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Abstract
Decarbonization of the world's energy supply is essential to meet the targets of the

2016 Paris climate change agreement. One promising opportunity is the utilization of

second generation, low input bioenergy crops such as Miscanthus and Short Rotation

Coppice (SRC) willow. Research has previously been carried out on the greenhouse

gas (GHG) balance of growing these feedstocks and land‐use changes involved in

converting conventional cropland to their production; however, there is almost no

body of work understanding the costs associated with their end of life transitions back

to conventional crops. It is likely that it is during crop interventions and land‐use tran-
sitions that significant GHG fluxes might occur. Therefore, in this study, we investi-

gated soil GHG fluxes over 82 weeks during transition from Miscanthus and SRC

willow into perennial ryegrass in west Wales, UK. This study captured soil GHG

fluxes at a weekly time step, alongside monthly changes in soil nitrogen and labile

carbon and reports the results of regression modelling of suspected drivers. Methane

fluxes were typically trivial; however, nitrous oxide (N2O) fluxes were notably

affected, reverted plots produced significantly more N2O than retained controls and

Miscanthus produced significantly higher fluxes overall than willow plots. N2O costs

of reversion appeared to be contained within the first year of reversion when the Mis-

canthus plots produced an average pregrass flux of 0.13 mg N2O m−2 hr−1 while for

willow, this was 0.03 mg N2O m−2 hr−1. Total N2O emission from reversion

increased the carbon cost over the lifetime of the Miscanthus from 6.50 to 9.91 Mg

CO2 eq. ha
−1 while for the willow, this increase was from 9.61 to 10.42 Mg CO2 eq.

ha−1. Despite these significant increases, the carbon cost of energy contained in these

perennial crops remained far lower than the equivalent carbon cost of energy in coal.
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1 | INTRODUCTION

There is a need to decarbonize energy production if we are
to reduce the negative impacts of anthropogenic climate

change (IPCC 2014) and meet the ambitions of the 2016
Paris agreement (UNFCC 2015). Energy production from
renewables, such as solar, wind and biomass, already plays
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a significant role in the energy mix. In 2016, the European
Union produced 17% of its total primary energy from
renewable sources with bioenergy supplying 53% of this
(ec.europa.eu, 2017). For the United Kingdom, in 2015,
renewable electricity represented 24.6% with biomass sup-
plying 70.7% of this (DUKES 2016).

While bioenergy can help to mitigate fossil fuel carbon
emissions, there is a need to understand the lifecycle
emissions of all greenhouse gases (GHGs) associated with
bioenergy production, including methane (CH4) and nitrous
oxide (N2O). Due to their high global warming potentials
(GWP), these trace gases can play a pivotal role in the GHG
budgets of biomass feedstocks and fluxes from soil are a key
source (Behnke, David, & Voigt, 2012; Palmer, Forrester,
Rothstein, & Mladenhoff, 2014; Roth, Finnan, Jones, Burke,
& Williams, 2015; Roth, Jones, Burke, & Williams, 2013).

Methane emissions are typically not significant from tem-
perate agricultural soils (Snyder, Bruulsema, Jensen, &
Fixen, 2009), however, soil N2O emissions from agriculture
are the primary source of global atmospheric N2O, particu-
larly from fertilised systems (Dobbie, McTaggart, & Smith,
1999; Reay et al., 2012). Significant progress has been made
in quantifying growing cycle N2O emissions from biomass
production but the start and end of crop life are still poorly
quantified, despite these being the periods of greatest soil
perturbation and C and N inputs (Whitaker et al., 2017).
Although there have been some studies investigating GHG
fluxes during conversion periods to energy crops (e.g.,
Nikièma, Rothstein, & Miller, 2012; Oates et al., 2015;
Palmer et al., 2014; Roth et al., 2013; Saha et al., 2017) and
others investigating the impacts of fertiliser additions on
N2O emissions (Behnke et al., 2012; Drewer, Finch, Lloyd,
Baggs, & Skiba, 2012; Duran, Duncan, Oates, Kucharik, &
Jackson, 2016; Gauder, Butterbach‐Bahl, Graeff‐Honninger,
Claupein, & Wiegel, 2012; Hellebrand, Scholz, Kern, &
Kavdir, 2005; Jørgensen, Jorgensen, Nielsen, Maag, & Lind,
1997; Roth et al., 2015; Ruan, Bhardwaj, Hamilton, &
Robertson, 2016), surprisingly, little work has considered
GHG dynamics at the end of cropping cycles with reversion
back to more typical agricultural systems. One study looked
into the reversion of a 20‐year‐old Miscanthus x giganteus
plantation into wheat production and set‐aside (Drewer,
Dufossé, Skiba, & Gabrielle, 2014; Dufossé, Drewer, Gab-
rielle, & Drouet, 2014). This study concluded that cumula-
tive sums for the year following reversion of Miscanthus had
increased by up to 200%. Unfortunately, although, peak flux
rates, seasonal trends and timings of emissions were not
reported. Another study (Pacaldo et al., 2014) investigated
the removal of willow and compared to harvesting/regrowth
cycles, but results were limited to carbon flux and biomass
pools and did not consider N2O.

Nitrous oxide emissions from soils are primarily driven
by changes in nutrient and oxygen status (Zechmeister‐

Boltenstern, Schaufler, & Kitzler, 2007), typically by soil
biota either nitrifying available ammonium (NH4

+) to
nitrate (NO3

−) or supplementing a lack of available oxygen
by utilising oxygen atoms from soil NO3

− in denitrification
(Butterbach‐Bahl, Baggs, Dannenmann, Kiese, & Zech-
meister‐Boltenstern, 2013). While this limitation in soil
oxygen is generally understood to be the result of waterlog-
ging, it can also be caused by oxygen utilization and deple-
tion through high concentrations of respired CO2. Soil
organic matter decomposition, with interactions between
soil carbon, water‐filled pore space (WFPS) and nutrients
show strong correlations with N2O production (Weier,
Doran, Power, & Walters, 1993), therefore, changes in
land‐use that impact water (changes in soil bulk density,
vegetative cover or crop utilization of soil water) or nutri-
ent/labile carbon status may have direct impacts on soil
N2O fluxes. Conversion into, and reversion from, perennial
bioenergy crops is likely to result in perturbation of all
these parameters through additions of nitrogen and carbon
in crop and root residues and changes in water (and there-
fore oxygen) status through cultivation and crop operations
(Zechmeister‐Boltenstern et al., 2007). It might be expected
that there would be “hotspot” periods of peak fluxes at
times of increased soil disturbance, crop residue additions,
fertilisation events, etc. and, in perennial systems, these
might be expected to be greatest during land‐use changes
between crops and systems.

