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* humans need to do other tasks (and sleep, eat, ...)
* have algorithmic tools to help human forecasters and alert them
* we show scoping study for new tool to help human forecasters

— automatic prediction of 3 hourly a, /
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Algorithms: some intuition

® ® noisy samples
i 2 brOad ClaSSGS Ve === | inearRegression
. ‘. ° === E|asticNetRegression
® regression [ R o '
* classification: storm,
quiet -2

target

* (Generalized linear

regression .
* global model
* |east squares unstable to " .,
noise and outliers, non- o
unique
* introduce regularization : 1 * camples (w/ single feature) ’ ’

* penalize coefficients
* prefer lower gradients

* set some coefficients to 0 a(l—p)

. =12
min(||Xw — 53|+ ap|[wl], +
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Algorithms: some intuition

® @ noisy samples
= DecisionTree

* Tree methods
* fit piecewise "
constant model

* split on information
criterion

* |ocal
®* non linear

* easy to overfit: fit the
noise

target

3 4 S
samples (w/ single feature)

-10
0 | | 2 6 7 8
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Algorithms: some intuition

* Tree methods

* easy to overfit: fit the
noise

* Ensemble methods

* fit forest’ of overfitting
trees

* smooth out overfit
®* more robust to noise

© NERC All rights reserved

target

—2

-8

noise-fitting sub-estimator
— smoothed RandomForest ensemble
¢ + noisy samples

e —

3 4 5
samples (w/ single feature)



Dataset

‘targets’ to predict

* Predict values for
1. next 3-hour interval
2. next-but-one interval
3. 24 hour running mean
4

. 24 hour running maximum

« cf. Wing, Bala Reiff: 1-6 hours
ahead

* some techniques can model
all 4 in once pass
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Dataset

Pick set of ‘targets’ to
predict
all different ‘views’ on the
same thing: activity at an
‘average’ sub-auroral
observatory
o ap
* ‘feelslike’ € R
([ Kp
* can be made to ‘feel
like'€e R :
2,2.333, 2.6667
* really a category:

© NERC All rights reserved

* NOAA G scale

* categorical
* hide unwanted detail
during quiet times

* humans forecasters
and customers use

* choice affects

* definition of success

* ease of comparison vs
previous studies

* which algorithms work

* e.g. differentiable loss for
regression € IR"

fap || Kp " NOAA
"Category

<3+ GO

18 3+

22 4-

27 40

32 4+

39 5 G1

48 50

56 5+

67 6 G2

80 60

94 6+

111 7 G3

132 70

154

179

207

236

300

400




Dataset

* select samples
* storms rare but important

®* pbalance dataset otherwise
storms look like noise

* storm rarity limits dataset size

* split
* training set (w)
* parameter-fitting set (a,p)
* testset

* each balanced storm/quiet

© NERC All rights reserved

3-hour equivalent range (2 nT)

frequency

* scalethe traininaé set

* Tsample 7 (fL‘ - ZE)/S

same scaling to test, parameter-
fitting sets

scaling before split would ‘leak’
information -/




Dataset

)

ACE and ground magnetometer
data from 1998 to 2015

Bt_max_2 a

features:

:
|

¢ mam(vm ) |last 5 hours |

» maz(ap)|sr days ago

¢ Tange(‘BIMFD'zl to5 hrs ago :
* t?’me(Bza IMF < 10nT)|la5t 24 hrs E
* ~100 features in all S we T Tetmaa T T N0 T vewrange 2

© NERC All rights reserved

vsw_range_2
Lo
—_— e



Principal component analysis and friends

* have unwanted =i o< x;
* shocks: Avgy x A|Bryr
* MHD flux freezing:
Nproton X |BIMF|

* timeseries: autocorrelation

* keep 0.95 total variance
* ~100 components -> ~30

®* axes are linear combinations
~100 coeffs but can be made
sparse
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Principal component analysis and friends

