 

 generally perennial stream flow, determined on the basis that the flow that is equalled or 145 

exceeded for 95% of the time, Q95, is greater than zero.  146 

Lakes were not chosen as a criteria for exclusion due to the very high percentage of catchments with 147 

some form of surface water storage. Instead, a HOST class (class 30) describing proportion of lake 148 

coverage is included; this is explained in more detail below. Previous research in Scotland (Gustard et 149 

al., 1987) has shown that the estimation of BFI from gauged records is relatively insensitive to sample 150 

error and that, provided that extremely dry years are avoided, the error in BFI calculated from one 151 

year of record is typically  approximately 5%. However, BFI values are sensitive to missing data within 152 

the period of calculation, and particularly within periods of low flow;  a limit on missing data of 2% 153 
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was proposed by Gustard et al. (1992), and this motivated the use of this same limit in the present 154 

study. 155 

Abstractions and discharges in the UK are, in the main, regulated to maintain the magnitude of 156 

influence to below a fraction of the lower flows observed within a catchment.  When compared with 157 

the full range of variation in the daily mean flow records for a catchment (typically 3 to 4 orders of 158 

magnitude) these influences are relatively invariant. Errors at very high flows associated with out-of-159 

bank flow are not as relevant as these occur in a small fraction of the higher-frequency components 160 

of the flow record.  In contrast, impounding reservoirs have a significant impact upon the whole flow 161 

regime. 162 

 163 

It was noted that some of the 991 gauged flow records showed non-negligible artificial influence 164 

compared to Q95. In particular, 332 catchments were seen to have net influence estimated to be 165 

greater than 20% of Q95. Fortunately, filtering out ephemeral catchments also screens out catchments 166 

with a very high net abstractive component. Sensitivity to this abstraction was investigated. The basic 167 

linear model was fitted with and without those 332 catchments with noticeable abstraction, and 10-168 

fold cross-validation was performed in both cases (James et al., 2013). It was seen that the basic model 169 

performed similarly with and without the extra catchments, both in terms of model residual and cross-170 

validation prediction errors. Therefore the rest of this paper will make use of all 991 flow records, as 171 

it is felt that a dataset that covers a broader range of catchments will lead to a model which is more 172 

representative of base flow across the whole UK. This does come at the slight cost of increased 173 

observation uncertainty, but as mentioned above (Gustard et al., 1992) shows that BFI is robust to this 174 

sort of data issue. 175 

Figure 3 shows the locations of the catchments within the UK. The mean record length of stations 176 

within the sample is 42.3 years. Catchment areas range from 0.9 km2 up to 9940 km2, with a mean 177 

area of 343 km2. 178 
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METHODS 179 

As mentioned above, BFIHOST1995 was a linear regression model with bounds placed on the minimum 180 

(0.17) and maximum (1.0) values BFIHOST could take for any specific HOST class (Boorman et al., 181 

1995). In the first stage of the current study, the linear model was recalibrated using the new dataset 182 

and then directly compared with  BFIHOST1995. Simple linear regression models are easy to interpret, 183 

but have problems with extrapolation, application of them here possibly leads to estimated values of  184 

 185 

Figure 3: Locations of 991 catchments selected for new models of BFIHOST. 186 

BFIHOST greater than 1 or less than 0. Catchment estimates are given by 𝐵𝐹𝐼𝐻𝑂𝑆𝑇 = ∑ 𝛼𝑖ℎ𝑖
29
𝑖=1  where 187 

𝛼𝑖 is the BFI coefficient for HOST class i, and ℎ𝑖 is the proportion of that catchment which is classified 188 

as belonging to HOST class i. This assumes that the error (𝐵𝐹𝐼𝑔𝑎𝑢𝑔𝑒𝑑 –  𝐵𝐹𝐼𝐻𝑂𝑆𝑇) is normally 189 
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distributed which may suggest that the true value could lie outside the permitted range even if the 190 

fitted model estimate lies within the range. 191 

 To more directly compare to BFIHOST1995, the recalibrated linear model was also adjusted to cap 192 

coefficients to lie in the range 0 < α < 1. Within-range capping was not considered in this work. Linear 193 

models were implemented using the core stats R package (R Core Team, 2016). 194 

Beta regression 195 

As an alternative to the simple linear regression, a beta regression model was investigated. Rather 196 