In this study, we report the findings of an 82‐week
reversion experiment from two perennial energy crops,
Miscanthus × giganteus and Salix viminalis, back into
grassland of Lolium perenne (the previous land‐use) where
N2O fluxes were sampled weekly along with biomass
assessments, biomass carbon/nitrogen ratios and nutrient
dynamics. We hypothesized that reversion from these
bioenergy crops into more conventional agriculture would
result in increased N2O fluxes during the transition period
and aimed to capture the magnitude and timing of this and
investigate potential drivers. This study is unique in follow-
ing N2O fluxes at high frequency over an entire transition
period for two adjacent energy crop reversions to conven-
tional agriculture alongside retained control plots.

2 | MATERIALS AND METHODS

2.1 | Site description

The experimental site was located near Aberystwyth,
Wales, UK (52°24′49″N 4°2′35″W). The dominant soil
type is an imperfectly drained Dystric Cambisol (FAO,
World Harmonized Soil Database), with a silty clay loam
soil texture and a pH range of 5.6–5.9 across the experi-
mental area. The site was originally established into pre‐ex-
isting long‐term agricultural grassland as a replicated block
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trial of bioenergy crop yield traits in 2009 (Purdy et al.,
2015), no fertiliser was applied to either crop during the
lifetime of the project. For this study, two commercial
bioenergy crop genotypes, Miscanthus × giganteus (here-
after Miscanthus) and Salix viminalis (genotype Tora, here-
after willow), were selected for reversion to Lolium
perenne (perennial ryegrass). Making use of the previous
experimental design of four replicates per genotype, two
replicate plots of each crop were reverted and two were
retained. Plots were selected for reversion by random num-
ber allocation. The Miscanthus trial plots measured
8.5 m × 7.2 m (61.2 m2) and had been planted at a density
of 2 plants/m2. The willow plots were the same width
(8.5 m) but were 26.4 m long and planted at a density of
1.6 plants/m2, for the purposes of this reversion experi-
ment, an equivalent area to the Miscanthus plots was uti-
lised.

2.2 | Miscanthus reversion (Miscanthus—
forage kale—ryegrass)

Based on commercial practice for Miscanthus removal, the
plants in the reversion plots were allowed to regrow for
2 months following harvest until glyphosate herbicide
application on 23 June 2015 (5 L/ha, Roundup Biactive,
Monsanto UK, Cambridge, UK). After allowing 5 weeks
for effective herbicide uptake, the aboveground biomass
was cut and removed (27 July 2015) and the soil cultivated
by rotovator and roller to produce a seedbed. As might be
typical in commercial practice, a catch crop of forage kale
(Brassica oleracae, Caledonia) was planted (7 August
2015) to utilise the residual nutrients of the decomposing
rhizomes and to provide an overwinter cover. The forage
kale was harvested in early February 2016 and the rever-
sion plots left fallow until 3 June 2016 when they were
rotovated, rolled and seeded with perennial ryegrass. The
ryegrass was subsequently fertilised with ammonium nitrate
fertiliser (34.5% N, Nitram, CF Fertilisers, Cheshire, UK)
on the 14 July 2016 at the equivalent of 250 kg/ha.

2.3 | Willow reversion (Willow—fallow—
ryegrass)

Willow reversion plots were cut back to ground level on
the 20 May 2015 and allowed to regrow for 1 month to
provide sufficient leaf growth to facilitate uptake of herbi-
cide. Plots were then sprayed with glyphosate at the same
time and rate as the Miscanthus. Unlike the Miscanthus,
the willow reversion plots were then left fallow until 24
May 2016 allowing the stumps to begin to decay. A stump
grinder was then used to break up the willow stools with
all material retained within the plots. From this point on,
the Miscanthus and willow reversion plots followed

identical cultivation, perennial ryegrass seeding and fertili-
sation treatment with operations carried out on the same
days and at the same rates. For both crops, plant kill was
absolute with no volunteer seedlings or new shoot growth
observed following herbicide applications. The retained
willow plots were not cut back as all plots had been rou-
tinely harvested in February 2014 and were following a
two‐year harvest cycle.

2.4 | Prereversion baseline biomass sampling

Belowground biomass (BGB) was sampled prior to rever-
sion (19 June 2015) from both crops to give an indication
of biomass dry weight and composition that would be
added to the soil organic pool during the reversion process.
Two randomly selected individual plant rhizomes and asso-
ciated coarse roots were removed from each reversion plot.
Soil monoliths (centred on each plant) 0.5 m2 and 30 cm
deep were removed, capturing the entire rhizome for each
plant and representing the area each plant would occupy in
a 2 plant/m2 planting density. These were washed through
a 2 mm sieve to remove mud and stones, and dried at
40°C until constant weight. Roots and rhizomes were then
separated by hand, weighed and scaled by planting density
to give total BGB per unit area. While it is reasonable to
assume that the entire rhizome for an individual plant had
been recovered, this would not be the case for the root sys-
tems. Therefore, as only coarse roots were retrieved in this
process, estimates of biomass added to the belowground
carbon and nitrogen pools should be considered a mini-
mum with the assumption that there would be more root
biomass than has been captured and reported here.

Following Miscanthus removal, the forage kale transi-
tion crop in these reversion plots added further biomass to
the belowground pool. This was assessed (10 December
2015) from within a single 4 m2 quadrat located at the cen-
tre of each of the reversion plots. All kale plants within
these quadrats were collected by hand pulling from the soil.
Roots were separated from the aboveground biomass and
dried and weighed as with the energy crops. Again, results
should be considered a minimum root mass although in the
case of this crop, the distinct taproot structure and limited
root development from 5 months’ growth of an annual
plant would suggest that a greater proportion of the root
biomass was recovered.

