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Arctic Fennoscandia has undergone significant climate change over recent decades.
Reanalysis data sets allow us to understand the atmospheric processes driving such
changes. Here we evaluate four reanalyses against observations of near-surface air tem-
perature (SAT) and precipitation (PPN) from 35 meteorological stations across the
region for the 35-year period from 1979 to 2013. The reanalyses compared are the
National Centers for Environmental Prediction (NCEP) Climate Forecast System Rea-
nalysis (CFSR), the European Centre for Medium-Range Weather Forecast (ECMWF)
Interim reanalysis (ERA-Interim), the Japanese Meteorological Agency (JMA) 55-year
reanalysis (JRA-55) and National Aeronautics and Space Administration (NASA)’s
Modern-Era Retrospective Analysis for Research and Applications (MERRA).
All four reanalyses have an overall small cool bias across Arctic Fennoscandia, with
MERRA typically ~1 �C cooler than the others. They generally reproduce the broad
spatial patterns of mean SAT across the region, although less well in areas of complex
orography. Observations reveal a statistically significant warming across Arctic Fen-
noscandia, with the majority of trends significant at p < .01. Three reanalyses show
similar regional warming but of smaller magnitude while CFSR is anomalous, even
having a slight cooling in some areas. In general, the other reanalyses are sufficiently
accurate to reproduce the varying significance of observed seasonal trends.
There are much greater differences between the reanalyses when comparing PPN
to observations. MERRA-Land, which merges a gauge-based data set, is clearly
the best: CFSR is the least successful, with a significant wet bias. The smoothed
reanalysis orography means that the high PPN associated with the western side of
the Scandinavian Mountains extends too far inland. Spatial patterns of PPN trends
across the region differ markedly between the reanalyses, which have varying suc-
cess at matching observations and generally fail to replicate sites with significant
observed trends. Therefore, using reanalyses to analyse PPN changes in Arctic
Fennoscandia should be undertaken with caution.
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1 | INTRODUCTION

Recent increases in near-surface Arctic temperatures are sig-
nificantly greater than the global average (e.g., Bindoff
et al., 2013) and, since 1980, are more than twice that of

the Northern Hemisphere average (Overland et al., 2016).
This disproportionate warming relative to lower latitudes,
termed Arctic amplification, results from several distinct
radiative and advective processes (Cohen et al., 2014, and
references therein) and is outside the range of expected
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internal climate variability: it is thus thought to be at least
partially driven by anthropogenic forcing (e.g., Gillett et al.,
2008; Bindoff et al., 2013; Chylek et al., 2014). Tempera-
tures have risen the most over the Arctic Ocean, where there
has been a significant and well publicized decrease in sea
ice, especially in the Barents Sea (e.g., Årthun et al., 2012;
Matishov et al., 2012). This loss has been linked to recent
cooler Eurasian winters through enhanced autumn snow
cover and resultant large-scale circulation changes
(e.g., Cohen et al., 2012; Tang et al., 2013; Cohen et al.,
2014; Mori et al., 2014; Overland et al., 2016), and slightly
greater Eurasian winter climate variability in general
(Li et al., 2015). However, Overland et al. (2015) noted that
northern Europe itself is outside the area affected directly
by broad-scale Arctic changes: multiple factors, including
jet stream position and internal climate “noise,” drive the
winter weather variability in this region.

Arctic Fennoscandia, which comprises northern areas of
Norway, Sweden, Finland and the Kola Peninsula region of
Russia, is located immediately south of the Barents Sea and
has seen some marked changes in climate over recent
decades (e.g., Førland et al., 2009; Irannezhad et al., 2015;
Aalto et al., 2016; Marshall et al., 2016; Irannezhad et al.,
2017; Kivinen et al., 2017; Swedish Meteorological and
Hydrological Institute, 2017). Regional temperatures have
increased, in particular during the 21st century. Although
similarly high temperatures were observed in the 1930s,
they have been more consistently warm in recent decades.
Temperature rises of ~0.3–0.5 �C/decade between 1961 and
2010/2011 have been reported in northern Finland
(Irannezhad et al., 2015; Aalto et al., 2016) while Marshall
et al. (2016) described a mean warming of ~2.3 �C from
10 stations in the Kola Peninsula from 1966–2015 (0.46 �C/
decade). Seasonally, both these studies indicated that spring
was the period with the greatest, statistically significant
warming over the past 50 years. The rate of winter warming
in northern Finland was actually greater but the previously
mentioned enhanced variability in this season means that
such trends are not significant. Precipitation changes appear
to be more variable across Fennoscandia. For example,
Førland et al. (2009) and Aalto et al. (2016) demonstrated
annual precipitation increases across much of northern Nor-
way and Finland, respectively, for 1961–2010, although the
rate of change and its statistical significance appear uncer-
tain. However, Marshall et al. (2016) found no such trend
in the Kola Peninsula during 1966–2015, but did describe
significant wetting and drying trends in spring and autumn,
respectively. Changes in the spatial and temporal distribu-
tion of heat and moisture, such as the frequency of tempera-
tures close to zero and strong precipitation events, have the
potential to trigger natural hazards in Fennoscandia such as
avalanches, rock slides or flooding (e.g., Dyrrdal et al.,
2012). In addition, these climatic changes have led to major
behavioural changes in the region’s vegetation, including a

general lengthening of the growing season and both
increases and decreases in plant productivity (e.g., Høgda
et al., 2013; Barichivich et al., 2014; Bjerke et al., 2014;
Blinova and Chmielewski, 2015).

In order to understand the drivers of such observed
changes, there is a need to link them to physical processes
throughout the atmosphere. Atmospheric reanalyses provide
an excellent tool for such studies. Reanalyses use a numeri-
cal weather prediction forecast model to assimilate an
historical archive of meteorological data, derived from
ground-based observations, radiosondes and satellite data.
Their output is a uniform multivariate record of the atmo-
spheric circulation and hydrological cycle including surface
parameters. In terms of analysing climate change, reanalyses
have the advantage over operational forecast systems of
using a single version of both model and assimilation
scheme, thus removing spurious changes due to alteration in
the model physics and assimilation methodology. Neverthe-
less, their temporal coherence will be affected by changes
to, and any time varying biases in, the observing system.
Unfortunately, such impacts are manifested most strongly in
regions where ground-based observations are sparsest and
thus where reanalyses are most useful, such as the polar
regions (e.g., Bromwich et al., 2007; Rapaić et al., 2015).
Reanalyses are also being increasingly used to provide lat-
eral boundary conditions for high-resolution regional model
studies within the Arctic (e.g., Heikkilä et al., 2011;
Lenaerts et al., 2013; Bieniek et al., 2016) and for the pan-
Arctic regional Arctic System Reanalysis (e.g., Bromwich
et al., 2016).