than assuming that the residual follows a normal distribution as in linear regression, beta regression 197 

assumes that each observation comes from a beta distribution with mean fitted using a logit link 198 

function (Ferrari and Cribari-Neto, 2004). Here logit(𝑥) = log (𝑥/(1 − 𝑥)), a function that turns the 199 

unit interval (0, 1) into the whole range from −∞ to ∞; inverting the transformation naturally forces 200 

the resulting estimates of BFIHOST to lie strictly between zero and one. More specifically, the gauged 201 

values of BFI at site i are assumed to be distributed according to a beta distribution with mean μi and 202 

precision φ common to all sites. Here, μi is given by logit(𝜇𝑖) = ∑ 𝛽𝑖ℎ𝑖𝑖 , where βi are fitted model 203 

coefficients and hi are as defined previously. The beta distribution is completely defined between 0 204 

and 1 and has the probability density function given by: 205 

𝑓(𝑥) =
Γ(𝜙)

Γ(𝜙𝜇)Γ(𝜙(1 − 𝜇))
𝑥𝜇𝜙−1(1 − 𝑥)(1−𝜇)𝜙−1,          0 < 𝑥 < 1 206 

where 𝛤(𝑥) is the gamma function. BFIHOST is then estimated by using 207 

𝐵𝐹𝐼𝐻𝑂𝑆𝑇𝐵𝐸𝑇𝐴 = logit−1 (∑ 𝛽𝑖ℎ𝑖

𝑖

) 212 

with βi and hi as before. The beta regression was implemented using the betareg R package (Cribari-208 

Neto and Zeileis, 2010). In order to better compare the coefficients directly, a set of “linear equivalent” 209 

values will be reported, corresponding to the value bi of BFIHOSTBETA in a catchment consisting solely 210 

of a single HOST class i, which can be calculated as 𝑏𝑖 = logit−1(𝛽𝑖). 211 
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One benefit of using a beta regression is that it is designed for estimating proportions, and so the 213 

estimate plus the associated uncertainty (the error term) still lies within the interval of appropriate 214 

BFI values. 215 

Regrouping variables 216 

The 1995 BFIHOST model was a classification tool to aid the development of HOST whereas the 217 

objective of this study is to refine the estimation of BFI to give reliable estimates across all catchment 218 

scales and with HOST class representations ranging from a single dominant class to large catchments 219 

draining soils corresponding to many different HOST classes.  220 

A 30-class model including a HOST class representing surface water extents (HOST class 30) is 221 

considered; nominally one would expect the BFI of a waterbody to be 1, as none of the water would 222 

flow over the top of a waterbody, rather through it. The effect of surface water, in the form of lakes 223 

and reservoirs (for example), is already well established in flood frequency estimation using catchment 224 

descriptor equations, where the extent to which such water bodies attenuate flow is significant in the 225 

QMED equation (Kjeldsen et al., 2008). This 30-class model was compared to the 29-class model under 226 

the original 1995 coefficients, and under the recalibrated linear model. 227 

Typically, the BFI for catchments which are dominated by rarer HOST classes is over- or under-228 

estimated in BFIHOST1995, since there are many fewer catchments in which those HOST classes are 229 

observed. For example, HOST class 11 only makes up 0.55% of the land cover in England, Wales and 230 

Scotland, and makes up less than 11.2% of any one catchment in the present dataset. 231 

To analyse this, a series of models were tested where subsets of the 30 classes were combined  232 

replacing, for example, HOST classes 16 and 17 with a single (16+17) class (so ℎ(16+17) = ℎ16 + ℎ17). 233 

Various combinations of HOST class groupings were investigated, as outlined in Table 3. Each of these 234 

groupings was chosen to combine similar soil classes (in terms of base flow) together to address poor 235 

representation of one or more classes within the group. This was then followed by considering 236 

combinations of the above single groups to develop the final model. 237 
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Weighted models 238 

