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Abstract 16 

 Little information exists concerning the long-term interactive effect of 17 

nitrogen (N) addition with phosphorus (P) and potassium (K) on Sphagnum N status. 18 

This study was conducted as part of a long-term N manipulation on Whim bog in south 19 

Scotland to evaluate the long-term alleviation effects of phosphorus (P) and potassium 20 

(K) on N saturation of Sphagnum (S. capillifolium). On this ombrotrophic peatland, 21 

where ambient deposition was 8 kg N ha-1 yr-1, 56 kg N ha-1 yr-1 of either ammonium 22 

(NH4
+, Nred) or nitrate (NO3

-, Nox) with and without P and K, were added over 11 years. 23 

Nutrient concentrations of Sphagnum stem and capitulum, and pore water quality of the 24 

Sphagnum layer were assessed. The N-saturated Sphagnum caused by long-term (11 25 

years) and high doses (56 kg N ha-1 yr-1) of reduced N was not completely ameliorated 26 

by P and K addition; N concentrations in Sphagnum capitula for Nred 56PK were 27 

comparable with those for Nred 56, although N concentrations in Sphagnum stems for 28 

Nred 56PK were lower than those for Nred 56. While dissolved inorganic nitrogen (DIN) 29 

concentrations in pore water for Nred 56PK were not different from Nred 56, they were 30 

lower for Nox 56PK than for Nox 56 whose stage of N saturation had not advanced 31 

compared to Nred 56. These results indicate that increasing P and K availability has only 32 

a limited amelioration effect on the N assimilation of Sphagnum at an advanced stage of 33 

N saturation. This study concluded that over the long-term P and K additions will not 34 

offset the N saturation of Sphagnum. 35 

 36 

Keywords: Manipulation experiment; N deposition; peatland; Sphagnum; phosphorus 37 

and potassium interaction 38 

 39 

Capsule: Over the long-term P and K additions will not offset the N saturation of 40 

Sphagnum. 41 

 42 

43 
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Introduction 44 

 There has been widespread concern over the effects of increasing N 45 

deposition on peatland ecosystems which are adapted to low nutrient inputs and 46 

therefore sensitive to increased N deposition (Bobbink et al., 1998). Sphagnum moss, a 47 

keystone peatland species, is especially sensitive to increasing N availability because of 48 

its efficient interception of incoming N (Van Breemen, 1995; Bobbink et al., 1998). 49 

Field (Lamers et al., 2000; Bragazza et al., 2005; Limpens et al., 2011; Harmens et al., 50 

2014) and manipulation studies (Berendse et al., 2001; Nordbakken et al., 2003; 51 

Granath et al., 2009; Sheppard et al., 2013; Chiwa et al., 2016b) have been conducted to 52 

evaluate the effects of increased N deposition on Sphagnum in bog peatlands. It has 53 

been found that increases in N deposition enhanced tissue N concentration in Sphagnum 54 

(Berendse et al., 2001; Heijmans et al., 2001; Nordbakken et al., 2003; Tomassen et al., 55 

2003; Granath et al., 2009; Fritz et al., 2012; Chiwa et al. 2016b) and eventually led to 56 

N saturation of Sphagnum, defined as an excess of N supply over N demands of plants, 57 

resulting in increased inorganic N leakage to the rizosphere (Limpens et al., 2003; 58 

Bragazza and Limpens, 2004; Limpens et al., 2004; Limpens & Berendse, 2003; Chiwa 59 

et al., 2016b; Manninen et al., 2016). 60 

 Many studies have documented that N deposition can induce P limitation in 61 
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forests (Gress et al., 2007; Braun et al., 2010; Blanes et al., 2013; Chiwa et al., 2016a; 62 

Li et al., 2016) and wetlands (Bragazza et al., 2004; Limpens et al., 2004; Li et al., 63 