Here, we analyse the accuracy of four modern reana-
lyses in describing the surface climate of Arctic Fennoscan-
dia: these are the National Centers for Environmental
Prediction (NCEP) Climate Forecast System Reanalysis
(CFSR), the European Centre for Medium-Range Weather
Forecast (ECMWF) Interim reanalysis (ERA-Interim), the
Japanese Meteorological Agency (JMA) 55-year reanalysis
(JRA-55) and National Aeronautics and Space Administra-
tion (NASA)’s Modern-Era Retrospective Analysis for
Research and Applications (MERRA). These reanalyses,
together with their forerunners, have many thousands of
users (Gregow et al., 2016). The four reanalyses analysed
here share a number of advances over their predecessors
including (a) assimilation of more complete sets of observa-
tions, (b) higher spatial and vertical resolutions, (c) better
stratospheric dynamics, (d) improved assimilation schemes
that includes variational bias correction (VarBC) for satellite
radiances and (e) greater emphasis on accurately represent-
ing the hydrological cycle. Further details of these reana-
lyses are given in section 2.2. We study the climatological
means, variability and trends for near-surface temperature
(hereinafter SAT) and precipitation (hereinafter PPN) from
1979 to 2013. Three of the reanalyses begin in 1979 and
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JRA-55 finishes in 2013, thus defining the period available
for comparison.

A number of previous studies have compared SAT
and/or PPN from one or more of these reanalyses against
ground-based observations and/or satellite-derived products
in the Arctic. For example, Simmons and Poli (2014) exam-
ined Arctic SAT trends from 1979 to 2012 for ERA-Interim,
JRA-55 and MERRA. The latter reanalysis has slightly less
warming due to a shift in temperature from a warm bias
prior to ~2008 to values similar to the other two reanalyses
thereafter. Chung et al. (2013) found similar trends between
CFSR, ERA-Interim and MERRA for 1979–2011, with the
latter again having the smallest. However, both these papers
focused on the region from 70�N to 90�N, which only
includes the very north of the Fennoscandian region studied
here. Lader et al. (2016) undertook a broadly similar study to
this one for Alaska and included CFSR, ERA-Interim and
MERRA among the reanalyses they examined. They showed
that different reanalyses gave the best representation of SAT
in different regions of Alaska while CFSR and ERA-Interim
had the smallest PPN biases across the state.

Of greater relevance is the study by Lindsay et al.
(2014), who analysed seven reanalyses across the whole
Arctic for 1981–2010, including CFSR, ERA-Interim and
MERRA, but used the older JRA-25 Japanese reanalysis
rather than JRA-55. It is worth noting that these authors
concluded that CFSR, ERA-Interim and MERRA stood out
as being the reanalyses most consistent with independent
observations. For the Arctic as a whole, Lindsay et al.
(2014) established that all the reanalyses showed a signifi-
cant positive annual SAT trend while much of the region
did not have significant trends in PPN.

In addition, Behrangi et al. (2016) demonstrated that
PPN across the Arctic from MERRA and ERA-Interim is
broadly similar to each other for 2007–2010, and both com-
pare favourably with the product produced by the CloudSat
satellite and reasonably well with gauge-based observations.
Finally, Behrangi et al. (2016) compared ERA-Interim to
Arctic System Reanalysis data. Their analysis included a
comparison of SAT against station observations for the 12-
month period from December 2006 to November 2007. A
mixture of biases was apparent in ERA-Interim across Arc-
tic Fennoscandia: while cool biases occurred along the
northern and western coasts, warm biases, generally less
than 0.5 �C but with some values greater than 1.5 �C, arose
inland (c.f., their fig. 2b). Equivalent PPN biases, based on
only three stations, were positive, between 10 and 25%.
(c.f., their fig. 6b). The authors noted that ERA-Interim was
generally poorer at representing the surface climate than the
Arctic System Reanalysis, which has a higher-resolution ter-
rain and a detailed land-surface description.

Our motivation for this paper is to provide the first
detailed validation of reanalyses across the region of Arctic
Fennoscandia: while the aforementioned studies analysed

the entire Arctic, they were unable to provide the detailed
regional information on SAT and PPN we do here. This is
important because the region has areas of complex orogra-
phy, such as the Norwegian fjords and Scandinavian Moun-
tains, while the climate changes markedly from marine to
continental from west to east. Thus, replicating the regional
SAT and PPN of Arctic Fennoscandia accurately represents
a significant challenge for the reanalyses.

The remainder of this paper is set out as follows. In
section 2 we describe the observations, reanalyses and sta-
tistical methodologies that we use. Results are given in
section 3 while in section 4 we summarize and discuss our
principal conclusions about the accuracy of the four reana-
lyses in describing SAT and PPN across Arctic Fennoscan-
dia compared to observations.

2 | DATA AND METHODS

2.1 | Observations

We compare the four reanalyses with observations for the
35-year period of 1979–2013 for SAT and 1980–2013 for
PPN. This difference results simply from PPN being calcu-
lated as a forecast from daily data in some reanalyses and
thus unavailable for the first day of 1979 for those reana-
lyses that begin in this year. We use monthly SAT and PPN
data from 35 stations within the Arctic Fennoscandian
region. Their locations are shown in Figure 1 and further
details are provided in Table 1. These particular stations
were chosen based on a combination of having near-
complete time series of data across 1979–2013 and provid-
ing a reasonably uniform spatial distribution of data across
the region. The proportion of available monthly data is
shown in Table 1. This reveals that in some cases the per-
centage of data for one or other of SAT or PPN is far from
complete: when availability falls below 95% then these are
not included in the comparison for that parameter. There-
fore, 32 stations are included in the monthly analysis of
SAT and 28 for PPN, and are differentiated in Figure 1.
Similarly, when calculating the mean, variability and trends
for the annual data only stations with at least 95% of the
values for 1979/1980–2013, as derived from the mean of
the 12 monthly values, are included in the relevant figures:
31 stations are shown for SAT and 26 for PPN.

