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Abstract: The boreal-winter stratospheric polar vortex is more disturbed when the quasi-

biennial oscillation (QBO) in the lower stratosphere is in its easterly phase (eQBO), and more stable 

during the westerly phase (wQBO). This so-called “Holton-Tan effect” (HTE) is known to involve 

Rossby waves (RWs) but the details remain obscure. 

This tropical-extratropical connection is re-examined in an attempt to explain its intra-seasonal 

variation and its relation to Rossby wave breaking (RWB). Reanalyses in isentropic coordinates 

from the National Center for Environmental Prediction Climate Forecast System for the 1979 – 

2017 period are used to evaluate the relevant features of RWB in the context of waveguide, wave 

mean-flow interaction, and the QBO-induced meridional circulation. During eQBO, the net 

extratropical wave forcing is enhanced in early winter with ~25% increase in upward propagating 

PRWs of zonal wavenumber 1 (wave-1). RWB is also enhanced in the lower stratosphere, 

characterized by convergent anomalies in the subtropics and at high-latitudes and strengthened 

waveguide in between at 20-40°N, 350-650 K. In late winter, RWB leads to finite amplitude 

growth, which hinders upward propagating PRWs of zonal wavenumber 2 and 3 (wave-2-3). 

During wQBO, RWB in association with wave-2-3 is enhanced in the upper stratosphere. Wave 

absorption/mixing in the surf zone reinforces a stable polar vortex in early to middle winter. A 

poleward confinement of extratropical waveguide in the upper stratosphere forces RWB to extend 

downward around January. A strengthening of upward propagating wave-2-3 follows and the polar-

vortex response switches from reinforcement to disturbance around February, thus a sign reversal of 

the HTE in late winter. 

Keywords: Quasi-biennial oscillation; stratospheric polar vortex; Rossby wave breaking; 

Holton-Tan effect.  
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1. Introduction 
The polar vortex is the westerly circumpolar jet in the winter stratosphere, which owes its 

existence to the equator-to-pole temperature gradient (Andrews et al., 1987).  The vortex varies in 

strength in response to upward propagation of planetary-scale Rossby waves (PRWs) emanating 

from the troposphere (Scherhag, 1952; Matsuno, 1971). Disturbances due to PRWs can result in 

extreme vortex events, i.e. stratospheric sudden warmings (SSWs), which are known to affect 

surface climate up to a few months (Baldwin and Dunkerton, 1999; Kidston et al., 2015). It is 

important to capture stratosphere variability and the associated downward influences because it has 

been shown that incorporating stratospheric processes into forecast models can lead to improved 

weather prediction, especially on sub-seasonal to seasonal time-scales (e.g. Marshall and Scaife, 

2009). The mechanism(s) are however not fully understood because the propagation of PRWs and 

their subsequent breaking and absorption by the background mean flow are influenced by other 

factors (McIntyre, 1982; Kidston et al., 2015). 

The factors that are known to influence PRWs include the El Niño/Southern Oscillation (e.g. 

Domeisen et al., 2019), major volcanic eruptions (e.g. Kodera, 1994; Robock, 2000), Eurasian snow 

cover extent or Artic sea-ice (Cohen and Entekhabi, 1999; Nakamura et al., 2016; Labe et al., 

2019), solar ultraviolet irradiance (e.g. Gray et al., 2010; Lu et al., 2017) and the quasi-biennial 

oscillation (QBO) (Baldwin et al., 2001; Gray et al., 2018). The QBO is a tropical phenomenon 

characterized by alternating descending easterly and westerly winds with a period ranging from 24 

to 32 months (Baldwin et al., 2001; Schenzinger et al., 2017). Holton and Tan (1980) found that the 

boreal-winter stratospheric polar vortex was more disturbed when the QBO in the lower 

stratosphere was in its easterly phase but remains stable when the QBO was in its westerly phase. 
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This so-called “Holton-Tan effect” (HTE) has been linked to the occurrence and/or timing of SSWs, 

with SSWs occurring more frequently during the easterly QBO winters than westerly QBO winters 

(Labitzke, 1982; Dunkerton and Baldwin, 1991; Gray et al., 2004). The strength of the HTE also 

varies on multi-decadal time-scales and is further affected by the 11-year solar cycle (Gray et al., 

2004; Lu et al., 2008; 2014). Considerable progress has been made in reproducing the QBO itself in 

more comprehensive climate models recently via improved parametrization of small-scale waves 

with increased vertical resolution (Geller et al., 2016, Butchart et al., 2018). But replicating the 

HTE with the observed strength remains a challenge (Garfinkel et al., 2018; Zhang et al., 2019). 

The classic mechanism involves changes in the winter stratospheric waveguide in response to a 

latitudinal shift of the zero-wind line (Holton and Tan, 1980). When the QBO is in its easterly 

phase, the zero-wind line is shifted into the subtropical winter hemisphere. PRWs are thus confined 

more towards the extratropical winter stratosphere and the vortex weakens in response to this 

enhanced wave forcing. Conversely, when the QBO is in its westerly phase, the zero-wind line is in 

the summer hemisphere. A wider than normal waveguide in the winter hemisphere results in a less 

disturbed polar vortex. Studies aimed at verifying this mechanism have so far been inconclusive 

(see Anstey and Shepherd, 2014 for a review). For instance, the refractive index for stationary 

PRWs has been found to increase in the subtropics and at high latitudes but reduces in the mid-

latitudes where the polar-vortex westerlies maximize when the QBO is in its easterly phase (Lu et 

al., 2014; Zhang et al., 2019).  QBO modulation of wave mean-flow interaction differs distinctively 

from the lower and upper stratospheres (Yamashita et al., 2011; Garfinkel et al., 2012). 

Furthermore, the upward Eliassen-Palm (EP) fluxes Fz in the mid-latitude lower stratosphere was 

found to differ comparatively little between the two QBO phases during mid-winter season (e.g. 
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Baldwin and Dunkerton, 1991; Calvo et al., 2007). Instead, the QBO anomaly in Fz in the lower 

stratosphere has been found to reverse in sign between early and late winter (e.g. Hitchman and 

Huesmann, 2009 (HH09); Naoe and Shibata, 2010; White et al., 2016). Fz of zonal wavenumber 1 

was enhanced in early winter when the QBO was in its easterly phase, but an enhancement of zonal 

wavenumber 2 was detected in late winter in assocaition with the westerly QBO (Hu and Tung, 

2002; Ruzmaikin et al., 2005). These responses cannot be fully explained by the classic mechanism. 

It has been suggested that changes in the zero-wind line location may also alter extratropical wave 

forcing via poleward wave reflection (Tung, 1979; Holton and Tan, 1982). Watson and Gray (2014) 

studied this effect using a climate model and found anomalous poleward wave propagation from the 

height region where the QBO zero-wind line is located in the winter hemisphere. However, such a 

response could only be observed during the first few days of the model integration.  

Zonal winds in the equatorial upper stratosphere in determining polar vortex variability have 

also been reported (Gray et al., 2003; Pascoe et al., 2006). When easterly wind anomalies were 

imposed in the equatorial upper stratosphere, the disruption to the polar vortex tends to occur earlier 

than average (Gray et al., 2003). Pascoe et al. (2006) later found that the main impact of the 

equatorial upper stratospheric wind anomaly was on the timing of SSWs; SSWs were delayed when 

the zonal winds in the equatorial upper stratosphere were strong westerlies while SSWs occurs 

earlier when easterly anomalies are found in the equatorial or subtropical upper stratosphere. The 

importance of QBO-induced changes in EP-flux convergence in the middle to upper stratosphere 

have also been reported by other studies (e.g. Calvo et al., 2007; Garfinkel et al., 2012; Lu et al., 

2014).  
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Studies have also suggested that the QBO-induced mean meridional circulation (QBO-MMC) 

plays an important role in the HTE (Ruzmaikin et al., 2005; Gray et al., 2004; Garfinkel et al., 

2012). Garfinkel et al. (2012) performed model simulations by imposing the QBO at the equator. 