The most successful models were tested using weighted regression models, where certain data points 239 

were given greater weighting in the regression method (either linear or beta). Catchments with a 240 

gauged BFI value of less than 0.4 were seen to perform particularly badly in the original 1995 model, 241 

and so a more focused approach to characterising the BFI in these catchments was felt to be important 242 

for use in prediction across the UK. 243 

 244 

Figure 4: Plots showing accuracy of fit underweighting for linear 30-class model fitted with catchments with gauged BFI 245 

between 0.17-0.4 weighted six times as heavily as those outside the range. 246 

To develop the weighted models, four methods were considered. The catchments with BFI less than 247 

0.4 were weighted twice as much, three times as much, and six times as much as those with higher 248 

BFI. Also, a weighting inversely proportional to BFI was tried. 249 

RESULTS AND DISCUSSION 250 

The results in this section show model performance in terms of R2 (a measure of variance of the data 251 

explained by the model), root mean squared error (RMSE, a measure of average accuracy of the 252 

model), fractional bias, and Akaike Information Criterion (AIC, Akaike, 1974) which is given by 𝐴𝐼𝐶 =253 

 2𝑘 –  2 log (𝐿), where k is the number of fitted parameters (the number of classes/groups selected), 254 

and L is the maximum value of the likelihood function of the fitted model given the dataset; note lower 255 

or more negative values show better models. One should note that the R2 values are designed to 256 
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assume normally distributed residuals about the model fitted values. This means that the values of R2 257 

associated with the beta regression may incorrectly claim under-performance of the model. 258 

Therefore, RMSE and AIC are more appropriate for comparing linear with beta regression models. 259 

Within type, R2 can be more appropriately used as a comparison.  260 

30-class model 261 

First an investigation was performed to assess the original model, and the benefits of including HOST 262 

class 30 (surface water). Table 2 suggests that the old model much better explains the data than 263 

previously thought, with even further improvements in terms of R2 and RMSE. The AIC of the original 264 

model cannot be determined due to lack of access to the original 1995 dataset; the RMSE is as 265 

reported in (Boorman et al., 1995). 266 

Model R2 RMSE AIC BIAS 

1995 Model (as reported) 0.79 0.089 N/A N/A 

1995 Model (new dataset) 0.97* 0.101 N/A +0.050 

Recalibrated Linear 29-class 0.97 0.096 -1767 -0.052 

Linear 30-class 0.97 0.095 -1797 -0.049 

Capped 30-class 0.97 0.095 -1776 +0.037 

Table 2: Comparison of various linear models. AIC and bias not documented for original 1995 model. R2 for the 1995 model 267 

under the new data (starred) is only illustrative, not a true value. 268 

However, one should note that this is not an ideal use of R2 since the data used to calculate the model 269 

here was not the data used to calibrate the model in Boorman et al. (1995), and so the resultant value 270 

of R2 should be treated with caution. The recalibrated 29-class model is a naïve linear regression, and 271 

therefore some of the coefficients extend beyond 0 and 1; HOST class 1 has a value of 1.02, class 11 272 

has a value of 1.15, and class 13 has a value of 1.19. Including the HOST class 30 (surface water extent) 273 

does not improve this, with HOST class 1 taking a coefficient of 1.02, class 11 having a value of 1.17, 274 
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class 12 having a value of -0.03, and class 27 taking a value of -0.13. This could be a significant problem 275 

for estimation in small catchments which predominantly consist of these HOST classes. 276 

Reapplying the capping procedure of Boorman et al. (1995) on the new 29- and 30-class linear models 277 

only served to reduce the efficacy of the model (Table 2). Bias may have decreased as an artefact of 278 

restricting the model to the “correct” range. In this case, the model statistics were recomputed 279 

assuming that the error term had the same distribution in the capped and uncapped 30-class linear 280 

model. 281 

Beta regression as an alternative 282 

Table 3 shows the initial results of using the beta regression versus the linear model; the bias is slightly 283 

improved and the values of R2 and RMSE are very similar. Recall that since linear regression 284 

coefficients and beta regression coefficients cannot be directly compared, Table 3 presents “linear 285 

equivalent” values. These correspond to the value bi of BFIHOSTBETA in a catchment consisting solely 286 

of a single HOST class i, which can be calculated as 𝑏𝑖 = logit−1(𝛽𝑖), where 𝛽𝑖 is the beta regression 287 

coefficient for HOST class i. 288 

 Table 5 shows that the beta regression model keeps all the “linear equivalent” coefficients between 289 