Norwegian SAT and PPN data for 14 stations (1–14 in
Figure 1 and Table 1) were obtained from the Norwegian
Meteorological Institute via their eKlima website. The Finn-
ish data (for five stations; 15–19) were acquired from two
sources. The first is the European Climate Assessment and
Dataset (ECA&D, available at www.ecad.eu/download/
millenium/millenium.php) (Klein Tank et al., 2002), which
was used for data from Inari Ivalo Airport, Rovaniemi Air-
port and Sodankylä Arctic Research Centre. The second is
the Spanish OGIMET website (www.ogimet.com), which
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takes data from the monthly CLIMAT summaries, transmit-
ted via the global telecommunication system (GTS), and
makes them available in a convenient format. This provided
data for Kilpisjärvi and Utsjoki Kevo. Data from six Swed-
ish stations (20–25) were obtained from the Swedish Meteo-
rological and Hydrological Institute (SMHI) website at
http://opendata-download-metobs.smhi.se/explore/. Finally,
we utilized data from 10 Russian stations in the Kola
Peninsula (26–35). The Russian SAT data were obtained
primarily from the Russian Research Institute of Hydrome-
teorological Information World Data Centre (RIHMI-WDC)
as 6-hourly synoptic data. Some additional data were
acquired from the UK Met Office Integrated Data System
(MIDAS) (Met Office, 2012) and from the Weather Under-
ground website (wunderground.com). These data were qual-
ity controlled and gross errors removed. A monthly mean
value was produced if at least 95% of the 6-hourly data
were available at the standard synoptic hours. To maximize
the available monthly data, there were some instances when
values were interpolated from adjacent 3-hourly values (see
Marshall et al., 2016 for further details). The principal
source for Russian PPN data was the ECA&D, with some
gaps, particularly in the last few years, filled with data from
the RIHMI-WDC. These data have been corrected for biases
due to PPN measurement deficiencies and changes in instru-
mentation (Groisman et al., 2014). In addition, monthly
SAT and PPN data for Lovozero prior to 1985 were kindly
provided by Dr. Valery Demin. For the Russian station
names, we use the anglicized forms, as employed by the
World Meteorological Organization (WMO).

The station number used in Figure 1 and Table 1 is
given in parentheses after the station name when it is being
discussed in the text.

2.2 | Reanalyses

A summary of the four reanalyses analysed in this study—
CFSR, ERA-Interim, JRA-55 and MERRA—including key
characteristics, details and the online archives from which
the reanalysis data were downloaded are given in Table 2.
Further pertinent details on each are provided below.

2.2.1 | Climate forecast system reanalysis

In the CFSR reanalysis SAT is not analysed directly and
was computed as the monthly mean of 1 hr forecasts taken
at the standard synoptic hours (four per day). PPN was
derived as the sum of the 6-hourly forecasts from +0 (ini-
tialization time) to +6 hr (four per day). Zhang et al. (2012)
demonstrated that during this 6-hr cycle the model drifts
towards a mean state that is both colder and drier, leading
to excess moisture being removed as PPN. These authors
noted that this anomalous PPN was enhanced after 1998 fol-
lowing the assimilation of the Advanced TIROS Opera-
tional Vertical Sounder (ATOVS) data. The CFSR data are
available at a resolution of ~0.34� (38 km at the equator).
Beginning on January 1, 2011 the CFSR was extended
using the operational Climate Forecast System Version
2 (CFSv2): Saha et al. (2014) described improvements over
the original CFSR. Here, the higher spatial resolution of
CFSv2 (~0.2�) was downgraded to be consistent with the
earlier CFSR data. Across the Northern Hemisphere land as
a whole, PPN in CFSv2 is significantly reduced compared to
CFSR, especially in summer (Saha et al., 2014). We note that
the CFSv2 data more closely matched PPN observations than
the earlier CFSR data, although they were generally still the
poorest of the four reanalyses analysed here (c.f., section 3.2).
For the remainder of this paper the combined CFSR and
CFSv2 data will be considered as one single reanalysis and
described simply as the CFSR.

FIGURE 1 Spatial distribution of the 35 meteorological stations used to validate the reanalyses: The numbers are linked to station names in Table 1.
Stations with black circles are used for both SAT and PPN, stations with red circles SAT only and cyan circles PPN only. The background shows the
regional orography. International borders are shown as a dashed red line [Colour figure can be viewed at wileyonlinelibrary.com]
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2.2.2 | ERA-Interim

Model resolution is ~0.54� (60 km at the equator). SAT is
analysed directly within ERA-Interim whereas PPN is
derived as an accumulation from the model forecast. Sur-
face land observations are assimilated but only used in a
separate analysis for the near-surface that has little impact
on the subsequent background forecast over the Arctic
(Simmons and Poli, 2014). Thus, these authors found that
any biases did not shift appreciably over time and that such
changes are small compared to actual observed temperature
changes.

Following on from advice given when using ERA-40
(e.g., Marshall, 2009), to avoid potential errors associated

with model spin-up in this reanalysis each daily PPN com-
prises a combination of four separate forecasts. The PPN for
the first 12 hr of a given day is calculated as the difference
between the +12 and +24 hr forecasts from 12Z on the pre-
vious day. Similarly, PPN for the second half of the day is
the difference between the +12 and +24 hr forecasts start-
ing at 00Z on the day itself. These two values are then
added to produce a daily total, which are summed to give a
monthly value.

2.2.3 | JMA 55-year reanalysis

Key improvements in JRA-55 compared to the previous
JMA reanalysis included the assimilation of some new

TABLE 1 Station locations, elevation and proportion of monthly data available for SAT and PPN for the 1979/1980–2013 period

Station number
in Figure 1 Station name

WMO
number

Latitude
(�N)

Longitude
(�E)

Elevation
(m a.s.l.)

Proportion of 1979/1980–2013
monthly data available

SAT (%) PPN (%)