They found that synoptic-scale Rossby waves (SRWs) are enhanced in the subtropical lower 

stratosphere during easterly-QBO winters. Breaking of SRWs in the vicinity of the subtropical 

westerly jet (SWJ) results in a poleward expansion of the region with positive meridional gradients 

of potential vorticity (PV) (Garfinkel and Hartmann, 2011b). More PRWs are able to enter the 

extratropical stratosphere as a result. The increase of SRWs in the subtropical lower stratosphere 

during easterly QBO winters was attributed to the QBO-MMC (Garfinkel and Hartmann, 2011b; 

Garfinkel et al., 2012). However, using a reanalysis data set, White et al. (2016) found that the 

increase in SRWs in the subtropical lower stratosphere was only statistically significant in late 

winter when the HTE is weak. Furthermore, Gray et al. (2003) and Naito and Yoden (2006) 

imposed easterly wind anomalies to encompass the entire tropics between the lower stratosphere 

and the lower mesosphere, effectively remove the QBO-MMC. A “HTE-like” response was also 

detected. 

PRWs propagate upward into the winter stratosphere due to strong vertical wind shear in the 

lower stratosphere. Those waves are then refracted equatorward where they encounter the zero-

wind line that separates the westerly winds in the winter hemisphere from the tropical easterlies. 

Changes in wave absorption or reflection near the zero-wind line would alter the net wave forcing 

on the polar vortex (Tung, 1979; Killworth and McIntyre, 1985). In the context of the HTE, we 

would expect QBO-altered zero-wind line to affect meridional wave transport via Rossby wave 

breaking (RWB), which is a common phenomenon in the winter stratosphere. During a RWB event, 
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filaments of air are stripped from the polar vortex edge and mixed into the surrounding region 

(McIntyre and Palmer, 1983; 1984; Leovy et al., 1985). Wave disturbances can also span from the 

tropical zero-wind line to the polar vortex, providing a direct means of coupling between low and 

high latitudes (O’Sullivan and Salby, 1990). 

An individual RWB event is rarely responsible for an immediate break down of the polar vortex, 

either minor or major SSWs (McIntyre, 1982). Recurrent RWB events reshape the geometry of the 

stratospheric waveguide and lead to the formation of the surf zone. When the upward propagating 

waves are of relatively small amplitude, RWB acts to sharpen PV gradients along the vortex edge 

while irreversible mixing takes place on the equatorward flank of the polar vortex. In the early stage 

of the development, the region with sharpened PV gradients makes the vortex resistant to further 

wave disturbances, thus maintaining a stable vortex (Polvani and Saravanan, 2000; Scott and 

Dritschel, 2005). A sudden, rapid intrusion of low-PV-air into the polar region can take place if the 

surf zone expands continuously poleward as RWB builds up cumulatively (Albers and Birner, 

2014). RWB initialized at upper levels may also gradually extend downward into lower levels to 

destroy the polar vortex completely (Waugh and Dritschel, 1999; Polvani and Saravanan, 2000). As 

such, RWB is thought to ‘pre-condition’ the polar vortex, making it more susceptible to SSWs at a 

later stage (Limpasuvan et al., 2004; Albers and Birner, 2014). These characteristics make RWB 

differing from the linear theory that accounts for direct wave absorption at the polar vortex edge 

(Matsuno, 1971). 

A large number of studies have been carried out to characterize RWB and its climatology (e.g. 

Hitchman and Huesmann, 2007; Abatzoglou and Magnusdottir, 2007). For instance, it is found that 

stratospheric RWB can be broadly classified into upper-level events where PRWs propagate along 
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the polar vortex edge and break in the upper stratosphere and lower-level events where RWB is 

confined to the lower stratosphere (Abatzoglou and Magnusdottir, 2007). The upper-level RWB 

occurs more often in early winter while the lower-level RWB dominates in middle winter. Only a 

limited number of studies have been devoted to examine the role of RWB in the HTE and its 

seasonal variation. HH09 calculated the statistics of RWB based on ERA-40 reanalysis data from 

ECMWF (European Centre for Medium-range Weather Forecasts) over the 1979–2002 period. 

They found that during December to February, meridional PV gradients in the subtropical lower 

stratosphere were enhanced during easterly QBO winters while the frequency of RWB was reduced 

in the same region but opposite anomalies in the upper levels. These results were later confirmed by 

White et al. (2015; 2016) who have found that the QBO-related waveguide and RWB anomalies 

extended from the subtropics into high latitudes. However, the analyses of White et al. (2015; 2016) 

were confined to the height region between 350 K and 850 K (~100-10 hPa). RWB in the upper 

stratosphere and its role in the HTE were left unexamined.  

The aim of this paper is to provide a more complete picture of the HTE with an improved 

description of RWB that encompasses the entire stratosphere. A set of diagnostics are performed to 

examine QBO-related changes in RWB with a special attention paid to its cumulative effect on the 

polar vortex. The relative importance of RWB is evaluated in the context of extratropical 

waveguide, wave forcing on the polar vortex, and the QBO-MMC. Contributions from PRWs and 

SRWs are separately assessed, which allows us to better compare the effect of RWB to wave 

absorption near the polar vortex edge. A new mechanism is then proposed to explain the observed 

intra-seasonal variation of the HTE, especially its late winter weakening and/or sign reversal. 
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2.  Data and Methods 

2.1. Diagnostics 
Ertel’s PV in isentropic coordinates provides useful information on the structure and evolution 

of winter stratospheric dynamics (Hoskins et al., 1985). It is given by  

/P ξ σ=            (1) 

where σ  is the isentropic density, 
( cos )

cos cos
u vf
a a

φ λφ
ξ

φ φ
= − + is the vertical component of absolute 

isentropic vorticity, f the Coriolis parameter.  a the Earth’s radius, ,u v  the zonal and meridional 

velocities, φ latitude, and λ  the longitude. PRWs preferentially propagate towards the region where 

the zonally averaged meridional PV gradient Pφ  is large. Pφ  is thus used here as a diagnostic for the 

stratospheric waveguide. 

RWB is diagnosed by overturning contours of PV on isentropic surfaces, which is related to 

momentum deposition of PRWs via RWB (McIntyre and Palmer, 1983; 1984; HH09). Following 

HH09, RWB frequency is estimated by counting the number of days in which the meridional 

gradient of Ertel’s PV ( Pφ ) becomes negative at each grid point during a pre-selected month or 

season. The zonal-mean is then taken of this grid-point metric. This zonal-mean metric is denoted 

as γ  hereinafter and has the units of days per month or season. γ  allows us to examine the extent 

to which the QBO modulates RWB in terms of relative frequency, location and timing in a 

statistically averaged sense. γ  does not provide a detailed accounting of the individual events 

including the size, strength, or duration. This is justified for our purpose as our aim is to compare 

the relative importance of RWB events between the two QBO phases.  
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Analyses of Pφ  and γ are supplemented by additional diagnostics including the Eliassen-Palm 

(EP) fluxes and divergence, and down-gradient eddy PV fluxes. Following Andrews et al. (1987), 

the meridional and vertical components of the EP flux in isentropic coordinates are estimated by 

( )

( ) 1

cos ( ) ' '

' ' cos ( )' '

F a v u

F g p a Q u

φ

θ
λ

φ σ

φ σ−

= −

= Ψ −




       (2)  

where θ  is potential temperature, g the gravitational acceleration constant, p pressure, Ψ the 

Montgomery stream-function, and Q the diabatic heating rate. Overbars denotes zonal averaging on 

an isentropic surface, subscripts denote derivatives with respect to the given variable, and primes 

denote departures from the zonal-mean. 