2016). Phosphorus (P) and potassium (K) availability is a major factor determining the 64 

impact of N deposition on Sphagnum growth in bogs (Hoosbeek et al., 2002; Limpens 65 

et al., 2004), as it can enhance growth leading to growth dilution of nutrients. Therefore, 66 

we need to understand how elevated N deposition interacts with P and K availability to 67 

affect the nutrient status of Sphagnum. 68 

 In many N manipulation studies, however, little information exists concerning 69 

the interactive effect of N with the availability of other growth limiting nutrients such as 70 

P and K. Previous studies, based on < 3 years of treatment, have shown that P and K 71 

addition can alleviate the adverse effects of elevated N deposition on Sphagnum’s 72 

physiological status, and can have positive effects on N assimilation (processing and 73 

incorporation of N leading to decreased inorganic N leakage to the rhizosphere) 74 

(Limpens et al., 2004), growth (Limpens et al., 2004; Carfrae et al., 2007; Lund et al., 75 

2009; Kivimäki, 2011; Fritz et al., 2012) and cover (Pilkington et al., 2007). However, 76 

the long-term interactive effects of P and K on the N status of Sphagnum have not been 77 

examined for N manipulation sufficient to cause N saturation. Xing et al (2010) 78 

examined the effects of 64 kg N ha-1 yr-1 (NH4NO3) with additional P and K for 7 years, 79 
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but not without P and K addition. Therefore, long-term P and K effects on the 80 

alleviation of N saturation of Sphagnum exposed to high levels of N deposition need to 81 

be clarified. In addition, since N deposition contains two forms of mineral N in varying 82 

proportions (Stevens et al., 2011), we also need to understand the respective effects of 83 

reduced (NH4
+) versus oxidized (NO3

-) N with P and K addition on the alleviation of the 84 

N saturation of Sphagnum moss. The alleviation by P and K addition may vary with N 85 

form.   86 

The objective of this study is to evaluate the alleviation effects of P and K 87 

availability on N saturation of Sphagnum (S. capillifolium) in response to increasing 88 

availability of oxidized and reduced N chemical forms. In addition to N, P and K are 89 

also limiting in these peatland ecosystems (Sheppard et al., 2004). We therefore 90 

hypothesized that supplementing N additions with these potentially growth limiting 91 

nutrients would reduce the likelihood of N accumulation, reduced growth and 92 

associated phytotoxicity. 93 

 94 

2. Materials and methods 95 

2.1. Study Site 96 

This study was conducted at Whim bog (282 m a.s.l., 3°16’W, 55° 46’N) 97 
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located in the Scottish Borders, 30 km south of Edinburgh, Scotland where a 98 

fertilization experiment on 3-6 m of deep peat using N, P, and K has been conducted 99 

since 2002. Calluna vulgaris, Eriophorum vaginatum, Sphagnum capillifolium, Hypnum 100 

jutlandicum, Pleurozium schreberi and Cladonia portentosa are the most common 101 

species on this bog and are representative of similar habitats through the northern 102 

hemisphere (Gore, 1983). There has been no active management for at least 70 years. 103 

Detailed information on meteorological parameter and atmospheric N deposition at this 104 

study site were given in Chiwa et al. (2016b).  105 

 106 

2.2. Treatments 107 

The five different treatments (NH4
+, NH4

+ + PK, NO3
-, NO3

- + PK, and control) have 108 

been applied on each of five 12.8 m2 circular plots. Four replicates were conducted for 109 

each of the five treatments. Background N deposition is ca. 8 kg N ha-1 yr-1 (Leith et al., 110 

2004; Sheppard et al., 2004). NH4Cl and NaNO3 were used as NH4
+ (referred to as Nred) 111 

and NO3
- (referred to as Nox) treatments, respectively. The dose was 56 kg N ha-1 yr-1 112 

and solution concentration was 4.0 mM. Potassium hydrogen phosphate (K2HPO4) was 113 

supplied in a 1:14 and 1:5.5 mass ratio for P and K, respectively to N was used as P and 114 