1 Andøya 01010 69.31 16.13 13 100.0 99.5

2 Banak 01059 70.06 24.99 8 97.4 96.8

3 Bardufoss 01023 69.06 18.54 77 100.0 99.5

4 Bodø VI 01152 67.27 14.36 13 100.0 100.0

5 Fruholmen Fyr 01055 71.09 23.98 14 100.0 70.8

6 Kirkenes Lufthavn 01089 69.73 29.90 86 99.8 75.0

7 Nordstraum I Kvaenangen 01045 69.84 21.89 6 99.8 100.0

8 Rustefjelbma 01075 70.40 28.19 11 98.3 98.3

9 Ših�c�cajávri 01199 68.76 23.54 384 99.3 99.5

10 Skrova Fyr 01160 68.15 14.65 11 100.0 77.2

11 Slettnes Fyr 01078 71.09 28.22 8 100.0 72.3

12 Torsvag Fyr 01033 70.25 19.50 24 99.3 77.2

13 Tromsø 01026 69.65 18.94 115 100.0 99.8

14 Vardø Radio 01098 70.37 31.10 15 100.0 99.0

15 Inari Ivalo Airport 02807 68.61 27.42 147 100.0 79.4

16 Kilpisjärvi 02801 69.05 20.78 476 73.3 99.5

17 Rovaniemi Airport 02845 66.56 25.82 201 100.0 100.0

18 Sodankylä ARC 02836 67.37 26.63 179 100.0 100.0

19 Utsjoki Kevo 02805 69.76 27.01 101 100.0 99.8

20 Abisko 02022 68.36 18.82 394 100.0 100.0

21 Jokkmokk 02142 66.50 20.13 264 95.2 97.3

22 Karesuando 02080 68.44 22.45 331 100.0 100.0

23 Kvikkjokk–Årrenjarka 02120 66.89 18.02 315 96.9 99.0

24 Lainio 02086 67.76 22.35 317 94.3 100.0

25 Malmberget 02053 67.17 20.64 365 92.4 96.8

26 Kandalaksa 22217 67.13 32.43 26 100.0 100.0

27 Kanevka 22249 67.13 39.67 151 97.9 93.6

28 Kovdor 22204 67.57 30.38 246 98.6 98.5

29 Krasnoscel’e 22235 67.35 37.05 155 100.0 99.8

30 Lovozero 22127 68.08 34.80 162 100.0 100.0

31 Murmansk 22113 68.97 33.05 51 100.0 100.0

32 Teriberka 22028 69.18 35.08 30 99.8 97.3

33 Umba 22324 66.68 34.35 39 100.0 99.8

34 Vaida Guba Bay 22003 69.93 31.98 8 98.1 98.0

35 Yaniskoski 22101 68.97 28.78 101 98.6 95.1
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observational data sets (Kobayashi et al., 2015): of particu-
lar note for this study is the inclusion of Russian snow
depths from the RIHMI-WDC. The monthly SAT data are
the mean of four daily analyses while the PPN data are the
sum of four 6-hr forecasts per day, each being from the ini-
tialization time to 6 hr ahead, similar to CFSR. The model
resolution is ~0.49� (55 km at the equator).

2.2.4 | Modern-era retrospective analysis for research and
applications

For this study we use output from MERRA-Land for PPN.
This is an “off-line” rerun of the land model component that
has two primary changes from the original MERRA reana-
lysis (Reichle et al., 2011). These are (a) that the PPN is
based on merging the MERRA PPN with gauge-based data
and (b) it uses an updated catchment land surface model.
Significant improvements over the original MERRA have
been detected in various aspects of the hydrological cycle
with the assimilation of the gauge observations having the
larger impact. Note that as MERRA-Land is a land-only
simulation, data are limited to those areas defined as land
within this particular reanalysis land-sea mask. The monthly
mean SAT (PPN) figures are computed as the mean (sum)
of all the hourly means for that month from MERRA
(MERRA-Land). The model resolution of both MERRA
and MERRA-Land is 0.50� latitude by 0.67� longitude
(~75 km at the equator).

2.3 | Methodology

The reanalysis data are interpolated to the station location to
the nearest 0.1� latitude/longitude. Trends are calculated
using standard least squares methodology with the effects of
autocorrelation accounted for when calculating the signifi-
cance assuming an autoregressive first-order process
(e.g., Santer et al., 2000). Correlations are derived from the
residuals of detrended data, assuming no a priori link
between the two data sets. Four statistical parameters are
calculated when validating the reanalyses against station
observations. These are the mean difference, the root-mean-
square error (RMSE), the ratio of the standard deviations
and the correlation. The ratio of the standard deviations

(hereinafter σ ratio) is defined as σreanalysis/σobservations. The
four seasons are defined as spring (March–April–May),
summer (June–July–August), autumn (September–October–
November) and winter (December–January–February).

3 | RESULTS

The results of our analysis are presented in three ways.
First, we compare the reanalyses in terms of the four types
of error statistics calculated as mean values of all the sta-
tions for all months: these data are provided as summary
tables. Second, we show plots of the annual mean, standard
deviation and trends for each reanalysis across Arctic Fen-
noscandia, with the equivalent observations superimposed.
Third, we choose four stations, which represent different cli-
matic regions of Fennoscandia and have complete or near-
complete time series of both SAT and PPN, to examine in
greater detail how well the reanalyses reproduce the varying
climates in terms of their mean, variability and change, both
annually and across the four seasons. The stations chosen
are Andøya (1), Sodankylä Arctic Research Centre (18),
Kvikkjokk-Årrenjarka (23) and Krasnoscel’e (29) and their
locations and climate are described in detail in Appendix
S1, Supporting Information.

3.1 | Surface air temperature

Table 3 reveals that all four reanalyses have a similar,
slightly cool, mean SAT bias across all months and stations,
ranging from −0.10 (JRA-55) to −0.22 �C (ERA-Interim),
the latter result perhaps being surprising given that ERA-
Interim directly assimilates the SAT observations. However,
this reanalysis has the lowest RMSE of 1.17 �C, indicating

TABLE 2 Details of the reanalyses used in the study (left justified)

Reanalysis Reference
Model
horizontal grid

Horizontal grid of
downloaded data

Assimilation
method Data link

CFSR Saha et al. (2010) T382 Regular 1,152 × 576 3D VAR https://rda.ucar.edu/datasets/ds093.2/

CFSv2 Saha et al. (2014) T572 Regular 1,760 × 880 3D VAR https://rda.ucar.edu/datasets/ds094.2/

ERA-Interim Dee et al. (2011) T255 Gaussian N128 4D VAR http://apps.ecmwf.int/mars-catalogue/

JRA-55 Kobayashi et al. (2015) T319 Regular 640 × 320 4D VAR https://rda.ucar.edu/datasets/ds628.1/

MERRA Rienecker et al. (2011) 0.50 × 0.67� Regular 540 × 361 3D VAR https://disc.gsfc.nasa.gov/uui/datasets/
MAT1NXSLV_V5.2.0/summary

MERRA-Land Reichle et al. (2011) 0.50 × 0.67� Regular 540 × 361 3D VAR https://disc.gsfc.nasa.gov/uui/datasets/
MAT1NXMLD_V5.2.0/summary

TABLE 3 Summary of reanalysis SAT validation statistics across all
months during 1979–2013 for 32 stations

CFSR ERA-Interim JRA-55 MERRA

ΔSAT (�C) −0.19 −0.22 −0.10 −0.18

RMSE (�C) 1.64 1.17 1.33 1.45

σ ratio 0.9087 1.0087 0.9435 0.9673

Correlation 0.9908 0.9970 0.9959 0.9924
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that on average the magnitude of any bias is likely to be
smaller than the other reanalyses. Moreover, ERA-Interim
also has the σ ratio closest to unity (1.0087) and the highest
correlation value (0.9970) of the four reanalyses, suggesting
that overall it best represents SAT across the Arctic Fennos-
candian region. By the same measures, CFSR is the least
successful at reproducing the SAT.

Mean annual temperatures from the four reanalyses are
shown in Figure 2 together with equivalent station observa-
tions from stations with 95% available data in the annual
time series. In general, the reanalyses pick up the much
warmer annual temperatures in the fjord region of northern
Norway but do less well at stations located at the southern
end of the northern fjords (e.g., Banak (2)), where they are
several degrees too cold, likely because there is significant
spatial SAT variability due to the steep and complex orogra-
phy (Eilertsen and Skardhamar, 2006). The cooler tempera-
tures of the Scandinavian Mountains are clearly seen in the
reanalyses although there are some common issues at indi-
vidual stations: for example the alpine site of Abisko (20), a
region with a highly complex microclimate (Yang et al.,
2012), is significantly too cold in all four reanalyses
whereas Ših�c�cajávri (9) on the lee side is too warm. Else-
where, inland across the region, Figure 2 indicates that SAT
is typically 1 �C cooler in MERRA than the other reana-
lyses and observations, especially in Finland and the

western Kola Peninsula. For example, at Kovdor (28) the
bias in MERRA is −1.47 �C compared with −0.05 �C in
ERA-Interim. The other three reanalyses also better repro-
duce the region of warmer SATs in the south of the study
region, which includes Rovaniemi Airport (17). We also
note that there is evidence to support the positive SAT bias
that ERA-Interim has across northwest Fennoscandia shown
in Bromwich et al. (2016, fig. 2b).