The EP-flux divergence ( )
( )

1 2 ( ) 1( cos ) ( cos ) cos ( cos )F Fa a F a
θ

φφ φ φ φ
φ θ

− − −∂ ∂
∇ ⋅ = +

∂ ∂


    is 

commonly used to diagnose wave forcing on the mean flow. An alternative form of wave forcing in 

isentropic coordinates is expressed as the density-weighted eddy PV flux on isentropic surfaces 

(Tung 1986; Andrew et al., 1987): 

 
*ˆv̂ PσΠ =           (3) 

where the overbar with an asterisk denotes the quantity is a density weighted zonal mean, i.e. 

* /v vσ σ=  and a caret denotes the departure from the density-weighted zonal average, i.e.

*v̂ v v= − .  Similar to the EP flux divergence, Π represents the wave forcing per unit of mass on 

the mean flow and has the units of m s-1 day-1. Negative values of Π indicate wave convergence as 

disturbances of PRWs act to slow down the background westerlies. In this study, ( )F φ ,  ( )F θ  and Π  
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are used together to assess PRW propgation and wave driving. The meridional component of the 

EP-flux divergence ( )2 ( )( cos ) cosa F φ
φ φ φ

φ
− ∂

Π =
∂

  is used as an additional measure of RWB, e.g. 

large negative values in the stratospheric surf zone together with large positive values at high 

latitudes indicate enhanced RWB. These quantities are further separated into contributions from 

planetary waves of zonal wavenumber 1, 2-3 and synoptic-scale Rossby waves (SRWs) where zonal 

wavenumbers 5-10 are included. Contribution from wave-4 is found to be negligible thus excluded 

from the analysis. 

Meridional transfer of wave activity between the polar vortex edge and the subtropics during 

RWB events induces changes in enstrophy, i.e. 2' 2P  (McIntyre and Palmer, 1983). Away from the 

zero-wind line where the linear wave thoery may break down, the meridional exchange of 

enstrophy is largely determined by down-gradient eddy PV fluxes (Schoeberl and Smith, 1986; 

White et al., 2015): 

*ˆˆP v P aφΓ =           (4) 

which is effectively the product of  the wave forcing Π  and meridional PV gradient Pφ  .  Given that 

Pφ   is generally positive and 
*ˆv̂ P  is largely negative in the winter stratosphere, Γmust be 

predominantly negative. Climatologically, we expect down-gradient transfer of PV fluxes to be 

most strong near the polar vortex edge because RWB acts to “strip off” high-PV airs from the polar 

vortex edge and “flux out” them sideways (McIntyre and Palmer, 1983; Schoeberl and Smith, 

1986). Thus, large negative values of Γ  should peak along the flanks of the polar vortex. Γ  is used 

here to examine QBO-related changes in meridional wave transfer. For instance, in a region where 

This article is protected by copyright. All rights reserved.



 
 

Γ  becomes more negative, it indicates wave growth due to enhanced influxes of enstrophy (see 

section 2c of White et al., 2015). 

2.2. Global data sets and statistical analysis 
The reanalysis data sets used are from the National Centers for Environmental Prediction 

(NCEP) and include the Climate Forecast System Reanalysis (CFSR) for the period of 1979-2010 

and its extension - the Climate Forecast System version 2 (CFSv2) - covering the period 2011-2017 

(Saha et al., 2012). Jointly, they cover the 1979-2017 period (39 years in total). Both data sets were 

generated by NCEP’s Climate Forecast System (CFS), which assimilates standard ground-based, 

radiosonde, and satellite observations into an atmosphere-ocean general circulation model with fully 

coupled atmosphere, land, ocean and sea ice components. Observed carbon dioxide, aerosols, other 

trace gases and solar variations are also included. Currently, CFSR and CFSv2 are the only 

reanalysis products directly providing isentropic level data at altitudes above 850 K (~10 hPa or 32 

km).  

The 6-hourly isentropic level data output at 2.5o horizontal resolution on sixteen potential 

temperature levels from 270 K to 1500 K (equivalent to 900-2 hPa or 1-45 km) were obtained from 

http://rda.ucar.edu/datasets. Unlike previous studies that generated data on isentropic surfaces by 

interpolating 6-hrly pressure-level data provided by ECMWF (e.g. HH09; White et al., 2015; 2016), 

the isentropic level data used here were generated by NCEP as an integral part of the CFSR/CFSv2 

reanalyses. The data used here involve no additional interpolation. All the diagnostics described in 

Section 2.1 are first calculated using daily averages of the 6-hourly fields before taking monthly and 

seasonal averages. The derivatives are calculated using centred differences except for the top and 

bottom isentropic levels where one-sided differences are used. 
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Previous studies suggest that the QBO defined by the tropical zonal winds near 40-50 hPa 

appears to optimize the stratospheric vortex response during NH winter (e.g. Holton and Tan, 1980; 

Lu et al., 2008; HH09; Gray et al., 2018). The monthly-averaged tropical zonal winds at 40 hPa and 

50 hPa are obtained from radiosonde observations issued by the Freie Universität Berlin (Naujokat, 

1986; FUB, 2016). Here, the easterly phase is defined for each individual month when the winds at 

both 40 hPa and 50 hPa are negative while the westerly phase is defined for each individual month 

when the equatorial winds at both pressure heights are positive. Additionally, the two years 

following the two major volcanic eruptions are excluded (i.e., El Chichόn, March 1982 and Mount 

Pinatubo, June 1991). This results in eleven easterly QBO NH winters (i.e. 1979/80, 1981/82, 

1984/85, 1989/90, 1996/97, 1998/99, 2003/04, 2005/06, 2007/08, 2012/13, 2014/15) and eighteen 

westerly QBO NH winters (i.e. 1980/81, 1985/86, 1987/88, 1988/89, 1990/91, 1993/94, 1995/96, 

1997/98, 1999/00, 2002/03, 2004/05, 2006/07, 2008/09, 2010/11, 2011/2012, 2013/14, 2015/16, 

2016/17). Note that there are more winters classified as wQBO than eQBO.  This is because 

descending wQBO tends to stall and linger longer in the lower stratosphere while eQBO descends 

more quickly there. The dates listed may vary slightly from early to late winter as the QBO changes 

phase. Hereinafter the easterly and westerly QBO phase groups are denoted by eQBO and wQBO, 

respectively.  

Note also that five wQBO winters coincide with ENSO events (i.e. 1997/98, 2002/03, 2004/05, 

2006/07 and 2015/16) while only one eQBO winter was affected by a major ENSO event (i.e. 

2014/15). We have carried out sensitivity tests by excluding those ENSO-affected winters and the 

results remain qualitatively the same (not shown). 
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The QBO signals are estimated based on the composite-mean differences between eQBO and 

wQBO subgroups (i.e. eQBO − wQBO). The statistical significance of eQBO – wQBO composite-

mean differences is assessed using a Monte Carlo trial based non-parametric test. The procedure 

involves replacement of eQBO and wQBO composite members by randomly sub-sampling the 

original time series with replacement before averaging. This procedure is repeated 10,000 times and 

a distribution of the composite-mean differences is constructed. The original composite-mean 

difference estimated from the actual eQBO and wQBO subgroups is then compared with this 

distribution. When the actual positive (negative) difference is located within the upper (lower) 5% 

of the distribution, the difference is regarded as statistically significant and referred to as the QBO 

signal. Very similar results are obtainable based on Student’s t-test (not shown).  

3.  Results 

3.1. Mean-state and RWB responses 

The climatological zonal-mean zonal winds u  under eQBO and wQBO during November to 

January (Nov-Jan) and February to March (Feb-Mar) are shown in Fig. 1a-d. As expected, u  in the 

NH is characterised by two westerly jets, i.e. the stratospheric polar vortex and the subtropical jet in 

the troposphere. The winter westerlies and summer easterlies are separated by the zero-wind line 

near the equator, where distinct differences between eQBO and wQBO are visible.  