Similarly to the Miscanthus, two willow stools were
excavated from each willow reversion plot and washed,
dried to constant weight and the roots and stools separated.
As with the Miscanthus, given the difficulty in recovering
willow root biomass under field conditions, only stool bio-
mass could be considered reliable while root biomass
should be considered as the minimum biomass that would
have been added as soil organic matter.
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2.5 | Carbon and Nitrogen in belowground
biomass

Two subsamples of the dried belowground biomass (Mis-
canthus rhizome/roots, willow stool/roots and kale root)
were taken and ground to <2 mm using a Retsch mill
(SM100, Retsch, Haan, Germany) before being further
milled to a fine, homogeneous powder using cryogenic
milling in liquid nitrogen (6870 Cryo‐mill, SPEX, Stan-
hope, UK). Samples were analysed for total C and N con-
centrations using a LECO Truspec elemental analyser
(TruSpec CN analyser, Leco Corp., St. Joseph, MI, USA).

2.6 | Crop harvest yield assessments

Annual harvest yield assessments followed the standard
protocols which have been in operation since site establish-
ment in 2009. For both Miscanthus and willow, harvest
takes place during the dormant period in late winter/early
spring, between January and March.

Typical for Miscanthus cultivation, the first year's
growth was minimal and not considered to be commer-
cially relevant. From the second year (2010) onward, a
quadrat was marked out within each plot capturing 12
plants in total (4 × 3), leaving one row along the edges of
the plot to act as a buffer. All plants within the harvest
quadrat were cut and chipped in bulk to produce a mean
weight per plant over 12 plants. Homogenised subsamples
(300–500 g) were collected from the bulk and dried to con-
stant weight to determine moisture content. Estimates of
yield per area were calculated through multiplying by the
planting density. The rest of the plots were then cut back
with all material removed.

Harvest yield was assessed for the willow every 2 years,
beginning in 2012; this followed cutting back of the first
year's growth at the end of 2009 to encourage stool devel-
opment to maximise stem density. Two predetermined rows
of plants across each replicate plot were designated as the
yield sampling quadrat. All plants within these two rows
(totalling 26 plants) were cut, chipped and weighed in bulk
to determine a mean yield per plant with a homogenised
subsample of 300–500 g taken to assess moisture content.
Following the yield subsample assessments, the rest of the
plots were cut back with all biomass removed from the
site. As with the Miscanthus, mass per plant was multiplied
by planting density to estimate yield per area. This process
was repeated as a 2‐year harvest in 2014 and again in
2016.

2.7 | N2O flux measurements

Fluxes of N2O were measured weekly for 82 weeks from
2 June 2015 to 31 January 2017 using the static chamber

method. Two permanent collars were inserted into the soil
in each plot of each treatment at ~2–3 cm depth to min-
imise fine root and mycorrhizal disturbance (Heinemeyer
et al., 2011; Mills, Glanville, McGovern, Emmett, &
Jones, 2011). These collars remained in place throughout
the study period, only being removed briefly during culti-
vation operations. The internal volume of each collar was
calculated from the mean of three internal height measure-
ments after insertion (from the soil surface inside to the
lip of the collar) and added to the known volume of the
chamber lids (0.0251 m3) for gas concentration calcula-
tions. At each sampling, chamber lids were placed onto
the collars and sealed with spring clamps before sampling.
Headspace gas samples (10 ml, 0.033% of total chamber
headspace volume) were taken through a butyl rubber sep-
tum using the static chamber method (Baker et al., 2003;
Parkin & Venterea, 2010) at 0, 15, 30 and 45 min (pos-
tenclosure) and injected into 3 ml gas‐tight borosilicate
glass vials (Labco, Lampeter, UK). Analysis of these sam-
ples was carried out by gas chromatography (PerkinElmer
Autosystem XL Gas Chromatograph, PerkinElmer, Wal-
tham, MA, USA). Each chamber covered an area of
0.13 m2; with two chambers in each 61.2 m2 plot, and this
represented chamber coverage of 0.42% of the total plot
area. Temperature loggers (Hobo pendant logger, ONSET,
Bourne, USA) were placed inside the chambers throughout
each sampling period to record internal air temperatures at
one‐min intervals; the mean of this during chamber closure
was combined with the concentration gradients over time
to produce an estimate of gas flux using the Flux package
(Jurasinski, Koebsch, Guenther, & Beetz, 2014) in R (vers.
3.2.0, R Core Team 2015). For this work, as in Dufossé et
al. (2014) and others, the CO2 flux, which typically exhi-
bits a reliable flux gradient, was used as a quality control
indicator for the main focus, the N2O flux. In total, nine
of 1313 individual chamber fluxes were rejected due to
having CO2 flux gradients with an R2 < 0.9. Static cham-
ber sampling ran from the 2 June 2015 to the 31 January
2017. In total, there were 82 rounds of sampling with two
chambers sampled per plot across the two treatments and
controls.

2.8 | Ancillary measurements

At each GHG sampling event, soil temperature was mea-
sured at the centre of each plot using a calibrated 10‐cm‐
long stab probe (Testo 104, Testo Ltd. Hampshire, UK). At
the same location, three soil volumetric moisture measure-
ments were made (ML3 soil moisture probe, Delta‐T
Devices, Cambridge, UK) with the mean value per plot
being used for analyses. Additional meteorological data
(precipitation, air temperature, solar radiation) were avail-
able from a nearby (2 km distance) automatic weather

MCCALMONT ET AL. | 917



station (Campbell Scientific, Utah, USA; McCalmont,
McNamara, Donnison, Farrar, and Clifton‐Brown (2015)).

Soil samples (0–15 cm) were also taken following culti-
vation and reversion to determine bulk density. One sample
was taken per plot using a 4.7 cm wide noncompressive,
split‐tube soil auger (Eijkelkamp, Giesbeek, the Nether-
lands). Soil cores were oven‐dried to constant weight, and
sieved to <2 mm, mass of these known volumes was used
to calculate soil bulk density (g/cm3). The volumetric mois-
ture measurements and soil bulk densities were combined
to calculate soil water‐filled pore space (WFPS) for each
gas flux sampling following Elliott, Heil, Kelly, and Mon-
ger (1999). Soil bulk density was also used to convert mass
units (e.g., g N (kg soil)−1) to area estimates (i.e., kg N
ha−1).