As a measure of inter-annual SAT variability, Figure 3
shows maps of the standard deviation of mean annual SAT
from the reanalyses and observations. The reanalyses all do
well in reproducing the low SAT variability in northern
coastal Norway. Elsewhere, they tend to underestimate SAT
variability, particularly in the inland areas of Norway and at
the Swedish and Finnish stations. For example, the standard
deviation at Inari Ivalo Airport (15) is 1.15 �C while the
reanalysis values range from 0.86 to 0.97 �C. ERA-Interim
and, to a lesser extent, JRA-55 do manage to replicate the
higher inter-annual SAT variability observed in the Kola
Peninsula while the other reanalyses are less successful; for
example, at Kanevka (27), the observed standard deviation
of mean annual SAT is 1.26 �C, while in ERA-Interim it is
1.16 �C and in CFSR it is 0.94 �C.

In Figure 4 we look at the annual and seasonal skill of
the reanalyses at the four stations mentioned previously. For
Andøya (1), on the Norwegian coast, all four reanalyses

FIGURE 2 Mean annual SAT for 1979–2013 in (a) CFSR, (b) ERA-Interim, (c) JRA-55, and (d) MERRA. Circles represent equivalent station
observations [Colour figure can be viewed at wileyonlinelibrary.com]
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have a positive SAT bias in all seasons (Figure 4a). This is
such that the interquartile range of JRA-55 data does not
overlap that of the observations in the annual data and in
autumn and winter. The same is true for MERRA in the
annual data and all seasons other than summer: in the
annual and winter data the mean MERRA SAT is actually
higher than any of the observations. However, we note that
all the reanalyses correctly show greater SAT variability in
autumn and winter and demonstrate a pronounced positive
skewness in the SAT distribution of the former season.

At Sodankylä Arctic Research Centre (18) the biases
vary between the different reanalyses and across the seasons
but are generally small with the interquartile ranges always
overlapping those of the observations (Figure 4b). In spring
and autumn MERRA is the poorest reanalysis yet it does
best at capturing the low winter SATs at this station, which
CFSR in particular fails to replicate. All four reanalyses
accurately show a much greater range of SATs in this
season.

For Kvikkjokk-Årrenjarka (23) the reanalyses are all
biased cold across all seasons, other than winter, when they
are all biased warm (Figure 4c). We note the markedly
incorrect elevation of the station in the smoothed orography
of the reanalyses (c.f., Figures 1 and S1): the station altitude
in the models is ~650–700 m a.s.l., as compared to the
actual height of 315 m a.s.l. Assuming a lapse rate of
4.5 �C/km (Jonsell et al., 2013) an elevation difference of

350 m would cause the reanalyses to be ~1.6 �C too cold.
As the actual cold bias varies between 0.6 and 1.4 �C, the
marked error in reanalysis elevation at Kvikkjokk–Årren-
jarka is likely to be a significant contribution to the annual
SAT bias. In spring the cold bias in CFSR and MERRA is
sufficiently large for the interquartile ranges not to overlap
with that of the observations. In summer this is true for all
four reanalyses while in autumn only for MERRA, which
actually best reproduces mean winter SAT at Kvikkjokk–
Årrenjarka. Similar to Sodankylä Arctic Research Centre,
all the reanalyses correctly demonstrate a greater SAT vari-
ability in winter but here fail to reproduce the skewed distri-
bution. The seasonal warm bias may be because the
reanalyses fail to reproduce near-surface temperature
inversions.

At Krasnoscel’e (29) the reanalyses all generally do a
good job of replicating the observed SATs throughout the
year, broadly similar to Sodankylä Arctic Research Centre,
with MERRA having a negative bias while the other reana-
lyses have an overall positive bias in the annual data (c.f.,
Figure 2): in some cases the bias changes sign across differ-
ent seasons (Figure 4d). In winter MERRA again has the
smallest overall bias. We note that the results of Lindsay
et al. (2014) indicate that MERRA has a negative SAT bias
in winter across much of non-coastal Arctic Fennoscandia
compared to the median values of seven reanalyses (c.f.,
their fig. 5). However, Figure 4b–d indicates that compared

FIGURE 3 As Figure 2, but for mean annual SAT standard deviation [Colour figure can be viewed at wileyonlinelibrary.com]
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against observations, MERRA is actually the best of the
four reanalyses examined here for reproducing winter SATs
while the other three have a consistent warm bias.

Trends in mean annual SAT across northern Fennoscan-
dia are shown in Figure 5. The observations reveal that a
statistically significant warming occurred at all 31 stations
in the analysis during the 1979–2013 period, 26 at p < .01
and 5 at p < .05. The latter are generally located in the west
and north of the study region. Three reanalyses also show
significant warming across the entire region although there
are some spatial differences between them. However, CFSR
is anomalous, showing much smaller positive SAT trends in
the Scandinavian Mountains, such that there is even a slight
negative trend in some parts. Both ERA-Interim and
MERRA have areas where the significance of the warming
trends is smaller (no longer at p < .01). Generally, these do
not match spatially with the five stations having similarly
less significant trends, although two of these (Bardufoss
(3) and Rustefjelbma (8)) are located in the area of reduced
significance in MERRA (c.f., Figure 5d).

As mentioned previously, Simmons and Poli (2014)
demonstrated that for the Arctic region north of 70�N SAT
trends in ERA-Interim and JRA-55 matched each other
closely and were greater than in MERRA. There is corrobo-
rating evidence for this in Figure 5, with the warming in

that part of Fennoscandia (north of 70�N) in MERRA
(~0.2 �C/decade) about half that in the other two reanalyses.
The observations suggest that the warming at coastal sta-
tions (Fruholmen Fyr (5) and Slettnes Fyr (11)) is better
reproduced in MERRA while stations further south have a
stronger warming (Banak (2) and Rustefjelbma (8)), which
is better simulated by ERA-Interim and JRA-55.