[[Insert Fig. 1 here]] 

The QBO signal (i.e. eQBO – wQBO) in NH u  during Nov-Jan is marked by easterly 

differences at high latitudes (up to −10 m s-1) and westerly differences in the subtropics (~5 m s-1) 

(Fig. 1e). Larger differences (~ ±35 m s-1) can be found at the equator though the 

maximum/minimum color values in Fig. 1e, f have been capped to ±15 m s-1 in order to highlight 

This article is protected by copyright. All rights reserved.



 
 

the extratropical responses. In late winter the sign of the response reverses, with westerly 

differences in the upper stratosphere at mid-high latitudes (~13 m s-1) (Fig. 1f). Fig. 1 also indicate 

that the SWJ in the NH is weakened and/or shifted poleward under eQBO in late winter. These 

results are in good agreement with previous studies (Crooks and Gray, 2005; Garfinkel and 

Hartmann, 2011a; Lu et al., 2014; White et al., 2016; Zhang et al., 2019). 

The corresponding QBO response of the zonal-mean temperature T  is shown in Fig. 2. The 

QBO signal in extratropical T  is marked by warm differences in the polar lower to middle 

stratosphere during Nov-Jan, and cold differences in the middle to upper stratosphere during Feb-

Mar. At low latitudes, the QBO signal is marked by a vertical tripole structure in the tropics and a 

dipole pattern in the subtropics, which are associated with the QBO-MMC (Plumb and Bell, 1982). 

Similar to the QBO signals in u  (Fig. 1e, f), these low-latitude QBO signals in T  also persist 

throughout the winter. 

[[Insert Fig. 2 here]] 

Figs. 1e and 2a confirms that the HTE holds most robustly in early winter (e.g. Gray et al., 2004; 

2018; Lu et al., 2008; 2014; White et al., 2016). The late winter response however differs in 

significance and magnitude in comparison with previous studies. For instance, a weaker HTE in the 

lowermost stratosphere rather than a full sign reversal was obtained if pre-1979 data were included 

(see Figures 1e, f of Lu et al., 2014). Lu et al. (2014) found that a late-winter weakening or reversal 

of the HTE during 1977-1998 was associated with a distinctly stronger and/or wider polar vortex 

around Nov-Jan.  
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Fig. 3 shows the eQBO and wQBO composites of the zonal-mean PV gradient Pφ  and the 

corresponding QBO composite differences during Nov-Jan and Feb-Mar. As expected, the 

climatological Pφ  is mostly positive during both eQBO and wQBO winters (Fig. 3a-d). Large values 

of Pφ  are found at low latitudes where RWs tend to be absorbed and near the westerly jets where 

RWs preferably propagate towards. In the extratropical NH, the most preferable route for the 

upward propagating PRWs is the polar vortex edge (i.e. grey dotted lines in Fig. 3e. f). In the 

subtropical to mid-latitude lower stratosphere, i.e. 25-60°N, 350-550 K, RWs preferably propagate 

towards the equator; an effect that is most pronounced for SRWs (Karoly and Hoskins, 1982). 

Relatively small values of Pφ  are found in the latitude band of 20-45°N in the middle stratosphere 

where the surf zone is formed as a result of RWB (McIntyre and Palmer, 1983; Hitchman and 

Huesmann, 2007). 

[[Insert Fig. 3 here]] 

The extratropical QBO signal in Pφ   is dominated by negative differences at 55-75°N, 450-1000 

K during Nov-Jan and positive Pφ   differences at 55-75°N, 1250-1500 K during Feb-Mar. This 

reversal of the QBO signal between early and late winter is largely due to a reduction of Pφ  in the 

extratropical upper stratosphere under wQBO (Fig. 3d vs 3c). Reduction of Pφ  in these regions is 

most likely due to increased poleward RWB (Hitchman and Huesmann, 2007). 

Positive QBO differences in Pφ  are found in the subtropical lower stratosphere near the eQBO-

zero-wind line (Fig. 3e, f). These positive differences indicate enhanced PV gradients under eQBO 

and appear in both early and late winters. A similar effect can also been seen in the middle to upper 
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stratosphere at 15-30°N, ~850-1250 K during wQBO (Fig. 3c-d) but the magnitude is noticeably 

smaller than its lower-level counterparts under eQBO. In the QBO difference plots (Fig. 3e, f), 

these upper-level effects under wQBO is overpowered by those associated with eQBO. At 20-40°N, 

400-550 K, Pφ  is larger during eQBO but smaller during wQBO. This implies that PRWs are more 

likely to propagate through the region and into the middle to upper stratosphere under eQBO. 

Fig. 3 also shows that Pφ  near the equator becomes larger when the tropical winds are westerly 

but smaller when tropical winds are easterly. These QBO-related anomalies and those in the 

subtropical summer hemisphere are associated with barotropic instability of the subtropical easterly 

jet in the summer hemisphere, which occurs when the tropical winds are westerly (Hitchman et al., 

1987). The unstable RWs generated via barotropic instability is further amplified by inertial 

instability near the equator (O’Sullivan and Hitchman, 1992). Breaking of these unstable waves acts 

to sharpen PV gradients at the equator (Hitchman and Huesmann, 2007), thus the rather large values 

of Pφ  at 10°S-10°N (Fig. 3a-d). These low-latitude QBO-signals display little seasonal variation. 

We next examine RWB by showing the seasonal progression of the zonally-averaged frequency 

of the overturning PV gradient γ  during eQBO and wQBO winters and the associated QBO 

composite differences from November to March (Fig. 4). γ  is in general inversely proportional to

Pφ , thus, opposite in sign to those shown in Fig. 3. This inverse relationship is due to dynamics, i.e. 

high PV gradients promote wave propagation (and hence less RWB) while mixing induced by RWB 

acts to smooth the background PV contours. 

[[Insert Fig. 4 here]] 
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The key climatological features of γ  are marked by regions with infrequent overturning of PV 

contours near the westerly jet core (i.e. the dotted lines in the extratropics) and at the equator, 

separated by a region with relatively large values of γ  at 20-45°N (Fig. 4a-j). This region with 

noticeably more frequent reversals of PV contours (~10-15 days per month) signifies the so-called 

“surf zone”. Frequent reversals of PV contours are also found in the subtropical summer 

stratosphere, reflecting barotropic instability of the subtropical easterly jet (Hitchman et al., 1987).  

The differences in RWB between the two QBO phases in the extratropical winter hemisphere 

can be best appreciated by examining the seasonal evolution of the surf zone alongside with the 

polar vortex. During eQBO winters (Fig. 4a-e), the mid-latitude surf zone is mostly upright at 400-

1000 K. γ  at high latitudes at 60-70°N does not show strong seasonal variation from December 

through March either (Fig. 4b-e). Also, γ  typically takes values ranging between 8 to 10 days per 

months near the polar vortex edge, which is not much smaller than those found in the surf zone. Fig. 

4a-e thus suggests that RWB in the middle to upper stratosphereduring eQBO winters does not 

involve a gradual sharpening of PV gradients near the polar vortex edge. 

In contrast, under wQBO, the surf zone in the middle to upper stratosphereis vertically connected 

with the surf zone in the lower stratosphere (Fig. 4f-j). The surf zone as a whole tilts equatorward 

with height in early winter (Fig. 4f-g), becomes upright in January (Fig. 4h), then tilts towards the 

North Pole in late winter (Fig. 4i-j). In addition, γ  near the polar vortex edge gradually increases 

from under 4 days per month in November to over 12 days per month in March (Fig. 4f-j). These 

results suggest that RWB-related mixing is confined to the surf zone in the early winter but 

gradually works its way poleward in late winter. Fig. 4k-o shows that a sign reversal of the γ  
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differences between the two QBO phases occurs around February, coinciding with the reversal of 

the HTE in the upper stratosphere in late winter (see Figs. 1f and 2b). 

The QBO signal in the subtropical upper stratosphere of the NH is most strong in early winter 

(Fig. 4k-l). This is due to a northward and downward shift of the PRW absorption region during 

wQBO (Fig. 7b, e vs 7a, d). In November, the region with relatively large values of γ  is located at 

5-20°N, 1000-1500 K during eQBO (Fig. 4a) but become more poleward and downward at 20-

40°N, 850-1250 K under wQBO (Fig. 4f). The negative γ  differences centred at 25°N, 1250 K 

persist from November to February due to more frequent RWB in the surf zone under wQBO (Fig. 