0 and 1 without further modification, so that no catchment can have an estimated value of BFIHOST 290 

outside this range, which is desirable. Here the value of R2 is computed as for a linear regression. In 291 

the betareg package, a “pseudo-R2” specific to beta regression is also presented (Ferrari and Cribari-292 

Neto, 2004). To more appropriately compare between linear and beta regression model, the linear 293 

regression formulation of R2 is used. 294 

Combined HOST classes 295 

Table 3 shows the difference in including various combinations of the groupings outlined above. Here 296 

one notes that certain models perform slightly better (the (9+10) model is slightly better on all 297 

statistics), but upon examining the coefficients and the linear-model-equivalent values, it can be 298 

observed that they produce physically unrealistic values close to 0 or 1: HOST class 12 has a “linear-299 
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equivalent” coefficient of 0.074, and class 27 has a value of 0.068, much lower than reasonable. As a 300 

balance between physically reasonable and statistically “powerful” models must be reached, this led 301 

to the selection of a model using the grouped classes (7+8+9+10, 11+12+15, 16+18, 20+23, 26+27) 302 

with all other classes kept in isolation. In the rest of this paper, only the 30-class and (7+8+9+10, 303 

11+12+15, 16+18, 20+23, 26+27)  models will be considered; the latter will be referred to as the “22-304 

class” model. 305 

Model R2 RMSE AIC BIAS 

Linear 30-class model 0.970 0.095 -1797 -0.049 

Beta 30-class model 0.970 0.098 -1819 +0.059 

(7+8) 0.970 0.095 -1821 +0.052 

(9+10) 0.970 0.095 -1822 +0.052 

(11+12+15) 0.969 0.096 -1800 +0.053 

(13+14) 0.970 0.095 -1816 +0.052 

(16+18) 0.970 0.095 -1812 +0.052 

(20+23) 0.970 0.095 -1822 +0.052 

(26+27) 0.970 0.095 -1815 +0.052 

(28+29) 0.970 0.095 -1819 +0.052 

(7+8+9+10) 0.970 0.095 -1825 +0.052 

(7+8+9+10, 26+27) 0.970 0.095 -1820 +0.052 

(7+8+9+10, 11+12+15, 26+27) 0.969 0.096 -1800 +0.054 

(7+8+9+10, 11+12+15, 16+18, 20+23, 26+27) 0.968 0.096 -1794 +0.054 

Table 3: Comparison of beta regression models under different groupings of HOST classes. Bracketed groupings replace 306 

the individual constituent classes, all other unlisted classes are kept individually. 307 
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Weighted models 308 

Finally, the selected 22-class model and the 30-class model under linear and beta regression were 309 

investigated using the weighting scheme outlined in the Methods section. Small relative weightings 310 

were tried but showed little difference compared to the unweighted model (not shown), and very high 311 

relative weightings instead produced a poor fit for high-BFI stations (Figure 4). Finally, a weighting 312 

inversely proportional to BFI was also tried, but this also gave far too much weight to the low BFI 313 

catchments and led to a poorly fitting model (not shown). Hence the four candidate models were 314 

compared to similar models weighting catchments with gauged BFI between 0.17 and 0.4 three times 315 

as heavily as other catchments. Although R2 and RMSE do not greatly change, continued improvement 316 

can be observed in Table 4 in terms of AIC. The final weighted 22-class beta regression model is 317 

denoted BFIHOST2019 318 

Model R2 RMSE AIC BIAS 

Weighted Linear 30-class model 0.962 0.098 -1687 +0.039 

Weighted Beta 30-class 0.968 0.0975 -2923 +0.040 

Weighted Linear 22-class 0.960 0.100 -1657 -0.001 

Weighted Beta 22-class 0.967 0.097 -1798 +0.006 

Table 4: Comparison of various weighted regression models under linear and beta formulations, and under 22- and 30- 319 

class configurations. 320 

To summarise the findings, Table 5 and Figure 5 show the coefficients from the linear regression 321 

models and the “linear-equivalent” values from the beta regression models. For the less frequently 322 

observed HOST classes, a more reasonable value of BFIHOST is obtained when combined with a more 323 

abundant HOST class; classes 11 and 12 are a clear example of this (with land cover of 0.55% and 324 