In Figure 6 we compare the observed annual and sea-
sonal SAT trends at Andøya (1), Sodankylä Arctic Research
Centre (18), Kvikkjokk-Årrenjarka (23) and Krasnoscel’e
(29) from the reanalyses with observations. The reanalyses
all correctly demonstrate statistically significant warming at
Andøya annually and in autumn (Figure 6a), although the
station lies in the region of reduced significance in MERRA
in the former period (c.f., Figure 5d). In spring only JRA-55
correctly has a significant warming (p < .05) while in sum-
mer ERA-Interim erroneously has a significant warming.
The greater uncertainty in the winter SAT trends at Andøya
are accurately shown by all four reanalyses. For Sodankylä
Arctic Research Centre the reanalyses also do well at repre-
senting the observed trends (Figure 6b), with all correctly
having significant warming annually, in summer (apart from
ERA-Interim) and autumn and with no false significant
trends in the other seasons. At Kvikkjokk–Årrenjarka ERA-
Interim and JRA-55 correctly have a significant warming

FIGURE 4 Box-whisker plots showing mean annual and seasonal SAT statistics from observations (black), CFSR (red), ERA-Interim (blue), JRA-55
(green) and MERRA (yellow) for (a) Andøya (1), (b) Sodankylä Arctic Research Centre (18), (c) Kvikkjokk–Årrenjarka (23) and (d) Krasnoscel’e (29). The
box represents the upper and lower quartiles, with the mean value shown as a horizontal line, and the whiskers the range of data [Colour figure can be
viewed at wileyonlinelibrary.com]
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annually, and in summer and autumn. MERRA fails to
reproduce the latter while CFSR has no significant seasonal
warming trends and even incorrectly has a slight cooling in
spring. Again, all four reanalyses have a large uncertainty in
winter SAT trends that matches observations. The reana-
lyses all do well at reproducing the SAT trends at Krasnos-
cel’e with warming in the annual data and in summer and
autumn all correctly exhibited (Figure 6d). However, both
ERA-Interim and JRA-55 also have a significant warming
in spring (p < .10), which is not apparent in the observa-
tions although the mean trends are very similar.

Lindsay et al. (2014) showed that all the reanalyses they
examined, which included CFSR, ERA-Interim and
MERRA, underestimated the annual SAT trend across Arc-
tic Fennoscandia (c.f., their figs 9 and 10). Here, Figures 5
and 6 reveal that while this is indeed generally the case,
there are local exceptions such as ERA-Interim having a
stronger warming at Kvikkjokk–Årrenjarka (23) compared
to observations. Figure 6 indicates that there is no clear sea-
sonal pattern in the trend biases across the region.

3.2 | Precipitation

The skill of the reanalyses at reproducing PPN over north-
ern Fennoscandia is summarized in Table 4. MERRA-Land,
which merges a gauge-based data set, is significantly better
than the other three reanalyses. The mean bias for all

stations and all months in this reanalysis is only −1.49 mm,
whereas the best of the others (ERA-Interim) is 13.61 mm,
all three having a positive bias. Unsurprisingly, MERRA-
Land also has the lowest RMSE (14.71 mm) and highest
correlation of the four reanalyses (0.8959). However, ERA-
Interim has the σ ratio closest to unity (1.0244). MERRA-
Land is the only reanalysis that has a lower inter-annual
PPN variability than observed. CFSR is the least successful
at replicating PPN across all four statistics: its marked posi-
tive bias is also seen in Lindsay et al. (2014, fig. 8).

The mean annual PPN from the four reanalyses and
observations is shown in Figure 7. The very high PPN along
the western coast of northern Norway extends too far inland
and, to a lesser extent, too far north for all the reanalyses
other than MERRA-Land. As the high PPN also extends
west over the ocean, smoothed model orography, with the
Scandinavian Mountains stretched east–west, is highly
likely to be the principal contributing factor behind this bias
(c.f., Figure S1). This problem is especially pronounced in
CFSR with, for example, the mean annual PPN at Abisko
(20) being 1,326 mm compared to an observed value of
339 mm. The other reanalyses, including MERRA-Land,
also struggle to accurately reproduce the lower PPN at this
alpine location, perhaps because of local orographic effects:
the Scandinavian Mountain Range immediately west of the
site causes leewards conditions that reduce cloudiness and

FIGURE 5 As Figure 2, but showing decadal SAT trends for the 1979–2013 period. Purple, green and yellow lines or circles represent significance levels
of p < .10, p < .05 and p < .01, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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PPN (Barry et al., 1981). However, the PPN at other sta-
tions in the mountains, such as Bardufoss (3) and Kilpis-
järvi (16), are also significantly exaggerated, especially in
CFSR. We note that Johansson and Chen (2003) demon-
strated that location with respect to these mountains was the
single most important factor in determining PPN in Sweden.
The higher spatial resolution of CFSR is apparent in it hav-
ing greater spatial variability in mean PPN than the other
reanalyses. Unfortunately, it has significantly too much
PPN across almost all of northern Fennoscandia whereas
MERRA-Land correctly demonstrates the lower PPN in the
north of the region and in the northeast of the Kola Penin-
sula (Marshall et al., 2016).

The standard deviation of annual PPN is shown in
Figure 8. All four reanalyses show a rapid reduction in the
standard deviation away from the Norwegian coast. Values
at the coastal stations are too high in CFSR and JRA-55 but
are well reproduced in ERA-Interim and MERRA-Land.
For example at Bodø VI (4), the observed standard devia-
tion of mean annual PPN is 204.3 mm, in JRA-55 it is
287.8 mm while in MERRA-Land it is 197.6 mm. ERA-
Interim and JRA-55 do well in replicating PPN variability
across most of the rest of northern Fennoscandia, with the
two reanalyses showing similar broad spatial patterns in
PPN standard deviation. CFSR and MERRA-Land reveal
more detail in their spatial patterns but this does not corre-
spond to any increase in accuracy: Table 4 indicates that

these two reanalyses had the poorest σ ratios. For example,
there are two areas of higher PPN variability to the south of
the region in MERRA-Land (Figure 8d), but observations
from Rovaniemi Airport (17) and Jokkmokk (21) suggest
the reanalysis is incorrect.

In the annual PPN data of Andøya (1) there is a clear
positive bias in CFSR and JRA-55, a negative bias in
MERRA-Land with ERA-Interim being the best reanalysis
at representing the mean state (Figure 9a). Similar patterns
in the average biases are apparent in all four seasons. How-
ever, the variability is too large in ERA-Interim, much too
small in MERRA-Land and markedly better in the other
two reanalyses. The much smaller range of values in spring
compared to the other three seasons is correctly shown in
all four reanalyses as are the greater interquartile ranges in
autumn and winter.