®* some separation between
storm and quiet times

* most variance along

a’pllast / |BIMF‘E|:13£ few hrs

Vsw ‘East few hrs
ap| 7 to 10 hrs ago

N =

ap| ~28 days ago

 surprising lack of variance
along B:mr directions
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Lack of Bz variance
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* neither values of Bz nor threshold times correlate well with ap S n-lkm- Lo “ . I Ciiiias
" Bznos " B Bz 20

* lack of variance # no causality but algorithms have less of a ‘lever’ in _ .
Bz time Bz below threshold

* Kp and derivatives are perhaps not best parameters for space weather
[see Kelly et al. talk in A18 on 2015-06-27 09:45]

* non-linear dimensionality reduction (kernel PCA, Isomap) results
similar




Classification = e

> regression - EE
* other decompositions § : o : .

that separate G levels £ e 8
e different algorithms MR
* stratified train, parameter . IS

fit splitting i L
* easier cross validation i

G5 _pre
best so far Taoe s e s % ow o |Gl true
RandomForestClassifier Ei‘:::
G next score 0.93 pm 0.06 G4 true
G5 _true

G max 24 h 0.85 pm 0.14

© NERC All rights reserved



Most informative features

feature importances > 0.25 * most important Vv targets

* hard to do this with neural nets

RandomForest Classifier
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Most informative features

feature importances > 0.25 * most important Vv targets

non-linear, local ElasticNet Regressor
Remodels more
| diverse
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Most informative features

feature importances > 0.25 * most important Vv targets

Bt max_1 Bt_mean_2

Bt max_5 0.96
Bt _max_6 Bt_mean_4
Bt_max_7 Bt_mean_7
Bt_mean_1 0.88 o
Bt_mear1_3 Bt_range_3
Bt_mean_4
Bt_mean_5 . Bt_range_5
Bt_mean_6 i
Bt_mean_7 Bt_range_6 S h O CkS
Bz_|t05
Bz min 3 Bt_range 7
Bz_min_4

Bz_It20

persistence/
autocorrelation

Bz_min_0

Bz_min_7

relative feature importance

vsw_max_3

VSW_max_5
vsw_max_6
vsw_max_7

vsw_mean_l

VSW_mean_2

vsw_mean_3

vsw_mean_4 VSW max 1

vsw_mean_6 -

G_24hmax G_24hmean G_6h G_next VsW_mean_5

ap_24hmax ap_24hmean ap_6h ap_next

relative feature importance



Most informative features

feature importances > 0.25 * most important Vv targets
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Most informative features

feature importances > 0.25 * most important Vv targets

I B e
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2D models

* pair most important
features

* train 2D model with
same
hyperparameters as
full model

ap_8
ap_8

Bz_min_7 Bt max_6

® test data

I m * only for plotting
= © Still get most storms

Bt max_6

Bz_min_7



Se

CO”C' USionS | H mean :ualidatioln error

3.0k ®—e mean training error

* r2score max(G)|,4 ps =0.85

* targets notec R?
* classifiers advantageous

* ensemble models with modern
hardware

* find most important features
* J|ess black box than neural nets

rms error

05} E

UU I I I I
Future 0 200 400 600 800 1000 ’

_ e
- converge quickly: more features R
* solar data: radio bursts
 solar wind coupling functions: could compare performance of many /
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Correlation

T USED T© THINK, THEN I TOCK A SOUNDS LIKE THE
CORRELATION IMPUED| | STATISTICS CLASS. CLASS HELPED.
CAUSATION. ) Now I DONT; \ WELL, MAYBE.

RE IR KIFT

Title text: Correlation doesn't imply causation. but it does waggle its eyebrows suggestively and gesture
fiwtively while mouthing 'look over there'.

lack of correlation # lack of causation
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A small slice of our feature-space
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small slice of our feature-space

target ap
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Abstract, do not show

Geomagnetic indices are ubiquitous parameterizations of storm-time magnetic conditions. Their prediction is
one goal of space weather forecasting and they are required inputs for a variety of models. Despite much
recent progress; human space weather forecasters, unlike terrestrial weather forecasters, cannot yet rely on
physical models to make whole-system predictions. We trial various data-driven models: seeking robust;
accurate; and fast predictions of the Ap index, and derived values, as an operational forecaster aid.