2.94%, respectively).  Figure 6 shows a residual plot as described in Chien (2011), which performs in a 325 

similar way to a standard residual plot as used for linear regression models. There is no obvious trend 326 
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or pattern to the residuals as a function of 𝑙𝑜𝑔𝑖𝑡(𝐵𝐹𝐼𝐻𝑂𝑆𝑇2019), which suggests that the model type 327 

is appropriate for this data. 328 

Example application to flood estimation 329 

As a simple application of BFIHOST2019, a standard use of BFIHOST will be investigated: the estimation 330 

of QMED. To do this, a subset of the above investigated dataset has been used: 605 stations which are 331 

rural and determined by the NRFA to be suitable for QMED estimation. Here, BFIHOST1995 and the new 332 

BFIHOST2019 were both used in the QMED catchment descriptor equation without recalibration: 333 

𝑄𝑀𝐸𝐷 = 8.3062 𝐴𝑅𝐸𝐴0.85100.1536
1000
𝑆𝐴𝐴𝑅𝐹𝐴𝑅𝐿3.44510.046(𝐵𝐹𝐼𝐻𝑂𝑆𝑇2) 334 
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1 1.000 1.031 0.956 1.035 0.949 16 0.778 0.617 0.559 0.491 0.492 

2 1.000 1.007 0.927 0.938 0.881 17 0.609 0.564 0.564 0.514 0.514 

3 0.900 0.690 0.671 0.709 0.704 18 0.518 0.485 0.480 0.491 0.492 

4 0.791 0.819 0.793 0.773 0.756 19 0.469 0.456 0.467 0.214 0.234 

5 0.900 0.974 0.888 0.982 0.878 20 0.524 0.390 0.233 0.319 0.302 

6 0.645 0.463 0.486 0.367 0.402 21 0.340 0.354 0.333 0.328 0.323 

7 0.792 0.830 0.756 

0.718 0.682 

22 0.315 0.398 0.397 0.369 0.374 

8 0.560 0.756 0.825 

0.705 

23 0.218 0.137 0.119 0.319 0.302 

9 0.734 0.884 24 0.312 0.317 0.326 0.325 0.333 

10 0.520 0.634 0.561 25 0.170 0.247 0.258 0.190 0.209 

11 0.927 1.608 0.984 
0.266 0.271 

26 0.244 0.272 0.287 
0.222 0.249 

12 0.170 0.010 0.090 27 0.259 -0.184 0.055 

13 1.000 1.124 0.933 1.224 0.955 28 0.582 0.455 0.474 0.424 0.447 

14 0.380 0.660 0.671 0.664 0.702 29 0.226 0.253 0.257 0.246 0.254 

15 0.380 0.296 0.304 0.266 0.271 30 N/A 2.263 1.000 1.583 0.991 
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Table 5: HOST coefficients for linear models and "linear-equivalent" values for beta regression models. Shaded regions 335 

correspond to combined classes. 336 

 337 

 338 

Figure 5: Comparison of BFIHOST estimates of single-class catchments, with strong differences highlighted with upward 339 

arrows (New BFIHOST much larger) and downward arrows (New BFIHOST much smaller). 340 

where AREA is the area of the catchment in km2, SAAR is the standardised annual average rainfall in 341 

mm (based on data from 1961-1990), FARL is a coefficient describing attenuation due to lakes and 342 

reservoirs, and QMED is measured in m3s-1 (Kjeldsen et al., 2008). Figure 7 shows the values estimated 343 

for QMED under the two methods of deriving BFIHOST. Here it can be seen that the value for QMED 344 

under the new BFIHOST2019 performs slightly better, particularly for catchments with smaller values of 345 

QMED (comprising smaller catchments and more permeable catchments), where the QMED model 346 

typically performs less well (Vesuviano et al., 2016).  347 
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 348 

Figure 6: Beta regression residual plot showing scaled residuals against estimates (linear predictors). 349 