K treatments (4 kg P ha-1 yr-1 and 11.5 kg K ha-1 yr-1 for P and K, respectively). 115 
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Rainwater only was provided as a control. The current maxima are around 40 kg N ha-1 116 

yr-1 based on measurements in China (Song et al., 2017), up to 50 kg N ha-1 yr-1 (Wang 117 

et al., 2013) or even up to 100 kg N ha-1 yr-1 (Pan et al., 2012). Historically, N 118 

deposition was significantly higher than now, especially in Europe. Examples can be 119 

found up to 44 kg N ha-1 yr-1 (Stevens et al., 2010), 40-80 kg N ha-1 yr-1 (van Breeman 120 

and Dijk, 1988), and up to 75 kg N ha-1 yr-1 (Dise and Wright, 1995). However, all of 121 

these refer to measurements made in relatively unpolluted conditions, and do not reflect 122 

N deposition close to point sources (e.g. feedlots) where ecological effects are likely, 123 

and N deposition is much greater. P and K these were added in a 1:14 ratio to N, as 124 

found in amino acids to ensure sufficiency for growth (Speppard et al., 2004), rather 125 

than simulate their levels in deposition. 126 

 The mist treatments of fine rain droplets were supplied from a central 127 

spinning disc on a plot. To avoid contamination from adjacent plots, plots were 3 m 128 

apart. To simulate real world conditions, treatments (ca. 120 applications yr-1) were 129 

supplied automatically when air temperature > 0 °C and wind speed < 5 m s-1 (Sheppard 130 

et al., 2004).  131 

 132 

2.3. Sphagnum pore water  133 
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Mini rhizon suction samplers (Rhizon MOM, Eijkelkamp Agrisearch 134 

Equipment, Wageningen, The Netherlands) attached to a 20 mL plastic syringe were 135 

used to collect pore water samples from the open Sphagnum moss layer. The sampler 136 

was inserted into the Sphagnum layer (5cm depth) to evaluate how active the living part 137 

of Sphagnum was at removing nutrients. In August 2013, one collector was placed in 138 

each plot. Aluminium foil wrapped the syringe and connectors attached to the rhizon 139 

samplers to avoid light penetration into collected pore water. The location of the 140 

collector for Sphagnum pore water was fixed until October 2013. Collection was made 141 

weekly during the period from August 2013 to October 2013. 142 

The collected pore water samples were immediately transported back to the 143 

nearby laboratory and were filtered through a 0.45 μm membrane filter (PuradiscTM, 144 

Whatman Inc., NJ, USA). The filtered samples were stored in the dark at 4°C until 145 

chemical analysis. NO3
- and NH4

+ were analysed by ion chromatography (CH-9101, 146 

Metrohm, Herisau, Swizerland) and Ammonia Flow Injection Analyser (AMFIA, ECN; 147 

Wyers et al. 1993), respectively. Dissolved inorganic N (DIN) concentrations were 148 

calculated as the sum of NO3
- and NH4

+.  149 

 150 

2.4. Tissue nutrient concentrations of Sphagnum moss 151 
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Sphagnum vegetation samples were collected at the beginning of December 152 

2013 to diagnose the nutrient condition of Sphagnum treated over 11 years. A few 153 

shoots per plot were collected from where the pore water was sampled and combined to 154 

give one composite sample per plot. The litter on the collected Sphagnum was 155 

thoroughly removed using tweezers. The samples were separated into capitula (0-1 cm) 156 

and stem (>1 cm) fractions and were dried at 70 ºC for 72 h. Total N content in capitula 157 

and stem of Sphagnum were measured using a CN analyzer (CN corder MT-700, 158 

Yanaco Co., Ltd., Tokyo, Japan). To analyze total P, the dried samples were burned at 159 

550 ºC for 2 hr and then digested using potassium peroxodisulfate (K2S2O8). Total P 160 

concentration in digested solution was measured using molybdenum blue (ascorbic 161 

acid) spectrophotometric method (UV mini-1240, Shimadzu, Kyoto, Japan). To ensure 162 

accuracy within 5% of known N and P concentrations, standard reference material 163 