2.9 | Soil nitrogen and labile carbon
availability

In addition to the bulk density sampling, 0–15 cm soil
cores were taken using the auger from a 2 m radius around
the static chamber collars at monthly intervals from 21
June 2015 to 4 January 2017. Soils were analysed for inor-
ganic nitrogen (Nmin) and dissolved organic carbon (DOC)
with two soil cores per plot (one per chamber). Analysis
was carried out on 5 g subsamples of fresh soil using a
1 M potassium chloride (KCl) extraction for NH4

+ and
NO3

− and with pure water for extraction of DOC. The
KCl extractions were analysed through colorimetric seg-
mented flow analysis (SFA) (AA3, Seal Analytical,
Southampton, UK). DOC analysis was carried out using
catalytically‐aided combustion/nondispersive infrared detec-
tion (NDIR) (Shimadzu TOC‐LCNP with TNM‐L, Kyoto,
Japan).

2.10 | Data analysis

2.10.1 | Differences in N2O flux between
land‐use treatments

Comparisons of N2O flux were compared between land‐use
treatments and between crops using linear mixed effects
models (Laird & Ware, 1982) within the nlme package in
R (Pinheiro, Bates, DebRoy, & Sarkar, 2015). To provide
this comparative data set for testing between treatments,
cumulative fluxes over the sample period were calculated
for each chamber by simple summing of values. Shapiro–
Wilk tests were used to assess normality of the summed
data set and, where necessary, log transformations were
applied. A constant of 1 was added to all summed values
to prevent log transformation from converting values lower
than 1 to a negative value. To investigate the persistence of
any impacts found on N2O flux into the subsequent grass

crop following the individual reversion treatments, two
time periods were considered, pre‐ and postgrass sowing.

The linear mixed effects model considered impacts on
summed fluxes with crop (Miscanthus and willow) and treat-
ment (reverted or retained) as fixed factors, and plot included
as a random factor to account for nonindependence due to
repeated measures. Model residuals were graphically
checked for normality using Q–Q plots and histograms.
Likelihood Ratio Tests were performed to determine the sig-
nificance of individual parameters in the model. Marginal R2

values were calculated for models using the r.squaredGLMM
function in the R package MuMin (Barton, 2017).

2.10.2 | Belowground biomass and C/N
additions to belowground soil pools

Statistical comparisons of belowground biomass and C and
N percentage for roots and rhizome/stools were carried out
using ANOVA with Tukey HSD for multiple comparisons
of means. Specific C and N percentages for biomass com-
ponents (rhizome/stool and roots) were combined with bio-
mass assessments to estimate potential additions to soil
pools following reversion and cultivation.

2.10.3 | Regression modelling for potential
drivers

To investigate the magnitude and significance of the poten-
tial drivers of N2O production, multiple regression was per-
formed for each land‐use. A positive constant was first
applied to the flux data which were then transformed using
the Box‐Cox power transformation (Moulin et al., 2014)
from the CAR package in R (Fox & Weisberg, 2011) and
tested for normality graphically and using the Shapiro–
Wilk test. Corresponding mean values for soil moisture and
air and soil temperature were calculated for the same time
points and added to the dataset. Nutrient data were only
measured at monthly intervals so, following similar calcula-
tion of means by land‐use treatment, these data were lin-
early interpolated at a daily time step with values then
matched to the corresponding dates for the weekly flux
measurements. Stepwise, best fit parameter substitution,
both forward and backward, was used to derive models
with the lowest AIC (Akaike's Information Criteria) score
from the resulting parameters as follows:

Ta, Air temperature
Ts, Soil temperature
WFPS, Water‐filled pore space
NO3, Nitrate at 0–15 cm soil depth
NH4, Ammonium at 0–15 cm soil depth
NH4/NO3, Ammonium/nitrate ratio
DOC, Soluble organic carbon
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Both individual correlations and all pairwise interactions
were tested for each of the experimental treatments. Parame-
ters found to be adding significant information to the model
were then tested to determine their relative contributions (%)
to the total variance explained by it, following methods set
out in Lindeman, Merenda, and Gold (1980) and Kruskal
(1987) and implemented using the R package relaimpo
(Grömping, 2006). The calculated percentage contributions
to the total explanation of variance in each model for each
significant parameter were bootstrapped by recalculating 100
times to produce 95% confidence intervals. (±figures
throughout represent the Standard Error of the Mean)

2.10.4 | GHG balance implications of N2O
reversion fluxes

To provide some context for the global warming potential
(GWP) of these reversion “hotspot” fluxes, we consider the
total sum of N2O (in terms of CO2 equivalent) emitted to
the atmosphere during the pregrass reversion period and
relate it to the GWP costs of producing the biomass over
the lifetime of the crop. Mean hourly fluxes (mg N2O m−2

hr−1) recorded within the pregrass period were multiplied by
24 to produce a daily total, unit converted to Mg/ha and
then linearly interpolated at a daily time step between the 47
weekly values and summed to a total flux. Results were then
multiplied by 298 (IPCC 2007) to give GWP as CO2‐eq.

These results were then considered in the context of life
cycle assessments (LCA) of the overall carbon intensity of
producing these harvest yields over time in CO2 equivalent
emissions per MJ of energy in dry matter (CO2 eq. MJ−1).
Energy contents were assumed for Miscanthus biomass at
17.95 GJ Mg−1 DM (Felten, Froba, Fries, & Emmerling,
2013) and for willow at 19.8 GJ Mg−1 DM (Heller, Keo-
leian, Mann, & Volk, 2004). The GHG cost of producing

this energy for Miscanthus is assumed at 4.40 g CO2 eq.
MJ−1 (Hastings et al., 2017), this value incorporates the
entire supply chain, from rhizome propagation, harvest
costs, biomass chipping and pelletization and transport
(100 km) to the furnace. For willow, a figure of 9.16 g
CO2 eq. MJ−1 was calculated by the same authors follow-
ing the same methodology (Hastings, unpublished data,
pers. comm.), the higher willow figure reflecting a much
higher moisture content at harvest with associated increased
transport and drying costs. These figures were then con-
trasted to the carbon intensity of a relevant fossil fuel sub-
stitute, in this case coal, with a carbon intensity of
120.89 g CO2 eq. MJ−1 (Hastings et al., 2009). The carbon
intensity value includes exploration, recovery, processing
and transportation of the coal (100 km) to the furnace.