For Sodankylä Arctic Research Centre (18) three reana-
lyses are relatively poor: the annual PPN values of CFSR,
ERA-Interim and JRA-55 are all substantially too large,

FIGURE 6 As Figure 4, but showing decadal trends in SAT. The whiskers represent the 95% confidence interval of the trend. Statistically significant
trends are represented by circles rather than a cross: Small, medium and large circles represent significance levels of p < .10, p < .05 and p < .01,
respectively [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Summary of reanalysis PPN validation statistics across all
months during 1980–2013 for 28 stations

CFSR ERA-Interim JRA-55 MERRA-Land

ΔPPN (mm) 33.04 13.61 19.01 −1.49

RMSE (mm) 39.44 22.61 26.37 14.71

σ ratio 1.1332 1.0244 1.0893 0.9034

Correlation 0.7882 0.8355 0.8423 0.8959
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FIGURE 7 As Figure 2, but for PPN from 1980 to 2013 and (d) MERRA-Land [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 As Figure 3, but for PPN from 1980 to 2013 and (d) MERRA-Land [Colour figure can be viewed at wileyonlinelibrary.com]
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with CFSR being especially so (Figure 9b). MERRA-Land
is the most successful reanalysis and has a small negative
bias. Once again, the sign and relative magnitude of the rea-
nalysis biases are broadly comparable across all four sea-
sons and thus are similar to the annual data. There is no
overlap of the observations and CFSR interquartile ranges
in any season and in spring there is barely any overlap
between the two ranges of PPN values. JRA-55 and ERA-
Interim show progressive improvements in accuracy,
although neither has an overlapping interquartile range with
observations in spring. Observations show a peak in vari-
ability in summer, which is most apparent in JRA-55 and
MERRA-Land.

CFSR is also the least successful reanalysis at reprodu-
cing PPN at Kvikkjokk–Årrenjarka, (23) although it does
better than at Sodankylä Arctic Research Centre. Mean
values are biased high for all the reanalyses apart from
MERRA-Land, with CFSR having non-overlapping inter-
quartile ranges with the observations in the annual and
spring data (Figure 9c). Although MERRA-Land does best
at replicating the average PPN across all four seasons it
underestimates the variability while CFSR overestimates
it. All four reanalyses correctly show that spring (summer)
is the season with least (greatest) PPN variability at
Kvikkjokk–Årrenjarka.

The relative PPN biases in the individual reanalyses are
broadly similar at Krasnoscel’e (29) to those at Sodankylä
Arctic Research Centre (c.f., Figure 9b,d), although the

absolute magnitude of the biases is generally smaller. Of
note is that all four reanalyses show the larger PPN variabil-
ity in summer at this station and all except CFSR correctly
indicate that this is the season of maximum PPN, associated
with the Arctic frontal zone that appears over northern Eur-
asia at this time (Marshall et al., 2016).

Trends in annual PPN for 1980–2013 from the reana-
lyses and observations from 26 stations are shown in
Figure 10. There is relatively little agreement in the spatial
pattern of PPN trends between the four reanalyses. The
CFSR and MERRA-Land reanalyses display much greater
variability in trends across the Arctic Fennoscandia region
than either ERA-Interim or JRA-55. All the reanalyses do
have some areas where the PPN trends are statistically sig-
nificant (at p < .10 or below) but in the majority of cases
they do not match the significance of observed trends.

CFSR has areas of significant drying in the Scandina-
vian Mountains and the eastern part of the Kola Peninsula,
which, apart from the drying at Kvikkjokk–Årrenjarka (23),
do not even match the sign of the observed trends
(Figure 10a). Areas of significant wetting comprise the
western and northern coasts of Norway and the southern
Kola Peninsula. In the former (latter) this corresponds with
the significant observed wetting at Bodø VI (4) (drying at
Kandalaksa (26)). We note a similar spatial pattern of posi-
tive PPN trends is shown by Lindsay et al. (2014, fig. 12).
However, the majority of the 11 stations showing a signifi-
cant PPN trend (all wetting) lie outside the areas of

FIGURE 9 As Figure 4, but for PPN. Note that the annual PPN values are three times that shown on the y-axis scale [Colour figure can be viewed at
wileyonlinelibrary.com]
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significance in CFSR. Apart from some western and north-
ern coastal areas, ERA-Interim shows wetting across the
entire study region (Figure 10b). There is only one small
area with a significant wetting trend (p < .10), which does
match correctly the observed trend at Malmberget (25) that
is located within it. As the majority of inland stations show
a wetting, then ERA-Interim does get the sign of the general
regional PPN trend correct. It is also the only reanalysis to
reproduce the observed, although statistically insignificant,
drying at Andøya (1), discussed below.

The JRA-55 reanalysis also displays a wetting across most
of northern Fennoscandia (Figure 10c) although its only
region where the trend in PPN is statistically significant is an
area of drying along the northern coast at the
Norwegian-Russian border that includes non-significant
observed trends at Vardø Radio (14) and Vaida Guba Bay
(34). This region of drying extends south into the Kola Penin-
sula but observations suggest it is erroneous. The spatial pat-
tern of PPN trends in MERRA-Land demonstrates
longitudinal banding of alternative wetting and drying
(Figure 10d). In some cases these correctly match the observa-
tions but in others the sign of the trend is opposite. For exam-
ple, MERRA-Land correctly shows the marked switch from a
drying trend at Kvikkjokk–Årrenjarka (23) to the wetting
trend at Jokkmokk (21) and Malmberget (25) to the east. It
also accurately shows the pattern of PPN trends over the Kola
Peninsula, with a north–south band of wetting that includes

Kandalaksa (26) and Murmansk (31), while to the east is a
band of weak trends that contains Lovozero (30), and even
further to the east there is another area of wetting that includes
Krasnoscel’e (29). However, there are areas where MERRA-
Land does less well. The reanalysis has a region of significant
drying in Finland, to the south of the study region, which
includes Rovaniemi Airport (17) where a slight wetting is
observed. Moreover, it also indicates an area of drying in the
northwest, whereas the stations located in it all have wetting
trends, which are actually statistically significant at Nord-
straum I Kvaenangen (7) and Kilpisjärvi (16).

In Figure 11 we compare the observed and reanalysis
annual and seasonal PPN trends at Andøya (1), Sodankylä
Arctic Research Centre (18), Kvikkjokk–Årrenjarka
(23) and Krasnoscel’e (29). At Andøya, CFSR has spuri-
ous wetting trends in the annual data, which result from
similarly erroneous significant trends in spring and autumn
with the summer PPN trend also being positive rather than
negative (Figure 11a). As mentioned previously, ERA-
Interim is the only reanalysis to replicate correctly the
observed drying trend at this station. However, the sea-
sonal data indicate this is through luck rather than skill:
only in autumn is ERA-Interim the reanalysis that best
matches the observed seasonal trend. For Sodankylä Arctic
Research Centre there are no statistically significant
observed PPN trends and all are close to zero; therefore, it
is unsurprising that some of the reanalyses have the wrong

FIGURE 10 As Figure 5, but for PPN for 1980–2013 and (d) MERRA-Land [Colour figure can be viewed at wileyonlinelibrary.com]
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sign of the trend, with MERRA-Land showing a drying in
each season (Figure 11b).