4k-o). The positive differences centred at 10°N, 1500 K are paired with negative differences 

centered at 5°S, 1500 K, indicating a southward shift of the wave absorption during wQBO or 

northward shift of the wave absorption region during eQBO. These effects disappear since 

December, indicating that wave absorption at the low-latitude stratopause is affected by the QBO 

only in early winter.  

Negative QBO differences in γ  are also found in the lower stratosphere at 15-40°N, 400-550 K, 

which show little evidence of poleward migration or seasonal variation (Fig. 4k-o). The positive γ  

differences in the subtropical summer hemisphere in Fig. 4k-o are associated with the barotropic 

instability of the easterly jet due to the relocated zero-wind line by the QBO (O’Sullivan and 

Hitchman, 1992; HH09). 

To better understand the QBO modulation of RWB in the middle to upper stratosphere, Fig. 5 

shows scatterplots of PV gradient Pφ  vs γ  in the mid- to upper stratospheric surf zone, i.e. 25-

40°N, 850-1250 K for 2-month over-lapping running averages from October to January. As we 
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expect, Pφ  (i.e. the strength of the waveguide) and γ (i.e. the frequency of RWB) are anti-

correlated, which is consistent with the dissipative effect of RWB. However, γ  is noticeably larger 

under wQBO than eQBO for a given value of Pφ . Such enhancement is most strong in early winter 

(i.e. Oct – Nov, Fig. 5a-b), during which the correlation between γ  and Pφ  is statistically 

significant under wQBO (r = −0.71, p ≤ 0.05) but fails to pass the statistical test under eQBO (r = 

−0.37, p = 0.23). These results confirm enhanced RWB under wQBO in the middle to upper 

stratosphere with strong mixing in the mid-latitude surf zone in early to middle winter. Thus, the 

preferable location and the seasonal development of RWB appear to be modulated by the QBO.  

[[Insert Fig. 5 here]] 

3.2. Changes in wave mean-flow interaction 

In this section, we examine the QBO modulation of wave-driving based on the EP fluxes and the 

density-weighted eddy PV fluxes Π.  Previous studies have suggested that the HTE involves 

changes in PRWs as well as SRWs (e.g. Garfinkel et al., 2012; White et al., 2016). To examine 

their relative contributions, the analysis of Fig. 6 is repeated but separately for zonal wavenumber 1 

(wave-1), zonal wavenumbers 2-3 (wave-2-3) and for zonal wavenumbers 5-10 (SRWs). These 

wave forcing analyses are performed for Nov-Dec and Feb-Mar, in order to highlight the early and 

late winter differences.     

Fig. 6a-b shows the early and late winter climatology of the EP fluxes (arrows) and the density-

weighted eddy PV flux 
*ˆv̂ PσΠ =  (contours); the latter is equivalent to the EP flux divergence

1( cos ) Fa φ − ∇ ⋅  . The climatology of PRW propagation throughout the winter stratosphere is marked 
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by upward pointing and equatorward tilted EP flux vectors (see Fig. 3a-d). Π  is mostly negative 

(i.e. the converging EP fluxes) and centred at the polar vortex edge. The few small regions with 

positive Π  near the equator and on the poleward flank of the westerly jets indicate internal wave 

generation, most likely due to localized instability (e.g. Simmons and Hoskins, 1978). 

[[Insert Fig. 6 here]] 

The early winter QBO signal in Π  (Fig. 6c) is characterized by convergent EP flux anomalies at 

high-latitudes, i.e. negative Π  differences poleward of 50°N and in the subtropical lower 

stratosphere at 20-40°N, 400-650 K. These Π  anomalies are accompanied by enhanced upward EP 

flux vectors north of ~55°N and equatorward and poleward pointing EP flux vectors in the lower 

stratosphere. These EP flux anomalies indicate enhanced upward propagating and stronger wave 

forcing on the polar vortex, which is consistent with a weaker polar vortex in early winter during 

eQBO. Positive Π  differences that are of relatively smaller amplitude are found at 20-45°N, 700-

1250 K, where the mid- to upper stratospheric surf zone is located. The anomalous EP flux 

divergences there can be linked to RWB, which is enhanced during wQBO (Figs. 4 and 5). 

In late winter, the wave forcing response at high-latitudes reverses the sign, i.e. larger negative 

values of Π  near the polar vortex edge are found to associate with wQBO (Fig. 6d). This is 

consistent with a weaker polar vortex during wQBO and enhanced RWB in the middle to upper 

stratosphere where the wave forcing gradually expands from the surf zone into the high latitudes 

(see Figs. 1f, 2b, and 4f-j).  

In the subtropics, the QBO signal in Π  is marked by negative differences in the lower 

stratosphere and positive difference in the middle to upper stratosphere. These subtropical QBO 

signals are present in both early and late winter in association with the QBO-zero wind lines. These 
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QBO signals are accompanied by enhanced equatorward or poleward EP flux vectors in response to 

more positive or negative Pφ  northward of the corresponding QBO-zero-wind lines (Fig. 3e, f). 

QBO modulation of wave forcing is separately into three bands of zonal wavenumbers and the 

Nov-Dec averages are shown in Fig. 7 while those for Feb-Mar averages are shown in Fig. 8. It is 

evident that the QBO modulation of Π  is dominated by PRWs while SRWs play a relatively minor 

role, except near the SWJ where the EP flux vectors are noticeably large. Several regions of positive 

Π  are featured and include the effects from both PRWs and SRWs, implying that instability and/or 

nonlinear wave-wave interactions might be involved. The exact role of nonlinearity is however 

complex and cannot be properly studied using seasonal averages or the zonal mean fields. It is thus 

beyond the scope of this paper but will be a subject of future studies. 

[[Insert Figs. 7 and 8 here]] 

Figs. 7 and 8 suggests a complex interplay among wave-1, wave-2-3 and SRWs. In early winter, 

a weaker polar vortex during eQBO is largely due to enhanced wave-1 forcing in the middle to 

upper stratosphere, where these waves are guided upward along the polar vortex edge (Fig. 7a-c). 

There is ~25% increase in wave-1 EP-flux convergence during eQBO in comparison to those during 

wQBO. Divergent differences of wave-2-3 are found at 20-50°N, 850-1250 K with meridional EP 

fluxes vectors that point equatorward and poleward near the surf zone (Fig. 7f). These wave-2-3 

anomalies are nevertheless of smaller magnitude than those associated with wave-1 (1.8 m s-1 day-1 

versus 2.8 ms-1 day-1). In the lower stratosphere and during eQBO winters, extratropical PRWs are 

refracted equatorward while they pass a region with small or even close to zero PV gradient at 25-

45°N, 350-650 K (see Fig. 3). Wave-2-3 anomalies appear to be generated internally and reflected 

poleward, indicated by the poleward pointing EP flux vectors and convergent differences of wave-
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2-3 at 55-80°N, 400-650 K (Fig. 7f).  Thus, RWB in the lower stratosphere may involve wave 

activity transfer from wave-1 to wave-2-3 likely due to nonlinear evolution of a Rossby wave 

critical layer with barotropical instability (Haynes, 1989). 

SRWs are generated on the equatorward flank of the polar vortex and dissipate sideways in the 

middle to upper stratosphere at 700-1500 K during both eQBO and wQBO (Fig. 7g, h). This effect 

is significantly stronger and deeper in altitude during wQBO. Using a single-layer barotropic 

model, Scott (2019) studied meridional wave transfer between two waveguides in the winter 

stratosphere. It was found that the latitudinal separation between the high- and low-latitude 

waveguides is effectively reduced locally due to finite amplitude wave disturbances or nonlinear 

RWB. Wave activity transfer from PRWs to SRWs is noticeably enhanced when the low-latitude 

waveguide is located in the winter hemisphere. Fig. 7d-i confirms that this nonlinear effect becomes 

stronger in the middle to upper stratosphere during wQBO winters.    