3 | RESULTS

3.1 | Nitrous oxide fluxes

Comparison of the sums of all N2O fluxes measured prior
to the cultivation and sowing with ryegrass (pregrass)
demonstrated that N2O emissions had increased signifi-
cantly following reversion of both willow and Miscanthus
(LRT = 6.56, p = 0.01). Interactions between crop and
treatment were not found to be significant (LRT = 0.6,
p = 0.44) showing that both soils responded to reversion in
the same way. Crop type was significant with lower aver-
age fluxes in the willow plots than in the Miscanthus
(LRT = 18.9, p = <0.0001) for both retained and reverted
treatments. Marginal R2 value for the full model was 0.73
with treatment accounting for more of the variance
(R2

m = 0.60) than crop (R2
m = 0.13). Figure 1 shows box-

plots for both pre‐ and postgrass sampling comparing both
crop and treatment. There was a significant difference

N
2O

 (m
g/

m
2 )

Miscanthus
(retained)

Miscanthus
 (reverted)

Willow 
(retained)

Willow 
(reverted)

0

2

4

6

8

10

Pregrass sowing

Miscanthus
(retained)

Willow 
(retained)

Willow 
(reverted)

Postgrass sowing

FIGURE 1 Boxplots of the sum of
N2O fluxes (measured at individual static
chambers) compared between retained
controls and reversion treatments. Two
periods are compared; pregrass sowing
(left) which covers the period from the day
after spraying out of the existing crop to
cultivation for the new grass crop and
postgrass sowing (right), from the period
following cultivation and grass sowing to
the end of the study. Solid bars represent
the median values, whiskers represent the
minimum and maximum values from each
chamber with no values exceeding the 1st
or 3rd quartile ±1.5 times the interquartile
range
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between pre‐ and postgrass flux sums (LRT = 22.6,
p < 0.0001) but this was not consistent between crops. For
the reverted Miscanthus, fluxes were lower postgrass (mean
0.08 ± 0.01 mg N2O m−2 hr−1) compared to pregrass
(0.13 ± 0.02 mg N2O m−2 hr−1), for reverted willow the
opposite was true (postgrass 0.08 ± 0.01 mg N2O m−2

hr−1, pregrass 0.03 ± 0.01 mg N2O m−2 hr−1). In both
crop types reverted plots continued to show higher fluxes
overall then retained controls (LRT = 16.1, p = <0.0001)
but, unlike in the pregrass period, postgrass there was no
significant difference in flux magnitude between the two
reverted crop types (LRT = 2.6, p = 0.12).

Examining the time series data (Figure 2) further
demonstrates that both the magnitude and variability in
N2O fluxes was generally lower in willow compared to
Miscanthus, with the exception of a small number of time
points. There was one particularly high flux in the retained
willow, with a large standard error as this came from just
one plot replicate; however, these high fluxes were consis-
tent between subsample chambers within this plot so
appeared to be a genuine flux rather than any measurement

error (Figure 2). The mean flux rate across the entire study
period for retained willow was extremely low at
0.015 mg ± 0.01 mg N2O m−2 hr−1. For the reverted Mis-
canthus the mean study period flux was 0.1 mg ± 0.02 mg
N2O m−2 hr−1 peaking at 0.9 ± 0.4 mg N2O m−2 hr−1 on
15 July 2015. Table 1 provides a summary of mean and
peak fluxes separately from pre‐ and postgrass sowing with
ranges showing minimum and maximum flux values.

3.2 | Flux sums and GWP

The interpolated estimates for total emissions suggested the
Miscanthus reversion plots had emitted more than twice as
much N2O as the willow reversion plots: 3.41 ± 0.03 Mg
CO2‐eq. ha−1 compared to 0.81 ± 0.01 Mg CO2‐eq. ha−1

during the study period. Total harvest offtake for the Mis-
canthus and willow over the entire cropping period (from the
first harvest in 2010 to the last prior to reversion in 2015)
was 82.41 ± 5.19 Mg DM ha−1 and 53.01 ± 1.59 Mg DM
ha−1 respectively with estimated total energy produced over
the cropping cycle being 1,479.26 ± 93.16 GJ ha−1 and
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FIGURE 2 Time series N2O fluxes by land‐use, upper plots show retained controls while lower plots show reversion treatments. Values
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1,049.6 ± 31.48 GJ ha−1 for Miscanthus and willow respec-
tively. Without including the reversion fluxes, the GWP cost
of producing this energy would have been 6.50 ± 0.4 Mg
CO2 eq. ha−1 for Miscanthus and 9.61 ± 0.3 Mg CO2 eq.
ha−1 for willow. Adding on the reversion N2O costs
increased the Miscanthus cost over the 6 year study period
to 9.91 ± 0.4 Mg CO2 eq. ha

−1 while for the willow this
increased to 10.42 ± 0.3 Mg CO2 eq. ha

−1. For Miscanthus
particularly the reversion cost represented a significant
increase, raising the carbon cost by 52%, for willow this was
an increase of just 8.4%. The carbon cost of producing an
equivalent amount of energy to each crop through coal
would have been 178.82 ± 11.3 Mg CO2 eq. ha

−1 for the
Miscanthus and 126.88 ± 3.8 Mg CO2 eq. ha

−1 for the wil-
low. For Miscanthus this would be 18 times greater, for the
willow this would be 12 times.

3.3 | Regression modelling of the N2O flux
measurements

Significant drivers retained following stepwise substitution
differed markedly between the different land‐use treat-
ments. These derived models, showing the retained parame-
ters for each individual land‐use treatment, are presented
below (see methods for full set of starting parameters used
for all treatments).

Retained Miscanthus…

N2O∼Ta þWFPS þ NH4 þ Ta �WFPS

þWFPS � NH4 þ Ta � NH4

Reverted Miscanthus…

N2O∼Ts þ NH4 þ NH4=NO3 þ NO3

þNH4=NO3 � NO3 þ NH4 � NO3

Retained willow…

N2O∼NH4 þ Ts þ NO3 þ DOC þWFPSþ NH4 � NO3

þ Ts �WFPSþ Ts � NO3 þ NH4 � DOC
Reverted willow…

N2O∼Ts þWFPSþ DOCþ NH4 þ NO3 þ NH4 � NO3

Asterisks in model structures depict interactions.

