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BGS forecasts

• humans need to do other tasks (and sleep, eat, …)
• have algorithmic tools to help human forecasters and alert them
• we show scoping study for new tool to help human forecasters

− automatic prediction of 3 hourly ap

• Daily geomagnetic forecast
− next 3 days
− human forecasters based on 

intuition from experience 

• online:
http://tinyurl.com/BGSSwForc
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Algorithms: some intuition
• 2 broad classes

• regression
• classification: storm, 

quiet 

• Generalized linear 
regression
• global model
• least squares unstable to 

noise and outliers, non-
unique

• introduce regularization
• penalize coefficients
• prefer lower gradients
• set some coefficients to 0
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Algorithms: some intuition

• Tree methods
• fit piecewise 

constant model
• split on information 

criterion
• local
• non linear
• easy to overfit: fit the 

noise
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Algorithms: some intuition

• Tree methods
• easy to overfit: fit the 

noise

• Ensemble methods
• fit ‘forest’ of overfitting

trees
• smooth out overfit
• more robust to noise
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Dataset

after Wing 2005

‘targets’ to predict

• Predict values for
1. next 3-hour interval
2. next-but-one interval
3. 24 hour running mean
4. 24 hour running maximum
• cf. Wing, Bala Reiff: 1-6 hours 

ahead

• some techniques can model 
all 4 in once pass
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• Pick set of ‘targets’ to 
predict

• all different ‘views’ on the 
same thing: activity at an 
‘average’ sub-auroral
observatory 

• ap
• ‘feels like’

• Kp
• can be made to ‘feel 

like’           :
2, 2.333, 2.6667 

• really a category:  

• choice affects 
• definition of success
• ease of comparison vs 

previous studies
• which algorithms  work 

• e.g. differentiable loss for 
regression

Dataset • NOAA G scale
• categorical
• hide unwanted detail 

during quiet times
• humans forecasters 

and customers use

ap Kp NOAA

Category

< 3+ G0

18 3+

22 4-

27 4o

32 4+

39 5- G1

48 5o

56 5+

67 6- G2

80 6o

94 6+

111 7- G3

132 7o

154 7+

179 8- G4

207 8o

236 8+

300 9-

400 9o G5
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• scale the training set

• same scaling to test, parameter-
fitting sets

• scaling before split would ‘leak’ 
information

Dataset

• split 
• training set (w)
• parameter-fitting set (α,ρ)
• test set

• each balanced storm/quiet

• select samples 
• storms rare but important
• balance dataset otherwise 

storms  look like noise
• storm rarity limits dataset size
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Dataset

features:

ACE and ground magnetometer 
data from 1998 to 2015

• ~100 features in all
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• have unwanted 
• shocks: 
• MHD flux freezing:

• timeseries: autocorrelation

• keep 0.95 total variance
• ~100 components -> ~30
• axes are linear combinations 

~100 coeffs but can be made 
sparse

Principal component analysis and friends

1st 3 cpts
capture 
0.55 var total
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• some separation between 
storm and quiet times

• most variance along

Principal component analysis and friends

1st 3 cpts
capture 
0.55 var total

• surprising lack of variance 
along           directions
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Lack of Bz variance

time Bz below threshold

ta
rg

et
 a

p

min(Bz)| few hours ago 

ta
rg

et
 a

p

• neither values of Bz nor threshold times correlate well with ap
• lack of variance ⇏ no causality but algorithms have less of a ‘lever’ in 

Bz
• Kp and derivatives are perhaps not best parameters for space weather 

[see Kelly et al. talk in A18 on 2015-06-27 09:45]
• non-linear dimensionality reduction (kernel PCA, Isomap) results 

similar
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Classification 
> regression 
• other decompositions 

that separate G levels
• different algorithms
• stratified train, parameter 

fit splitting
• easier cross validation

best so far
RandomForestClassifier
G next score 0.93 pm 0.06
G max 24 h 0.85 pm 0.14
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Most informative features

ElasticNet Regressor
RandomForest Classifier 

feature importances > 0.25 * most important ∀ targets
• hard to do this with neural nets
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Most informative features

ElasticNet Regressor
RandomForest Classifier 

feature importances > 0.25 * most important ∀ targets

non-linear, local 
models more 
diverse
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Most informative features