In late winter, the convergent wave-1 differences become noticeably weaker and more confined 

to the high latitudes at 65-85°N, 350-1250 K (Fig. 8c). During eQBO, convergence of wave-1 

remains strong in the upper stratosphere poleward of 35°N (Fig. 8a), which is similar to those in 

early winter (Fig. 7a). During wQBO, the wave-1 forcing is centred at the polar vortex edge and 

extends downward into the lower stratosphere (Fig. 8b). The latitudinally alternating negative, 

positive and negative differences in Fig. 8c are merely due to a more poleward and downward shift 

of the wave-1 forcing during wQBO. A weakened wave-1 response to the QBO in late winter has 

also been found by Zhang et al. (2019), who throughoutly examined QBO modualtion of wave-1 

and its seasonal evolution in weakening and displacing the polar vortex. 
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The QBO signal in wave-2-3 forcing during late winter is marked by the positive Π  differences 

on both flanks of the polar vortex at 20-55°N, 850-1500 K and at 60-80°N, 350-1000 K (Fig. 8f). 

These divergent anomalies of wave-2-3 are accompanied by significantly reduced wave-2-3 from 

the troposphere at 35-70°N. We noted that the absolute values of Π  and ( )F θ associated with wave-

2-3 in the affected regions during wQBO is near twice as large as those under eQBO (Fig. 8e vs 

Fig. 8d). Thus, the late-winter changes in wave forcing is dominated by PRWs of wave-2-3. 

Fig. 9a shows scatter plot between Jan-Mar averaged vertical component of the EP fluxes ( )F θ  

of wave-2-3 at 35-70°N, 350-450 K (x-axis) and the meridional component of EP-flux divergence 

( )2 ( )( cos ) cosa F φ
φ φ φ

φ
− ∂

Π =
∂

  of wave-2-3 at 20-40°N, 850-1500 K (y-axis). These two regions 

are chosen because PRWs of wave-2-3 normally propagate upward from the troposphere into the 

stratosphere at 35-70°N while the most significant QBO signal of wave-2-3 is in the subtropical to 

middle latitude upper stratosphere at 20-40°N, 850-1500 K (see Figs. 7-8). It is evident that these 

two quantities are negatively correlated regardless of the QBO (r = -0.57, p = 0.002). However, 

( )F θ is generally more positive and φΠ  is more negative during wQBO than eQBO. When ( )F θ is 

relatively small, φΠ  is noticeably more negative during wQBO than eQBO for a given value of

( )F θ . These results suggest enhanced RWB in the middle to upper stratosphere during wQBO 

winters is accompanied by enhanced upward propgation of wave-2-3 from the lower stratosphere. 

The connection is weakened during eQBO. Weaker but qualitatively similar results can be obtained 

in early and middle winters (not shown). 

However, QBO differences in upward propagating wave-2-3 ( )F θ  is only statistically signficant 

in late winter. To understand this, Fig. 9b shows scatter plot between the vertical component of the 
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wave-2-3 EP fluxes ( )F θ  during Jan-Mar at 35-70°N, 350-450 K (y-axis) and the Dec-Feb mean 

meridional component of wave-2-3 EP-flux divergence φΠ  at 35-70°N, 350-650 K (x-axis) in the 

lower stratosphere. Regardless of the QBO, ( )F θ  is positively correlated with φΠ  (r = 0.46, p = 

0.004), suggesting upward propogation of wave-2-3 is enhanced when meridional divergence of 

wave-2-3 in the extratropical lower stratosphere is large and vice versa. This correlation however 

becomes much weaker if Jan-Mar averaged is used for φΠ (not shown). A one-month lag required 

between ( )F θ and φΠ  implies that the relevant process is cumulative. Fig. 9 also suggests that this 

lagged relationship between ( )F θ and φΠ  is noticeably enhanced durng wQBO (r = 0.68, p = 0.001) 

but statistically insignificant during eQBO. We suggest that finite amplitude transient wave-2-3 in 

association with RWB in the lower stratosphere hinders baroclinic growth of wave-2-3 from below. 

This effect is stronger during eQBO due to enhanced RWB in the lower stratosphere. During 

wQBO, the polar vortex response to the wave-2-3 fluxes from below involves successive RWB 

events that extends from the upper-level to the lower stratosphere. Downward expansion of RWB is 

strong around January, thus enhanced wave-2-3 response in the lower stratosphere in late winter. 

 [[Insert Fig. 9 here]] 

3.3. Down-gradient eddy PV fluxes 

RWB-related eddy PV fluxes are typically directed down the background PV gradients in the 

winter stratosphere (see Sec. 2.1). From Figs. 7-9, we expect this effect to be more pronounced in 

the middle to upper stratospheric surf zone in early winter and then progresses into lower 

stratosphere in middle winter under wQBO. In this section, we focus on the Nov-Jan period to 

demonstrate such an effect. 
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Fig. 10a shows the climatology of down-gradient eddy PV flux Γ averaged over Nov-Jan when 

all wavenumbers are included. As expected, Γ is mostly negative in the extratropical winter 

stratosphere, except for a few small regions on the poleward flank of the tropospheric subtropical jet 

and in the polar stratosphere where instability, nonlinear wave-wave interaction and/or upscaling 

play a role (e.g. Birner et al., 2013).  

[[Insert Fig. 10 here]] 

The corresponding QBO differences in Γ are shown in Fig. 10b, c, where the responses are 

separated into November and Dec-Jan averages so that a poleward and downward movement of Γ

anomalies can be examined. In November, the extratropical response is characterized by negative Γ 

differences on the poleward flank of the polar vortex and positive differences on its equatorward 

flank (Fig. 10b). The negative Γ differences poleward of 55°N indicate enhanced down-gradient 

eddy PV fluxes during eQBO, corresponding to the enhanced wave-1 forcing in the same region 

(Fig. 7c). The positive Γ differences 35-55°N, 850-1500 K are associated with increased RWB 

during wQBO, corresponding to meridional EP flux convergence of wave-2-3 forcing in the same 

region (Figs. 7f and 8f).  In Dec-Jan, the positive Γ differences intensify and extend poleward and 

downward into the lower stratosphere while the negative differences of Γ at high latitudes disappear 

(Fig. 10c). These Γ differences confirm the importance of wave-1 disturbances during early winter 

and a more persistent, poleward and downward expansion of wave-2-3 contribution during wQBO.  

3.4. Unique features of the QBO responses  

Polar vortex variability can be associated with anomalous RWB without the influence of the 

QBO. Previous studies have showed feedbacks within the stratosphere are strong and can 
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overwhelm the initial perturbation provided by the QBO (Watson and Gray, 2014). It is helpful to 

examine the extent to which the QBO-related differences are distinct from those during weak versus 

strong vortex states. In the reanalyses, a composite of weak vortices is necessarily affected by 

eQBO in early winter while a composite of strong vortex winters would be biased towards wQBO. 

The HTE is relatively weak in February, permitting an assessment to be made between the QBO 

signals and those associated with extreme vortex states. 

The same set of analyses shown in sections 3.1-3.3 are thus repeated by compositing weak- and 

strong-vortex states using zonal-mean zonal winds near the polar vortex edge in February. A weak 

(strong) polar vortex in February is defined when the averaged winds at 45-75°N, 450-1500 K is 

smaller (or greater) than their mean value over the 1979-2017 period minus (or plus) half of its 

standard deviation. No significant zonal wind differences are detected in the tropics between these 

two vortex states; the extratropical differences between these two vortex states are thus effectively 

independent of the QBO (not shown).  