The power of the derived regression models (adjusted
R2 to accommodate varying parameter numbers) to explain
the variance in the individual N2O flux datasets differed
notably between retained and reverted plots with models
for the lower fluxes in the retained controls having less
power. For retained Miscanthus total variance accounted
for was 38.3%, for retained willow this was 46.0%. For the
larger fluxes in the reversion treatments this increased to
44.9% for Miscanthus reversion and 63.2% for the willow
reversion.

Figure 3 shows a graphical representation of the relative
importance of these model parameters within each model.
The relative importance of individual drivers, as well as the
direction of their influence, varied between land‐use treat-
ments. Temperature, whether soil (Ts) or air (Ta), and
water‐filled pore space (WFPS) stood out as the primary
drivers in the retained control plots. For retained Miscant-
hus two parameters (Ta and WFPS) provided 67.16% of the
model's explanatory power with both parameters being pos-
itive drivers. For the retained willow it was Ts and its inter-
action with WFPS and NH4

+ that appeared to be
important, with these three parameters giving 64.75% of
the model power and Ts appearing to be a negative driver
in this model, that is N2O fluxes decreasing as soil temper-
ature increased. The reverted plots in both treatments were
quite different to their retained controls, particularly in the
case of the Miscanthus reversion where drivers were domi-
nated by nutrient status with NH4

+, NO3
− and the interac-

tion between them providing 69.61% of the model's power:
increasing NH4

+ and decreasing NO3
− contributed to

higher N2O fluxes. Soil temperature was also a significant
positive driver in this model, adding a further 13.13% to
the model power. For the reverted willow plots Ts and
labile carbon (DOC) became the most important drivers,
providing 69.4% of the model's power between them, with
both being positive drivers, though NH4

+ was also impor-
tant in this model, adding a further 12.11%.

3.4 | Soil fertility

Soil total inorganic N (Nmin) concentrations fluctuated over
time with similar temporal trends in both retained and
reverted treatments in both crops (Figure 4). However,

TABLE 1 Mean N2O fluxes sampled from both pre‐ and postgrass sowing with minimum and maximum values for each land‐use treatment

Crop
Retained Reverted

Mean Range Mean Range

Pre‐grass Miscanthus 0.07 ± 0.01 −0.03 to 0.94 0.13 ± 0.02 −0.04 to 1.69

Willow 0.02 ± 0.01 −0.06 to 1.69 0.03 ± 0.01 −0.04 to 0.84

Post‐grass Miscanthus 0.03 ± 0.003 −0.02 to 0.19 0.08 ± 0.02 −0.03 to 1.64

Willow 0.01 ± 0.001 −0.04 to 0.09 0.08 ± 0.01 −0.02 to 0.78

Note. Values given in mg N2O m−2 hr−1 (±SE).
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some differences were apparent between treatments, with a
rise in Nmin found in the Miscanthus reversion plots seen
in the September sampling, following cultivation and seed-
ing with kale in August, all other plots showed a decrease
at the same sampling. Total Nmin in these plots reached a
peak of 56.5 ± 10.5 μg N (g dry soil)−1 (63.6 ± 11.82 kg
N ha−1). This was primarily driven by increased levels of
NO3

− rather than NH4
+ (Figure 4), this was reflected statis-

tically with no significant differences between crops or
treatments for total Nmin or NH4

+, however there were sig-
nificant differences between retained and reverted treat-
ments for NO3

− at this sampling with reverted plots being
on average 0.9 μg NO3

− (g dry soil) −1 higher (p = 0.02,
t = 3.64, df = 4). A similar trend in the rise of Nmin was
seen again in the reverted Miscanthus at the end of July
2016. Again driven by NO3

−, though at this time point the
differences were not shown to be significant, though close
to the threshold (p = 0.058, t = 2.63, df = 4).

DOC concentration in all treatments followed similar
trends and magnitude with the exception of a small number
of time points where concentrations were seen to be higher

in the reverted Miscanthus. Figure 4 shows DOC peaking
in this treatment at 455.5 ± 17.7 μg C (g soil)−1 at the
beginning of July 2016 when the reverted Miscanthus was
found to be significantly higher (p = 0.02, t = 3.71, df =
4) compared to the mean across the other treatments at the
same time of 260.9 ± 76.8 μg C (g soil) −1. Another spike
in DOC was noted in these plots at the end of November
2016, however, differences between crops and treatments
were not found to be significant.

3.5 | Existing belowground biomass (BGB) in
reversion plots prior to cultivation

Mean total BGB (roots and rhizomes combined) across both
Miscanthus reversion plots was 2,101.4 ± 684.8 g ODM
m−2, for rhizomes specifically this was 1,484.3 ± 286.5 g
ODM m−2. For the subsequent crop, forage kale, there was
a mean BGB of 71.8 ± 39.6 g ODM m−2.

For willow the mean BGB (roots and stools combined)
across both plots was 1,504.2 ± 72.4 g ODM m−2, for
stools specifically this was 1,001.7 ± 60.4 g ODM m−2.

Variance explained by model = 38.3%
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Pooling BGB for each crop, stools/rhizomes and recov-
ered roots, there were no significant differences in biomass
found between the Miscanthus and willow (p = 0.61;
F = 0.29; df = 1).

3.6 | Carbon and Nitrogen in belowground
biomass

3.6.1 | Carbon

There were significant differences found between the per-
centage carbon contents of the belowground biomass com-
ponents (roots, rhizomes/stools) for each crop (p = <0.001,
F = 21.43, df = 2) though not in all components. Tukey's
HSD showed Miscanthus C percent in roots (41.7 ± 0.8%)
to be not significantly different to kale (38.2 ± 1.5%
(p = 0.06)) or willow (43.6 ± 0.2% (p = 0.5)) although
willow roots were significantly higher in carbon than kale
roots (p = 0.002). Willow stools (44.7 ± 0.3%) and Mis-
canthus rhizomes (45.7 ± 0.2%) were not significantly

different to each other (p = 0.93) with willow roots and
stools also containing statistically similar percentages of
carbon (p = 0.93). In contrast, Miscanthus rhizomes had
significantly higher carbon content than Miscanthus roots
(p = 0.03).