Table 6 shows that estimation of QMED and BFIHOST in impermeable catchments (BFI < 0.4) is 350 

improved (in terms of factorial standard error) by the new model at all catchment sizes but 351 

performance is very similar across sizes of catchments. Hence, BFIHOST2019 can address the concerns 352 

about parameter estimates for specific scarce HOST classes without a loss of estimation performance 353 

when used in the context of generally larger catchments. It should be noted that the equation was 354 

calibrated using the BFIHOST1995 estimates and thus further model improvement may be gained by 355 

recalibrating the equation using BFIHOST2019. 356 

CONCLUSIONS 357 

This paper has investigated the potential for an updated method of estimating base flow at ungauged 358 

locations, improving on BFIHOST1995 by applying a beta regression model instead of the original capped 359 

linear regression model, in addition to using a new larger dataset of over 900 gauged catchments.  360 

Choosing a beta regression allowed a model to be fitted which naturally gives estimates strictly 361 

between zero and one, avoiding hydrologically unrealistic estimates for BFI. Some HOST classes do not 362 

occur in any great quantities at any location, or are highly concentrated in an extremely small number 363 

of locations. In locations where these are present, base flow is often poorly estimated by BFIHOST1995.  364 
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AREA BFI QMED fse 

BFIHOST1995 

QMED fse  

BFIHOST2019 

BFI fse 

BFIHOST1995 

BFI fse 

BFIHOST2019 

All All 1.535549 1.531486 1.102568 1.103955 

< 40 km2 All 1.743654 1.755493 1.123471 1.128958 

> 40 km2 All 1.499231 1.492109 1.098892 1.099484 

All < 0.4 1.479287 1.450971 1.103977 1.083578 

All > 0.4 1.555649 1.559788 1.102043 1.11066 

< 40 km2 < 0.4  1.692531 1.658577 1.121898 1.102398 

< 40 km2 > 0.4 1.792398 1.846157 1.12499 1.151069 

> 40 km2 < 0.4 1.397002 1.369949 1.097331 1.076356 

> 40 km2 > 0.4 1.52839 1.526364 1.099365 1.105668 

Table 6: Description of factorial standard error of QMED and BFI under BFIHOST1995 and BFIHOST2019 for small/large and 365 

permeable/impermeable catchments. 366 

 367 

Figure 7: Comparison of fit of Catchment Descriptor (CD) QMED equation under the old BFIHOST from Boorman et al 1995, 368 

and the new BFIHOST model. 369 

This issue  was still present in the original beta regression model, giving incredibly high/low values for 370 

these classes, due to insufficient information to fit accurately. To this end, HOST classes were 371 

combined, grouping rare classes with HOST classes that are more abundant and have similar physical 372 
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and hydrological properties (Table 2). This led to a 22-class model which gave a good fit without a 373 

need to impose artificial constraints on the model parameterisation.  374 

To demonstrate its applicability and validity, this new BFIHOST2019 was used in the existing QMED 375 

catchment descriptor equation. The resultant estimates are an improvement over the use of the 376 

equation with the original BFIHOST estimates, despite the equation having been fitted using those 377 

original BFIHOST estimates. This is in addition to the core objective of resolving unrealistic estimation 378 

in small catchments dominated by single HOST class values that were poorly represented in the 379 

dataset used in the original model development. To extend this work, it would be fruitful to recalibrate 380 

the QMED equation using the generalised linear model developed in Kjeldsen et al., (2008), and also 381 

to recalibrate the parameters for the ReFH2 model (Wallingford Hydrosolutions, 2016b), namely Cmax, 382 

BL and BR.  383 

REFERENCES 384 

Akaike, H. 1974 A new look at the statistical model identification, IEEE Transactions on Automatic 385 

Control, 19(6), 716-723. doi: 10.1109/TAC.1974.1100705 386 

Boorman, D., Hollis, J. M., and Lilly, A. 1995 Hydrology of soil types: a hydrologically-based 387 

classification of the soils of United Kingdom, Institute of Hydrology, Wallingford, UK. 388 

doi:10.1029/98GL02804 389 

Calver, A., Lamb, R., and Morris, S. E. 1999 Flood frequency estimation using continuous rainfall-runoff 390 

modelling. Proceedings of the Institute of Civil Engineers - Water and Maritime Engineering, 136, 225–391 

234. doi:10.1016/S0079-1946(96)00010-9 392 

Chien, L. C. 2011 Diagnostic plots in beta-regression models. Journal of Applied Statistics 38(8), 1607–393 