It can be shown that weak vortex is generally associated with an enhanced poleward pointing 

waveguide in the subtropics. A strong-vortex state is associated with a distinct waveguide along the 

polar vortex edge with a well-defined surf zone in the mid-latitudes. Thus, the QBO-related 

waveguide and RWB differences measured by Pφ  and γ  in the extratropical stratosphere are 

effectively associated with the two extreme vortex states. In terms of wave forcing, the weak- (or 

strong-) vortex state is associated with enhanced (or reduced) PRWs from the troposphere. Distinct 

and persistent QBO-related changes are largely confined to the subtropics while the extratropical 

responses to the QBO are similar to the weak-vs-strong vortex states. These results suggest that the 
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HTE and its relevant mechanism(s) may not be properly examined using Pφ , γ  and/or the divergent 

field of the total EP fluxes. 

The QBO-related responses become distinct when wave mean-flow interaction is examined 

according to wavenumbers and their seasonal development. In the context of the HTE, the QBO-

related features include: 1) the enhanced upward wave-1 anomalies and absorption of those waves 

in the extratropical stratosphere during eQBO; 2) the “fountain-like” structure of EP flux anomalies 

in the lower stratosphere with convergent anomalies in the subtropics and at high latitudes during 

eQBO; 3) meridional convergent wave-2-3 anomalies at 20-40°N, 850-1500 K during wQBO; and 

4) a gradual build-up and enhancement of upward wave-2-3 anomalies at 35-70°N during wQBO.  

3.5. The role of the QBO-MMC  

 To understand how the QBO-MMC may be linked to the HTE, Fig. 11 shows meridional 

velocity v  over the latitude-height cross section of 30°S-40°N and 400-1500 K during November 

for eQBO and wQBO averages and corresponding QBO differences. The QBO-MMC with its NH 

divisions is indicated by the blue arrows in Fig. 11a-b, which is aligned with the positions of the 

maxima and minima QBO-related v differences below 1000 K (Fig. 11c). The northward 

circulation in the subtropical NH (i.e. 5-25°N) is enhanced at ~600 K (50 hPa) under eQBO but at 

~400 K (100 hPa) and ~850 K (10 hPa) under wQBO. 

[[Insert Fig. 11 here]] 

The largest QBO signal in v  is in fact in the middle to upper stratosphere at ~0-30°N, 850-

1250 K, in association with an enhanced northward and downward motion of the equatorial winds 

during wQBO, indicated by the purple arrow in Fig. 11b. This downward motion and the cross-
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equatorial flow are known to be sensitive to the semi-annual oscillation (SAO), a dominant feature 

of equatorial winds in the upper stratosphere and lower mesosphere (Hitchman and Leovy, 1986; 

Smith et al., 2017).The SAO is strongly coupled with wQBO in November when the SAO is in its 

westerly phase (Smith et al., 2017). This may play a role in enhanced RWB in the upper 

stratosphere during early winter under wQBO. 

PV gradients in the subtropical stratosphere become more positive where the QBO-MMC and/or 

SAO-MMC are directed poleward in the same height region (Fig. 3). Thus, the QBO-MMC and/or 

SAO-MMC may play a role in altering the subtropical waveguide whereby they contribute to the 

enhanced RWB in the affected layers. 

4. Conclusions and Discussion 

Motivated by the observed intra-seasonal dependence in the HTE, this tropical-extratropical 

connection is re-examined here by focusing on QBO modulation of RWB. Based on the NCEP-CFS 

reanalysis data sets in isentropic coordinates that covers the 1979 – 2017 period, we have studied 

QBO-related changes in zonal-mean circulation, waveguide, frequency of overturning PV contours, 

the net wave forcing of the stratosphere as well as the QBO-MMC. Our results suggest RWB is 

generally enhanced in the height region where the QBO zero-wind line is shifted into the NH and/or 

where the secondary meridional circulation associated with the QBO or the SAO are directed 

northward. The enhancement is accompanied by more positive PV gradients in the subtropics. In 

this context, the classic HT mechanism, i.e. QBO induces changes in the total volume or width of 

stratospheric waveguide whereby it regulates the net wave forcing on the polar vortex, remains 

valid. Our results further confirm that QBO modulation of extratropical wave activity is 

wavenumber-dependent. Instead of a static alteration of the total wave forcing, QBO modulation of 
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RWB results in changes in both waveguide and wave structure throughout the winter season. The 

polar-vortex response thus switches from reinforcement to disturbance around February due to a 

gradual build-up of upward propagating wave-2-3 during wQBO. These results suggest that 

examining the total EP fluxes and divergence alone cannot adequately explain the observed HTE. 

Results solely based on mid-winter averages can be potentially misleading due to cancellation 

between wave-1 and wave-2-3 responses. 

RWB is intrinsically nonlinear and sensitive to both background flow and the wave forcing from 

below (Polvani and Saravanan, 2000; Scott and Dritschel, 2005). It acts to reshape the background 

waveguide and alter the wave structure via nonlinear wave transfer (Waugh and Dritschel, 1999; 

Scott, 2019). Fig. 12 depicts a schematic diagram that highlights our key findings in the context of 

the HTE. During eQBO winters (Fig. 12a,b), an increase in upward propagating PRWs of wave-1 

and absorption of those waves in the mid- to high-latitude stratosphere plays a major role in a 

disturbed polar vortex. RWB is also enhanced in the lower stratosphere. In early winter (Fig. 12a), 

RWB acts to strengthen the background PV gradients at 20-40°N, permitting more PRWs to the 

winter stratosphere. The enhanced upward PRWs and RWB form a “fountain-like” feature of EP-

flux anomalies in the lower stratosphere with convergent anomalies in the subtropics and at high 

latitudes. Thus, SSWs are more likely to occur in early winter during eQBO.  

[[Insert Fig. 12 here]] 

In late winter, upward propagating wave-1 remains enhanced. However, as more PRWs entering 

the stratosphere, RWB in the lower stratosphere intensifies and becomes nonlinear. Nonlinear wave 

activity transfer in association with RWB leads to growth of transient waves of wave-2-3 and SRWs 

(Scott, 2019).  Breaking of SRWs acts to enhance the background PV gradient (Garfinkel et al., 
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2012; White et al., 2015). Transient wave-2-3 of finite amplitudes hinders baroclinic growth of 

quasi-stationary wave-2-3 from below, i.e. the blue vertical arrows in Fig. 12b. The net wave 

forcing on the polar vortex is thus weakened due to reduced wave-2-3 forcing. 

During wQBO winters, RWB is preferably enhanced in the middle to upper stratosphere and the 

effect is dominated by wave-2-3 (Figs. 12c, d). In early winter (Fig. 12c), RWB is confined to the 

upper-level where it acts to sharpen PV gradients on the equatorial flank of the polar vortex with 

frequent overturning of PV contours in the surf zone at 20-40°N, 850-1500 K. Down-gradient wave 

activity in the surf zone is accompanied by reduced wave disturbances at high latitudes and below 

850 K. The polar vortex thus remains stable while the westerly winds in the upper-level weaken and 

then reform periodically in response to RWB. As the winter progresses, upward propagating PRWs 

of wave-2-3 gradually gain strength due to "pre-conditioning" and successive RWB events. Around 

January, the entire polar vortex becomes ‘eroded’ by RWB as a result of a poleward confinement 

and downward extension of wave activity. Thus, SSWs are more likely to occur in late winter 

during wQBO (Fig. 12d). These wQBO-related processes appear to be generic to a strong-vortex 

state in which RWB is initially confined to the upper stratosphere (Waugh and Dritschel, 1999; 

Polvani and Saravanan, 2000). 