3.6.2 | Nitrogen

Similar to the carbon contents, the percentages of nitrogen
found in belowground biomass components were also sig-
nificantly different between crops and specific components
(p = 4.72 × 10−7, F = 44.804, df = 2). N percentage in
Miscanthus roots (1.02 ± 0.07%) was not significantly dif-
ferent to kale roots (1.3 ± 0.1%), (p = 0.07) or willow
roots (0.7 ± 0.1%), p = 0.07) though the willow roots were
found to be significantly lower in nitrogen than the kale
roots (p = 0.0002). Willow stools (0.4 ± 0.02%) were also
significantly lower in percentage N than Miscanthus rhi-
zomes (1.0 ± 0.1%), (p = 0.0002). For Miscanthus, roots
and rhizomes were not significantly different to each other;
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in contrast, willow stools had significantly less percentage
N than willow roots (p = 0.046).

3.6.3 | C/N ratios

C/N ratios for Miscanthus rhizome and willow stools were
47.1 and 128.1 respectively while for willow, Miscanthus
and kale roots they were 64.5, 41.5 and 29.4.

Pooling all components and considering the C/N ratios
of the total BGB added to the soil in each crop during the
reversion process, there was a significant difference found
between crops (p < 0.001, F = 13.6, df = 2). The below-
ground biomass in the willow reversion had a significantly
higher C/N ratio than both the Miscanthus (p < 0.01) and
the kale (p < 0.001). However, there was no difference
found in the overall C/N ratios between the Miscanthus
and the kale (p = 0.59).

3.7 | C and N additions to soils in reversion
plots

Averaged across plots, these percentages suggested that the
first cultivation in the Miscanthus reversion process had
added a total of at least 935.5 ± 139.5 g C/m2 (roots and
rhizome combined) and 21.1 ± 3.1 g N/m2 to the soil. The
following kale step in the Miscanthus reversion pathway
added a further 36.1 ± 23.2 g C/m2 and 1.2 ± 0.8 g N/m2.
For the single addition of roots/stools in the willow rever-
sion, this added less C than the Miscanthus reversion at
666.7 ± 25.7 g C/m2 and less N at 7.03 ± 0.3 g N/m2.

3.8 | Annual crop harvest yields, retained
Miscanthus and willow control plots

Over the entire cropping period, 2010 to 2016, the Mis-
canthus yielded, on average, 1,373.5 ± 193 g ODM m−2

yr−1 (discounting the first year's growth in 2009). For the
period directly relating to the present study, the 2015 and
2016 growing seasons, the retained control plots yielded a
mean biomass of 1,376.8 ± 49.7 g ODM/m2 and
995.6 ± 32.7 g ODM/m2, respectively. As willow was har-
vested only every 2 years results are divided by two to
give an annual estimate. This gave a mean annual yield for
the willow of 884.5 ± 33.6 g ODM/m2 between 2010 and
2015 (again discounting the first year's growth). For 2015
specifically this was 990.3 ± 47.7 g ODM/m2.

3.9 | Climatic data

Figure 5 shows the variability in monthly rainfall and air
temperature over the study period; winter 2015–2016
(November to February) was wetter and warmer (424 mm
total rainfall, 8.03°C av. air temp.) than winter 2016‐2017

(231.9 mm and 6.9°C). The two growing seasons (June to
October) also differed with 2015 being drier and cooler
(301.9 mm and 14.7°C) than 2016 (352 mm and 16.03°C)
though the difference in rainfall was driven primarily by a
much wetter June in 2016 compared to 2015 (121.5 mm
compared to 43.9 mm). For comparison, regional 30 year
averages (1981‐2010) show a mean winter temperature at
7.2°C, and rainfall of 451.7 mm, while for the growing
season, mean temperatures were 17.02°C with rainfall at
464.5 mm (Met office 2018).

4 | DISCUSSION

4.1 | N2O flux

The results showed that N2O fluxes were significantly
increased by agronomic operations carried out during the
reversion pathways in each of the crops. Not only did soil
perturbation increase flux magnitude but, for the reverted
Miscanthus plots particularly, it increased the variability
between replicates markedly as well.

N2O fluxes in the retained willow plots were remark-
ably low, with far less activity than in the retained Mis-
canthus. Published N2O flux data for mature willow are
not common but studies (Drewer et al., 2012, 2017; Gauder
et al., 2012) give very low mean fluxes of −0.0003 mg to
0.0003 mg N2O m−2 hr−1 with peaks from 0.01 mg to
0.05 mg N2O m−2 hr−1. Figures for the retained willow in
this study were somewhat higher than these means but still
extremely low compared to the other treatment plots with a
mean flux rate across the entire study period of 0.015 mg
N2O m−2 hr−1. One study, (Kavdir, Hellebrand, & Kern,
2008) did report higher peak fluxes in unfertilised willow
at 0.21 mg N2O m−2 hr−1 though their mean flux rate
remained low at 0.01 mg N2O m−2 hr−1, directly compara-
ble to our present study despite being carried out on
lighter, sandy, soils.

There was little difference between retained and
reverted willow plots in the pregrass period, showing that
merely killing off and cutting back the original crop had
little effect on soil N2O fluxes, it was not until these
reverted plots were subsequently cultivated and sown with
the ryegrass crop and fertilised that N2O flux activity
increased significantly. From this point on there was no
significant difference between the fluxes from either crop
reversion plots, with flux magnitudes at the lower end of
literature ranges for grassland (see below). This suggests
that the N2O impacts of reversion were largely contained
within the reversion period itself with fluxes from the culti-
vation activities for the following crop dominating any flux
legacy from the previous energy crops.

For the Miscanthus plots, the reversion pathway under-
taken appeared to have a much higher impact on N2O flux
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with both magnitude and variability increased significantly.
Fluxes decreased notably into the postgrass period but
remained higher than the retained controls. This suggested
that the reversion process for the Miscanthus increased
N2O flux more than the subsequent cultivation to ryegrass
and its fertilisation, where fluxes decreased and became not
significantly different to the reverted willow plots. Litera-
ture studies for Miscanthus tend to concentrate on land‐use
transitions and fertiliser manipulations though there are fig-
ures from experimental controls available for mature unfer-
tilised Miscanthus crops (Behnke et al., 2012; Drewer
et al., 2012; Gauder et al., 2012; Jørgensen et al., 1997;
Roth et al., 2013, 2015), mean fluxes range from ‐
0.002 mg to 0.157 mg N2O m−2 hr−1 with peak fluxes
from 0.006 mg to 0.7 mg N2O m−2 hr−1. Results from the
retained Miscanthus controls in our study are well within
this with a mean of 0.054 mg N2O m−2 hr−1 and a peak of
0.56 mg N2O m−2 hr−1.