Machine learning (ML) is a branch of statistics focused on making accurate predictions when presented with
novel data. ML techniques underpin much of our online lives: from web-search and recommendation systems
to fraud detection. Modern computer hardware and ML libraries allow models to be: regularly re-trained with
the latest data, and optimized over ever larger parameter spaces.

Index prediction presents a number of challenges for statistical models. The most important events to predict
are, potentially infrastructure damaging, large storms. However, they are rare events and distributions of
geomagnetic activity are positively skewed with very heavy tails. We present strategies for dealing with the
rarity of large storms; both predicting them accurately, and being able to quantify a model's large-storm
predictive power. We also demonstrate schemes for data cleaning and assimilation including the integration of
disparate data types within a single model.

A variety of algorithms are trained including models in both local and global parameter space, we inter-
compare them and benchmark them against an existing operational auto-regressive model. We use various
metrics, many of which show the ML methods predict storms better than the existing approach.
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Metrics

* many studies use R? 1
between true and Yy — — - Y;
predicted as success

criterion S, = Z(yﬁ — )2

* may not be appropriate 1
given fat-tail of ap (and Spred = Z(yz — ypredi)2
Kp) S red
R2=1-Z

Sy
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Forget regression:
ClaSSIfy

other decompositions
that separate G levels

* different algorithms

* stratified train, parameter
fit splitting

® easier cross validation

best so far
RandomForestClassifier
G next score 0.93 pm 0.06
G max 24 h 0.85 pm 0.14
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Dataset

* ACE and ground N \\
magnetometer data e p) : R
from 1998 to 2015 . f\\
E: | | I*\
e Define a set of b \_ Fooo e
¢ max(USW)hast5 hours S i AL ‘ e 3
¢ mam(ap)\w days ago B |
« range(|Brmr|) |4 to5 hrs ago e L
. t?:me(Bz, IMF < 1011T)|la.st 24 hrs :l 5 /ﬂ\h
o ... £, - : |\
! A
* ~100 features in all g E : ﬁ “ I- e
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An (in the end not very) interesting result

* Decision tree regressor can predict

1. ap_24hmax
2. ap_24hmean
3. ap_6h

4. ap_next

in 1 pass

* promotes sparse features
* keeponly 7/100

i ap_1,

i.  ap.0, « trained in
i vVSW_mean_4,

! — ~seconds
iv. Bt mean 7,

V. Bt range 7,

Vi. ap_11
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® noisy samples

= DecisionTree

3 4 5
samples (w/ single feature)

total R2 = 0.78 (all targets 1-4)
cf 0.79 Wing APL2 predicting Kp 4 hours
ahead



Metrics

450

o R? (Kp) = 0.32 R2 (ap) = 0.85
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Curse of dimensinnalitv

10~

o NOW have a-~ 100 R 0.95 variance :
dimensional data set

* On a good day | might be
able to visualize things in 3

1072

107 -

* Some approaches require

I; (x .’L'J 10°*

explained variance ratio

* Butwe have . | |
° ShOCkS: 0 20 njiomponenﬁtos 80 100

1077

N proton X |BIMF|

e MHD flux freezing: e timeseries:
Avgw < A|Bryrl autocorrelation
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Random forest classifier
feature importances > 0.25
max (all targets)
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S 4 ~
relative feature importance

=

target

noise-fitting sub-estimator
— smoothed RandomForest ensemble
noisy samples

2

-4 -

-6 -

0 1 2 3 a 5 6
samples (w/ single feature)
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Metrics

DecisionTreeRegressor
single for model ap_6h

R2 (ap) = 0.85

just good at predicting
quiet

R2 may not be
appropriate given fat-tail
of ap (and Kp)

similar argument for MSE
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