ElasticNet Regressor
RandomForest Classifier 

feature importances > 0.25 * most important ∀ targets

shocks

persistence/
autocorrelation
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Most informative features

ElasticNet Regressor
RandomForest Classifier 

feature importances > 0.25 * most important ∀ targets

southward IMF
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Most informative features

ElasticNet Regressor
RandomForest Classifier 

feature importances > 0.25 * most important ∀ targets

~ 8 hour lag
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2D models
• pair most important 

features
• train 2D model with 

same 
hyperparameters as 
full model

• only for plotting
• still get most storms

test data
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Future
• converge quickly: more features
• solar data: radio bursts 
• solar wind coupling functions: could compare performance of many

Conclusions
• r2 score max(G)|24 hrs =0.85
• targets not        ?

• classifiers advantageous
• ensemble models with modern 

hardware
• find most important features

• less black box than neural nets
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lack of correlation lack of causation
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A small slice of our feature-space
ta

rg
et

 a
p

min(Bz)| few hours ago 
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A small slice of our feature-space

ta
rg

et
 a

p

time Bz below threshold
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Abstract, do not show

Geomagnetic indices are ubiquitous parameterizations of storm-time magnetic conditions. Their prediction is
one goal of space weather forecasting and they are required inputs for a variety of models. Despite much
recent progress; human space weather forecasters, unlike terrestrial weather forecasters, cannot yet rely on
physical models to make whole-system predictions. We trial various data-driven models: seeking robust;
accurate; and fast predictions of the Ap index, and derived values, as an operational forecaster aid.
Machine learning (ML) is a branch of statistics focused on making accurate predictions when presented with
novel data. ML techniques underpin much of our online lives: from web-search and recommendation systems
to fraud detection. Modern computer hardware and ML libraries allow models to be: regularly re-trained with
the latest data, and optimized over ever larger parameter spaces.
Index prediction presents a number of challenges for statistical models. The most important events to predict
are, potentially infrastructure damaging, large storms. However, they are rare events and distributions of
geomagnetic activity are positively skewed with very heavy tails. We present strategies for dealing with the
rarity of large storms; both predicting them accurately, and being able to quantify a model’s large-storm
predictive power. We also demonstrate schemes for data cleaning and assimilation including the integration of
disparate data types within a single model.
A variety of algorithms are trained including models in both local and global parameter space, we inter-
compare them and benchmark them against an existing operational auto-regressive model. We use various
metrics, many of which show the ML methods predict storms better than the existing approach.
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Metrics
• many studies use R2

between true and 
predicted as success 
criterion

• may not be appropriate 
given fat-tail of ap (and 
Kp) 
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Forget regression:
classify
• other decompositions 

that separate G levels
• different algorithms
• stratified train, parameter 

fit splitting
• easier cross validation

best so far
RandomForestClassifier
G next score 0.93 pm 0.06
G max 24 h 0.85 pm 0.14
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Dataset
• ACE and ground 

magnetometer data 
from 1998 to 2015

• Define a set of 
features:

• ~100 features in all
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An (in the end not very) interesting result
• Decision tree regressor can predict

1. ap_24hmax
2. ap_24hmean
3. ap_6h
4. ap_next
in 1 pass

• promotes sparse features
• keep only 7/100

i. ap_1, 
ii. ap_0, 
iii. vsw_mean_4, 
iv. Bt_mean_7, 
v. Bt_range_7, 
vi. ap_11

total R2 = 0.78 (all targets 1-4)
cf 0.79 Wing APL2 predicting Kp 4 hours 
ahead

• trained in 
~seconds
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Metrics
R2 (ap) = 0.85R2 (Kp) = 0.32
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• Now have a ~ 100 
dimensional data set
• On a good day I might be 

able to visualize things in 3

• Some approaches require

• But we have
• shocks: 

• MHD flux freezing:

Curse of dimensionality

• timeseries:
autocorrelation
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Random forest classifier 
feature importances > 0.25 
max (all targets)
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Metrics
• DecisionTreeRegressor

single for model ap_6h

• R2 (ap) = 0.85

• just good at predicting 
quiet

• R2 may not be 
appropriate given fat-tail 
of ap (and Kp) 

• similar argument for MSE

R2 (ap) = 0.85