(NIST 1515 Apple Leaves, National Institute of Standards and Technology, Maryland, 164 

USA) was analyzed along with Sphagnum samples. 165 

 166 

2.5. Calculation and statistical analysis 167 

Student’s t-test was used to assess differences in tissue nutrient and pore water 168 

quality of the Sphagnum layer between treatments with and without P and K. The 169 
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Mann–Kendall test was performed to evaluate annual trends in the capitulum N 170 

concentrations. All statistical analyses were carried out using SPSS 22.0J (SPSS Japan 171 

Inc.).  172 

 173 

3. Results and Discussion 174 

3.1. Alleviation effects of long-term P and K addition on N status of Sphagnum 175 

Previous studies have indicated that P and K addition alleviates the adverse 176 

effects of short-term N addition on Sphagnum physiological status, with positive effects 177 

on assimilation N (Limpens et al., 2004), growth (Limpens et al., 2004; Carfrae et al., 178 

2007; Lund et al., 2009; Kivimäki, 2011; Fritz et al., 2012) and cover (Pilkington et al., 179 

2007). In an earlier study at the same site Carfrae et al. (2007) reported that P and K 180 

additions reduced N accumulation (decrease in tissue N concentration) for Nred plots 181 

after only one year of treatment. The reduction in N accumulation (decrease in tissue N 182 

concentration) of Sphagnum capitula (22% decrease) and stems (20% decrease) can also 183 

be seen over 4 and 5 years treatments (Fig. 2c). Kivimäki, (2011) also showed that 184 

adding P and K increased shoot extension (16-27 mm) compared to ‘N only’ treatments 185 

(13-17 mm) after 5 years of treatments at this study site.  186 

This long-term study, however, showed that P and K additions will not offset 187 
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the detrimental impacts of long-term high N deposition. P and K additions did not affect 188 

capitulum N concentrations for reduced N treatments (P=0.95, Fig. 1a) but tended to 189 

cause lower stem N concentrations (P=0.066, Fig. 1b). The N saturation of Sphagnum 190 

was caused by adding wet deposition of 56 kg N ha-1 yr-1 of reduced N over 11 years 191 

(Chiwa et al., 2016b). The P and K additions over 11 years did increase capitulum and 192 

stem P concentrations (Fig. 1cd) causing subsequently lower N:P ratios (Fig. 1ef) 193 

suggesting that the P dose exceeded growth requirements. The lower stem N 194 

concentrations with P and K (Fig. 1b) indicate some growth enhancement was induced, 195 

providing some amelioration from the excess N. However, capitulum N concentrations 196 

remained consistently high for Nred 56PK over 11 years, similar to those for Nred 56 (Fig. 197 

1a, Fig. 2c), indicating that P and K addition only partially alleviate N saturation of 198 

Sphagnum exposed to N addition over 11 years.  199 

The results suggest that in the short term, the high dose does not saturate 200 

Sphagnum, thereby allowing the effect of P and K, probably via growth enhancement, to 201 

lower N concentrations. In support of this view, when stem N concentrations of 202 

Sphagnum for Nred 56 over the first 5 years remained low, capitulum N concentration 203 

was reduced by P and K addition (Fig. 2c). Addition of P and K has a different effect 204 

over time on the N content of stem and capitulum, implying differences in metabolism 205 
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and storage of nutrients and/or internal transport processes in response to continuing 206 

nutrient stresses. 207 

For oxidized N plots, P and K additions did not affect either capitulum or stem 208 

N concentrations (Fig. 1ab). In addition, although the alleviation effects by P and K 209 

addition were found for short-term addition of reduced N (Fig. 2c), the effect was not 210 

found for oxidized N even for short-term as well as long-term manipulation. Stem N 211 

concentration of Sphagnum for Nox 56 was not affected for oxidized N even over the 212 

long-term (Fig. 2b). These results indicate that the alleviation effects by P and K 213 

addition for oxidized N are smaller than for reduced N. The reason remains unclear, but 214 

could be related to the difference of growth response of Sphagnum to P and K addition. 215 