The correlation between the QBO and the polar vortex strength has been found to vary on 

decadal to multi-decadal time-scales (Gray et al., 2004; Lu et al., 2008; 2014). This is again 

expected due to wave-2-3 anomalies involve nonlinear wave activity transfer via RWB. The 

seasonal development of RWB is affected by the state of the polar vortex while the net wave 

forcing of the stratosphere is sensitive to the state of RWB. The observed HTE may liaise with other 

processes, such as solar forcing, snow cover and ENSO, which can bring about characteristic 
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changes in RWB and its seasonal evolution. For instance, El Nino events occurred more often when 

the QBO was in its westerly phase in recent decades, which would have contributed to a weaker-

than-expected ENSO signal in the winter stratosphere (Domeisen et al., 2019). Likewise, ultra-

violet solar irradiance alters wave mean-flow interaction in the upper stratosphere and the structure 

of PRWs from below can be altered by ENSO and snow-cover over Eurasian (Lu et al., 2017; 

Cohen and Entekhabi, 1999; Peings et al., 2017). Given the relatively short period under 

consideration (i.e. 1979-2017), uncertainties are expected in terms of the magnitudes of the 

responses and the timing of late winter reversal. 
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Fig. 1. (a, b): Zonal-mean zonal wind u  during Nov-Jan and Feb-Mar for eQBO winter averages. Solid and  

dashed contours represent positive and negative winds with a contour interval of 5 m s-1. The zero-wind line  

is marked by the thick-black line. (c, d): same as (a, b) except for wQBO winters. (e, f): corresponding QBO  

composite differences (eQBO−wQBO) with red and blue shadings representing westerly and easterly  

anomalies. The colored contours have an interval of 2.5 m s-1. The thick solid and dashed lines near the  

equator indicate the zero-wind lines for wQBO and eQBO, respectively. The average location of polar- 

vortex edge is indicated by the dotted lines in (e, f). The cross-hatchings specify statistical significance at  

95% levels.  
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Fig. 2. Climatology (grey-lined contours with 5°K interval) and corresponding QBO composite differences  

(eQBO−wQBO) of the zonal-mean temperature T  during Nov-Jan (a) and Feb-Mar (b), with 1°K interval.  
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Fig. 3. (a-d): Same as Fig. 1(a-d) except for zonal-mean meridional PV gradient Pφ  with a contour interval of  

2.5 × 10-6 K m kg-1 s-1. Following Lait (1994), Pφ  is multiplied by 9/2( / 350)θ −  to account for its  

exponential increase with height. (e,f): corresponding QBO composite difference (eQBO−wQBO) of Pφ 

(color shaded) with climatological Pφ  (grey contours) with a contour interval of 2 × 10-6 K m kg-1 s-1.  The  

eQBO and wQBO zero-wind lines (i.e. thick solid and dashed lines near the equator) and the average  

location of polar-vortex edge (grey dotted line) are shown. The cross-hatchings indicate statistical  

significance at 95% levels.   
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Fig. 4. (a-e): seasonal march (November to March) of the frequency of daily reversal of meridional PV  

gradients γ  (in days per month) for eQBO winter mean. The contour interval is 2-day. (f-j): same as (a-e)  

except for wQBO mean. Regions with large values of γ  are shaded in dark-grey to highlight the surf zone.  

(k-o): corresponding QBO composite differences (eQBO−wQBO) of γ  (color shaded) with climatology  

(grey contours) with a contour interval of 2-day. QBO zero-wind lines (solid and dashed lines) and the  

average location of polar-vortex edge (dotted lines) are added for location references.  
This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



(a)                                      ON (b)                                     ND (c)                                        DJ

Fig. 5. (a): scatter plots between the Oct-Nov averaged zonal-mean frequency of daily reversal of meridional 1 

PV gradients   and the corresponding meridional PV gradient P  at 20-45N, 850-1250 K, where  the surf 2 

zone is formed climatologically. Red stars and blue triangles indicate eQBO and wQBO winters while open 3 

grey circles indicate neutral winters.  (b, c):  same as (a) except for Nov-Dec and Dec-Jan averages. Note that 4 

P  is scaled by
9/2( / 350) 

. 5 
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Fig. 6. (a, b): Climatology of the Nov-Dec and Feb-Mar averaged EP fluxes (arrows) and the eddy PV fluxes  

Π (contours at ±0.25, 0.5, 1, 1.5 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10, 12 m s-1 day-1). The EP fluxes have been  

scaled to account for their rapid decrease of magnitudes with height and to make the magnitudes of ( )F φ  and  
( )F θ  comparable for better visualisation. All the contour lines, the thick solid and dotted lines are the same  

as Fig. 1. (c, d): corresponding QBO composite differences (eQBO−wQBO) with contour interval of 0.6 m s- 
1 day-1. Climatological u  (grey contours), QBO zero-wind lines (eQBO solid and wQBO dashed lines) and  

the average location of polar-vortex edge (grey dotted lines) are added for location references. The cross- 

hatchings indicate statistical significance at 95% levels.  
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Fig. 7.  (a-c):  Nov-Dec averaged wave-1 EP fluxes (arrows) and the eddy PV fluxes Π  (in m s-1 day-1)  

(contours) for eQBO, wQBO and their differences (eQBO−wQBO). (d-f): same as (a-c) except wave-2-3. (g- 

i): same as (a-c) except wave-5-10. Other lines, contours and hatches are same as in fig. 6.   
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Fig. 8. Same as Fig. 7 except for Feb-Mar averages.  
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Fig. 9. (a): scatter plot between Jan-Mar mean vertical component of wave-2-3 EP fluxes ( )F  at 35-70N, 1 

350-450 K and Jan-Mar mean meridional component of wave-2-3 EP-flux divergence 
  at 20-40N, 1000-2 

1500 K. (b): Dec-Feb mean meridional component of wave-2-3 EP-flux divergence 
  at 35-70N, 350-650 3 

K and Jan-Mar mean vertical component of wave-2-3 EP fluxes ( )F   at 35-70N, 350-450 K. Red stars and 4 

blue triangles indicate eQBO and wQBO winters while open grey circles indicate neutral winters.  5 
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(b)(a) (c) DJNovNDJ

Γ (K2 m4 kg-2 s-3)Γ (K2 m4 kg-2 s-3 )

Fig. 10 (a): climatology of the Nov-Jan averaged down-gradient eddy PV flux Γ , which is scaled by  

multiplied it by 18/2( / 350)θ −  with contours at ±0.5, 1, 1.5 2, 2.5, 3, 4, 5, 6, 7, 8, 10, 12 × 10-18 K2 m4 kg-2 s-3.  

(b, c): QBO composite differences (eQBO−wQBO) averaged for November and Dec-Jan with contour  

interval of ±0.5 × 10-18 K2 m4 kg-2 s-3. Climatological u  (grey contours), QBO zero-wind lines (solid and  

dashed lines) and the average location of polar-vortex edge (dotted lines) are added for location references.  
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(a) (b) (c)Nov Nov Nov

(m s-1)v (m s-1)v∆

Fig. 11. (a, b): climatology of the November averaged zonal-mean meridional velocity v  under eQBO and  

wQBO in the latitude region of 30°S-40°N with a contour interval of 0.1 m s-1. The thick solid line indicates  

0.v = The blue arrows indicate the QBO-MMC. The purple semi-circle indicate westerly SAO that is  

typically enhanced under wQBO. (c): corresponding QBO composite differences (eQBO−wQBO) (colored  

contours with inteval of 0.1 m s-1). Climatological v is plotted as grey contours. The cross-hatchings specify  

statistical significance at 95% levels.  
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Enhanced Wave-1 

eQBO

RWB

(a)

(d)

Reduced 
Wave-2-3

(b) Late Winter

wQBO

RWB

(c)Early Winter

RWB

RWB

Enhanced Wave-2-3

Enhanced  PRWs

Enhanced  Wave-1

Fig. 12. Schematics of QBO modulation of vertically propagating PRWs and RWB during eQBO (a, b) and  

wQBO (c, d) and in early (a, c) and late (b, d) winters. The upward- (or downward-) pointing red (or blue)  

wiggling arrows indicate enhanced (or reduced) upward propagation of PRWs with relevant wavenumbers  

indicated by the text below or above. The meridional diverging dotted-wiggled arrows indicate RWB. The  

grey contours are seasonal averaged zonal-mean zonal winds. See text for detailed explanations.   
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