Similarly, at Kvikkjokk–Årrenjarka there are no signifi-
cant annual or seasonal PPN trends in either the observa-
tions or any of the reanalyses. Figure 11c reveals that CFSR
and MERRA-Land get the correct drying trend across all
seasons whereas ERA-Interim and JRA-55 have small wet-
ting trends, except for the latter in spring. The only statisti-
cally significant PPN trend at Krasnoscel’e occurs in
summer and MERRA-Land is the only reanalysis to repro-
duce this (Figure 11d). The other seasons reveal that the
four reanalyses all have broadly similar PPN trends, apart
from CFSR in winter. Thus, it is the fact that MERRA-Land
does uniquely well in summer that enables it to have a real-
istic annual wetting trend.

4 | CONCLUSIONS AND DISCUSSION

In this study we have validated SAT and PPN from four dif-
ferent reanalyses—CFSR, ERA-Interim, JRA-55 and
MERRA—against observations from 35 meteorological sta-
tions across Arctic Fennoscandia for the 35-year period
1979–2013.

All four reanalyses have an overall small cool bias
across this region, with MERRA typically about 1 �C cooler
than the other reanalyses (Figure 2), although its validation
statistics are not the poorest. Interestingly, the lower SAT in
MERRA shown in this study contrasts with its warm bias

north of 70�N prior to 2008 (Simmons and Poli, 2014). The
reanalyses also generally do well in reproducing the broad
spatial patterns of mean SAT across Arctic Fennoscandia,
although, not unexpectedly, they do less well in regions of
steep and complex orography, such as the Scandinavian
Mountains and inner Norwegian fjords. Clearly, the spatial
resolution of modern reanalyses, although considerably
improved over previous versions, is still too coarse to accu-
rately represent such areas and the important near-surface
processes that govern local SAT, such as temperature inver-
sions and the amplified diurnal cycle in lapse rate, are miss-
ing from the reanalysis models. Inter-annual SAT variability
in the coastal regions is well reproduced by the four reana-
lyses but they all tend to underestimate the variability inland
(Figure 3).

A seasonal evaluation of SAT at four stations across the
region indicates that the magnitude and even the sign of
biases in individual reanalyses can vary both between sea-
sons and at different locations. In general, winter biases tend
to be larger and usually positive, although this is not always
true for MERRA (Figure 4). Observations reveal a statisti-
cally significant warming across Arctic Fennoscandia for
1979–2013, with the majority of trends being significant at
p < .01 (Figure 5). Three reanalyses show an overall similar
regional warming pattern but of smaller magnitude, similar
to Lindsay et al. (2014). However, CFSR is anomalous,
having a much smaller warming in the Scandinavian Moun-
tains and even a slight cooling in some areas. Seasonal

FIGURE 11 As Figure 6, but for PPN. Note that the annual PPN trends are twice that shown on the y-axis scale [Colour figure can be viewed at
wileyonlinelibrary.com]
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analysis indicates that this reduced warming in CFSR
occurs across all seasons, but is particularly apparent in
spring (Figure 6). The seasonal data also reveal that in gen-
eral SATs in the other three reanalyses are sufficiently accu-
rate to correctly reproduce the varying statistical
significance of seasonal trends.

There are much greater differences between the four rea-
nalyses for mean annual PPN than SAT across Arctic Fen-
noscandia. MERRA-Land, which merges a gauge-based
data set, is distinctly better than the other three and is able
to counteract the strong influence of local conditions on
PPN (Table 4). It has a very small dry bias whereas the
other reanalyses are too wet. CFSR is the least successful
reanalysis at replicating the PPN observations, with a signif-
icant wet bias (Figure 7), also reported by Lindsay
et al. (2014). The smoothed orography in the reanalyses
means that the very high PPN associated with the western
side of the Scandinavian Mountains extends too far inland
in all but MERRA-Land. The wet bias in CFSR occurs
across all seasons and is of such magnitude that the inter-
quartile ranges of the observations and this reanalysis do
not often overlap (Figure 9).

The spatial pattern of PPN trends across the region dif-
fers markedly between the four reanalyses, which demon-
strate varying success at matching observations. Most of the
latter reveal an increase in PPN from 1980 to 2013 with
approximately a third of the stations having a statistically
significant wetting. All four reanalyses also have small areas
where the PPN trend is significant but in the majority of
cases this does not align to the sites with significant
observed trends. Despite MERRA-Land having the best val-
idation statistics this does not necessarily translate into the
most accurate PPN trends and there are some areas where it
does particularly poorly, such as northern Finland
(Figure 10). The pronounced divergence between the reana-
lyses means that any studies utilizing them to assess PPN
changes in Arctic Fennoscandia should be undertaken with
caution.

In their evaluation of reanalyses over the Canadian Arc-
tic, Rapaić et al. (2015) found that the accuracy of some of
the data sets varied considerably over time. For this study
we have limited our analysis to 1979–2013, primarily
because of the start date of the majority of the reanalyses.
However, JRA-55 begins in 1958 so we can examine
whether there are any significant temporal changes in the
quality of this reanalysis. In Tables S1 and S2 we provide
the validation statistics for SAT and PPN, respectively, at
the four stations analysed in detail in this study, from four
successive 14 year periods in the JRA-55 reanalysis,
encompassing 1958–2013. Despite marked changes in the
volume of data and the type of data sets assimilated over
this period, there is no clear general improvement in the sta-
tistics over time. Although there are some examples, such
as mean difference and RMSE of SAT at Sodankylä Arctic

Research Centre (18), where an improvement does occur
(Table S1), there are also instances where the statistics actu-
ally get progressively worse over time, like the mean differ-
ence of PPN at Kvikkjokk–Årrenjarka (23) (Table S2).
Therefore, we conclude that JRA-55 can be utilized with a
similar degree of confidence prior to 1979–2013 as during
this period itself.

In this analysis, we have focussed on annual and sea-
sonal data but extreme SAT and PPN events are likely to be
of greater importance to planning authorities given they can
be potential triggers for natural hazards that may impact
socio-economic activity (Dyrrdal et al., 2012). The spatial
scale of modern global reanalyses, although considerably
improved over previous versions, is still too coarse to accu-
rately represent such events. This is especially the case in
regions of steep and complex orography, such as the Scan-
dinavian Mountains, where both SAT and PPN can vary
markedly over short distances (e.g., Johansson and Chen,
2003; Yang et al., 2012; Pike et al., 2013; Aalto et al.,
2017). The examples when the interquartile ranges of SAT
and/or PPN from the gridded reanalysis data and observa-
tions fail to even overlap provide clear evidence of the spa-
tial mismatch between the two data sets. Thus, in such
regions, global reanalyses are probably most usefully
employed in providing boundary conditions for either
dynamical downscaling studies, using regional atmospheric
models (e.g., Heikkilä et al., 2011; Lenaerts et al., 2013;
Bieniek et al., 2016), or higher-resolution regional-scale
reanalyses, such as the Arctic System Reanalysis
(Bromwich et al., 2016) and the Uncertainties in Ensembles
of Regional Reanalyses (UERRA) project that encompasses
Europe (www.uerra.eu).
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