4.2 | Drivers of N2O emission

The significance and relative importance of some of the
known drivers of N2O flux in soils were investigated statis-
tically using multiple regression between fluxes and mea-
sured parameters (Clayton, McTaggart, Parker, Swan, &

Smith, 1997; Moulin et al., 2014; Roth et al., 2013; Shep-
herd, Barzetti, & Hastie, 1991). It is particularly interesting
to note that while soil nitrogen and labile carbon levels
were not often significantly different between the treat-
ments, the modelled responses to them varied notably
between the both the treatments and crops. Results high-
lighted differences in the drivers between the land‐uses
suggesting that flux dynamics could not always be
explained by simple single metrics such as soil temperature
and water‐filled pore space (WFPS). For the retained Mis-
canthus, the primary positive drivers were air temperature
and WFPS, reflecting the general consensus as to the
importance of these factors; that is warmer wetter condi-
tions produced more N2O. In contrast though, for the
reverted Miscanthus plots, the nitrogen status and in partic-
ular the NH4

+ to NO3
− ratio, appeared to be stronger deter-

minants. The modelling suggested that as NH4
+ increased

and NO3
− decreased the N2O flux increased, perhaps sug-

gesting denitrification of NO3
− due to oxygen utilised in

the immobilisation of the available NH4
+ by soil bacteria.

For the low fluxes of the retained willow all drivers
seemed to be playing a role which might suggest some
over‐fitment of the model in this treatment, though again,
soil moisture and NH4

+ status were the main drivers. In
this case, perhaps counterintuitively, soil temperature was a
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negative driver, that is as soils warmed N2O production
decreased. This may be difficult to explain with the data
available but it should be noted that fluxes in this treatment
were generally extremely low. For the higher fluxes in the
reverted willow soil, explanation of variance was the high-
est of the four land‐use treatment models; soil temperature
and labile carbon stood out as the main drivers closely fol-
lowed by NH4

+ and WFPS, all positive influences. This
might suggest the main process being captured here was
the decomposition of organic carbon from the high C/N
ratio willow stools taking up oxygen from the soil leading
to oxygen limitation and denitrification of soil NO3

−. This
suggestion might be supported by the negative influence of
NO3

− in this model, that is as NO3
− decreased N2O flux

increased, though it must be noted the NO3
− concentrations

in this model were only playing a weak part in the
explanatory power.

4.3 | GHG cost of biomass production and
reversion

Plots for both reverted crops exhibited significantly higher
mean and peak flux rates in our study than their retained
controls, demonstrating that there is a GHG penalty to be
paid when these crops are returned to grassland. These
GHG costs were significantly higher for the Miscanthus
reversion pathway than for the willow in the pregrass per-
iod. The regression modelling suggested that this was lar-
gely driven by the increased soil disturbance and higher
nitrogen contents of the biomass incorporated into the soils
during this period in the spraying/cultivation/forage kale
pathway when compared to the spraying/fallow treatment
in the willow plots. However, it should be noted that while
there are N2O costs associated with these reversion pro-
cesses that need to be accounted for in crop cycle GHG
balance estimations, they do need to be considered against
the typical emissions of alternative cropping systems. Ara-
ble systems have been demonstrated to reach peak N2O
emission rates between 0.02 to 1.75 mg N2O m−2 hr−1

(Drewer et al., 2012, 2017; Gauder et al., 2012; Jørgensen
et al., 1997; Parkin & Kaspar, 2006), potentially double the
highest Miscanthus reversion fluxes. Routine grassland
N2O emission peaks can be orders of magnitude greater
than the highest short‐term energy crop reversion fluxes
reported here, with peak figures for grassland in the litera-
ture, dependant on management, ranging from 0.18 to
12.43 mg N2O m−2 hr−1 (Clayton, Arah, & Smith, 1994;
Flechard et al., 2007; Jones et al., 2011; Rafique, Hen-
nessy, & Kiely, 2011; Yamulki & Jarvis, 2002). Our post-
grass peak figures at 0.78 mg N2O m−2 hr−1 (willow) and
1.64 mg N2O m−2 hr−1 (Miscanthus) are at the lower end
of this range and could be regarded as typical grassland
fluxes.

In terms of the GWP (CO2 eq.) cost of the reversion
fluxes, there is little doubt that reversion added a signifi-
cant cost to the overall energy production, particularly in
the Miscanthus. This study, though, only considered the
energy production over a 6 year crop lifetime, it would be
more typical to expect a 15 or even 20 year lifespan for
these perennial crops, the single year reversion cost would
then be a much smaller proportion of the overall energy
production. Furthermore, the LCA study (Hastings et al.,
2017) which produced the CO2 eq. cost of biomass produc-
tion did not consider the potential for soil carbon changes
under these crops as this is extremely site and soil specific.
It might be expected that potential soil carbon gains or
losses could significantly change the CO2 eq. costs of pro-
duction (either positively or negatively), again impacting
the overall percentage that reversion fluxes play in the total
cost of production.

5 | CONCLUSION

This study represents the first investigation of N2O fluxes
following the end of energy crop cycles. In order to
achieve a side‐by‐side comparison of willow and Miscant-
hus reversion we utilised a pre‐existing experiment estab-
lished in 2009. Despite being restricted to two replicates
plots in each treatment the increase in the observed N2O
flux following reversion was unequivocal for our experi-
ment. Our results, in the context of a simple LCA, suggest
that real GHG savings can still be achieved relative to fos-
sil fuel usage. Given the current paucity of data relevant to
our study we propose that further work is required to
understand reversion impacts for a variety of feedstocks,
soil types and climates, ideally incorporating high fre-
quency sampling for nutrient dynamics and soil microbial
activity. New work should also include data arising from
real‐world commercial reversion and with consideration to
changes in soil organic carbon which can be a major deter-
minant of the longer‐term GHG balance. Herein lies a sig-
nificant challenge in identifying locations with detailed
land‐use history and with adjacent reliable counterfactual
paring. A final consideration we raise, from a policy per-
spective, is whether it will be appropriate to allocate both
conversion and reversion GHG emissions to the cultivation
of the bioenergy crop.
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