Sphagnum production exposed to Nred 56 over 5 years (82 g m-2 yr-1) increased to 198 g 216 

m-2 yr-1 (Nred 56 PK), whereas the increase in the productivity of Sphagnum exposed to 217 

Nox 56 over 5 years (73 g m-2 yr-1) was smaller (86 g m-2 yr-1 for Nox 56PK) (Kivimäki, 218 

2011). 219 

 220 

3.2. Alleviation effects of long-term P and K addition on N assimilation of Sphagnum 221 

 Limpens et al. (2004) has shown that P addition (3 kg P ha-1 yr-1) improved N 222 

assimilation capacity of Sphagnum exposed to N (40 kg N ha-1 yr-1), over 4 years. 223 
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However, adding Nred significantly increased DIN concentrations in pore water from 224 

within the Sphagnum layer cf controls (Fig. 3) but adding P and K made no difference 225 

(P=0.29) and average DIN concentrations for Nred 56 +/- PK remained above 100 µmol 226 

l-1 (Fig. 3). Thus adding P and K hardly influenced mineral N retention by alleviating N 227 

saturation of Sphagnum in this study. The difference could be caused by the difference 228 

of manipulation duration. These two studies suggest any amelioration effect of P and K 229 

on N retention changes over time, probably depending on the stage of N saturation. 230 

 In contrast to Nred, there was a significant difference between DIN (P=0.034) 231 

and NO3
- (P=0.019) concentrations for Nox 56 and Nox 56PK. (Fig. 3). Thus, the 232 

alleviation effects of P and K addition on N assimilation of Sphagnum were observed 233 

for oxidized N, which could be related to the stage of N saturation of Sphagnum. Chiwa 234 

et al. (2016b) found that the effect of oxidized N on advancing N saturation was lower 235 

than that of reduced N and that the stage of N saturation of Sphagnum exposed to Nox 56 236 

over 11 years had not advanced compared to that for Nred 56. NO3
- uptake by Sphagnum 237 

caused DON leaching from Sphagnum that enables Sphagnum to delay N saturation of 238 

Sphagnum (Chiwa et al., 2016b).  239 

 240 

4. Conclusions 241 
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This study concludes that long-term additions of P and K have no major ameliorating 242 

effects on a Sphagnum moss subjected to continuous high N inputs. There were 243 

different minor effects depending on the form of N, with some lowering of N 244 

concentrations for reduced N, but for oxidized N the chemical effects were small even 245 

though the detrimental effects on Sphagnum cover were massive. These results show 246 

that P and K additions will not offset the N saturation of Sphagnum, and in some cases, 247 

where N deposition is predominantly in the oxidized form, may exacerbate any effects 248 

of N alone. 249 
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Figure Captions 379 

Fig. 1. Sphagnum tissue N concentration of a) capitulum and b) stem; tissue P 380 

concentration of c) capitulum and d) stem, and N:P ratio of e) capitulum and f) stem 381 

without P and K (white bar) and with P and K (grey bar). Bars represent standard error 382 

(n = 4). Asterisk indicates significant differences at P<0.05. Background N deposition is 383 

ca. 8 kg N ha-1 yr-1 (Leith et al., 2004; Sheppard et al., 2004). 384 

 385 

Fig. 2. Annual trends in capitulum and stem N concentrations of Sphagnum on Whim 386 

bog in south Scotland. N concentration 0, 2, 4, 5 and 7 years after N manipulation 387 

started were taken from Sheppard et al. (2004), Carfrae et al. (2007), Phuyal et al. 388 

(2008), Kivimäki (2011), and Manninen et al. (2011) respectively. 389 

 390 

Fig. 3. Sphagnum pore water concentrations of dissolved inorganic nitrogen (DIN, NO3
- 391 

+ NH4
+). Bars represent standard error (n = 4). Asterisk indicates significant differences 392 

at P<0.05. 393 

 394 

 395 
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