1622. doi:10.1080/02664763.2010.515677 394 

Cribari-Neto, F., and Zeileis, A. 2010 Beta Regression in R. Journal of Statistical Software 34(2), 1–24. 395 

Retrieved from http://www.jstatsoft.org/v34/i02 396 



24 
 

Ferrari, S., and Cribari-Neto, F. 2004 Beta Regression for Modelling Rates and Proportions. Journal of 397 

Applied Statistics 31(7), 799–815. doi:10.1080/0266476042000214501 398 

Gustard, A., Bullock, A., and Dixon, J. M. 1992 Low flow estimation in the United Kingdom, Institute of 399 

Hydrology, Wallingford, UK. 400 

Gustard, A., Marshall, D. C. W., and Sutcliffe, M. F. 1987 Low Flow Estimation in Scotland, Institute of 401 

Hydrology, Wallingford, UK. 402 

Heppell, C. M., Binley, A., Trimmer, M., Darch, T., Jones, A., Malone, E., Collins, A. L., Johnes, P. J., 403 

Freer, J. E. & Lloyd, C. E. M. 2017 Hydrological controls on DOC nitrate resource stoichiometry in a 404 

lowland, agricultural catchment, southern UK. Hydrology and Earth System Sciences 21(9), 4785–405 

4802. doi:10.5194/hess-21-4785-2017 406 

Hodgson, J. M. 1974 Soil Survey Field Handbook: Technical Monograph No. 5. Rothamsted 407 

Experimental Station, Harpenden, UK. 408 

Institute of Hydrology 1980 Low flow studies: Report No. 1 - Research Report. Institute of Hydrology, 409 

Wallingford, UK. 410 

James, G., Witten, D., Hastie, T., and Tibshirani, R. 2013 An Introduction to Statistical Learning with 411 

Applications in R. Springer-Verlag, New York, USA. doi:10.1007/978-1-4614-7138-7 412 

Kjeldsen, T. R., Jones, D. A., and Bayliss, A. C. 2008 Improving the FEH statistical procedures for flood 413 

frequency estimation. Joint Defra/Environment Agency Flood and Coastal Erosion Risk Management 414 

R&D Programme, Science Report SC050050. London, UK. 415 

R Core Team 2016 R: A Language and Environment for Statistical Computing. Vienna. Retrieved from 416 

https://www.r-project.org/ 417 



25 
 

SNIFFER. 2006 Development of Environmental Standards (Water Resources). WFD48 Stage 3: 418 

Environmental Standards, Edinburgh, UK. Retrieved from https://www.sniffer.org.uk/wfd48-stage-3-419 

report-pdf 420 

Vesuviano, G., Stewart, L., Haxton, T., Young, A., Hunt, T., Spencer, P., and Whitling, M. 2016 Reducing 421 

uncertainty in small-catchment flood peak estimation. E3S Web of Conferences 7, 01008. 422 

doi:10.1051/e3sconf/20160701008. 423 

Wallingford Hydrosolutions. 2016a The Revitalised Flood Hydrograph Model ReFH2 : Technical 424 

Guidance, Wallingford Hydrosolutions Ltd., Wallingford, UK. 425 

Wallingford Hydrosolutions. 2016b WINFAP 4 QMED Linking equation. Wallingford Hydrosolutions 426 

Ltd., Wallingford, UK. 427 

Young, A. R. 2006 Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff 428 

model. Journal of Hydrology, 320(1-2), 155-172. doi:10.1016/j.jhydrol.2005.07.017 429 

Young, A. R., Keller, V., and Griffiths, J. 2006 Predicting low flows in ungauged basins: a hydrological 430 

response unit approach to continuous simulation. In Climate Variability and Change - Hydrological 431 

Impacts, Demuth, S., Gustard, A., Planos, E., Scatena, F. & Servat, E. (ed.)International Association of 432 

Hydrological Sciences Press, Wallingford, UK, pp. 134–138. doi:10.1063/1.478943 433 

ACKNOWLEDGEMENTS 434 

The authors would like to thank the British Hydrological Society for the opportunity to publish this 435 

work. The authors would also like to thank the editors and reviewers for their helpful comments. 436 

None of the contributing authors are IAW members. 437 


	N522470Cover
	N522470Text

