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ABSTRACT

Large-bodied animals such as baleen whales can now be detected
with very high resolution (VHR) satellite imagery, allowing for scien-
tific studies of whales in remote and inaccessible areas where tradi-
tional survey methods are limited or impractical. Here we present the
first study of baleen whales using the WorldView-3 satellite, which has
a maximum spatial resolution of 31 cm in the panchromatic band, the
highest currently available to nonmilitary professionals. We manually
detected, described, and counted four different mysticete species: fin
whales (Balaenoptera physalus) in the Ligurian Sea, humpback whales
(Megaptera novaeangliae) off Hawaii, southern right whales (Euba-
laena australis) off Península Valdés, and gray whales (Eschrichtius
robustus) in Laguna San Ignacio. Visual and spectral analyses were
conducted for each species, their surrounding waters, and nonwhale
objects (e.g., boats). We found that behavioral and morphological dif-
ferences made some species more distinguishable than others. Fin and
gray whales were the easiest to discern due to their contrasting body
coloration with surrounding water, and their prone body position,
which is proximal to the sea surface (i.e., body parallel to the sea sur-
face). These results demonstrate the feasibility of using VHR satellite
technology for monitoring the great whales.

Key words: remote sensing, VHR satellite imagery, mysticete, baleen
whale, Balaenoptera physalus, Megaptera novaeangliae, Eubalaena
australis, Eschrichtius robustus.

Surveys that monitor whale populations are crucial for assessing abun-
dance, density, distribution, and health status. These are particularly
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important for whale populations recovering from historical harvests
(Clapham and Baker 2002, Reeves and Smith 2003), and those influ-
enced by anthropogenic impacts, including ship strikes (e.g., fin whales,
Balaenoptera physalus; Laist et al. 2001, IWC 2011, Vaes and Druon
2013) and fishing gear entanglement (e.g., right whales, Eubalaena;
Knowlton et al. 2012, IWC 2011). Currently, nine out of the 14 known
baleen whale species (e.g., fin whale) are recorded on the IUCN Red List
either in one of the threatened categories (i.e., critically endangered,
endangered, and vulnerable) or as data deficient (IUCN 2017). There-
fore, for the majority of baleen whale species, there is a strong
conservation-based rationale for developing new technology to monitor
abundance and distribution (Reilly et al. 2008, 2013).
Whale population sizes and distributions are traditionally assessed

using boat, land, or aerial survey platforms (e.g., Donovan and Gunn-
laugsson 1989, Hiby and Hammond 1989, Buckland et al. 2001). Since
most baleen whales are seasonally migratory (Rugh et al. 2001, Mate
and Urbán-Ramirez 2003, Rasmussen et al. 2007, Jefferson et al. 2015),
vast oceanic areas must often be surveyed to build a good understanding
of migratory routes, distribution, abundance, and habitat use in different
seasonal habitats. Some mysticete species inhabit remote areas not easily
accessed by boat or plane (Nieukirk et al. 2004, Mellinger et al. 2007),
such as Omura’s whales (B. omurai) north of Madagascar (Cerchio et al.
2015) and sei whales (B. borealis) off the southern Chilean coast
(Häussermann et al. 2017). The challenges of studying large and remote
marine areas could potentially be assisted by utilizing the existing VHR
satellites orbiting the Earth (Abileah 2002, Fretwell et al. 2014, McMahon
et al. 2014, LaRue et al. 2017).
VHR satellites generate Earth surface images with submeter spatial res-

olution, meaning objects the size of great whales (i.e., 10–33 m) can be
observed on satellite images (Fretwell et al. 2014). Abileah (2002) tested
this concept with the IKONOS 2 satellite to census marine mammals.
The IKONOS 2 satellite provided images with a spatial resolution of
82 cm in the panchromatic band (i.e., black and white image) and 3.2 m
in the multispectral band (i.e., color image; Abileah 2002). On one of
the examined images, objects were identified as probable humpback
whales (Megaptera novaeangliae) due to their size, and the location and
time that the image was acquired. A decade later, the WorldView-2 was
launched and offered higher spatial resolution (50 cm panchromatic and
1.84 m multispectral) than IKONOS 2. Fretwell et al. (2014) detected
southern right whales (E. australis), both manually and automatically,
with WorldView-2 satellite imagery, demonstrating the utility of satellite
image technology for detecting great whales (i.e., sperm whales, Phys-
eter microcephalus, and baleen whales).
Since Fretwell et al. (2014), a new satellite now orbits the Earth, the

WorldView-3, which provides the highest spatial resolution available to
date (31 cm panchromatic and 1.24 m multispectral). In terms of pixels
per surface area, the number has more than doubled, from 4.3 pixels fill-
ing 1 m2 in a 46 cm resolution image (e.g., WorldView-2, and GeoEye-1
satellites) to 9.4 pixels per m2 for a 31 cm resolution image. For whales,
it means that characteristic features such as flippers and flukes, not
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easily detected on 46 cm resolution images, can be seen more clearly on
31 cm resolution images. Based on the morphometric measurements
given by Woodward et al. (2006), the fluke surface area of an average
sized gray whale takes up about six pixels on a 46 cm resolution image,
whereas on a 31 cm resolution image it is comprised of approximately
10 pixels. The ability to differentiate the body outline and features (e.g.,
fluke) is approximately 1.6 times better with WorldView-3 imagery. The
capability of reliably distinguishing characteristic features of whales is
essential for identifying an object as a whale, and for differentiating
species.
Development of a satellite-based, automated whale detection system

requires capturing images that clearly allow identification of different
whale species, before questions involving aspects of population biology
can be addressed. Comparative species identification remains untested
for satellite images, thus, we make the first attempt to characterize the
unique spectral signature (i.e., the shape of the spectral reflectance
curve), and characteristic features of four whale species found in differ-
ent marine habitats. With the support of WorldView-3 images, our study
focuses on (1) identifying the unique visual characteristics and spectral
signature of the focal whale species and (2) developing a method to
count whales manually and to categorize counts by level of confidence.
Four highly distinguishable species were targeted for this study

(Perrin et al. 2009, Jefferson et al. 2015), including the fin whale in the
Pelagos Sanctuary (France, Monaco, and Italy), the humpback whale off
Maui Nui (Hawaii), the southern right whale off Península Valdés
(Argentina), and the gray whale (Eschrichtius robustus) in Laguna San
Ignacio (Mexico). Each species has been well studied on either their
feeding or breeding grounds (Rowntree et al. 2001, Urbán et al. 2003,
Herman et al. 2011, Panigada et al. 2011, Ponce et al. 2012) where they
occur in relatively high abundance, making the study of each species
using VHR satellite technology feasible. Spectral analyses of each spe-
cies, their surrounding waters, and other nonwhale objects were subse-
quently conducted to ascertain the signatures are unique to each species
in WorldView-3 images. Results of this survey contribute towards the
development of an automated detection system that may be able to dis-
tinguish whale species and count them from space.

METHODS

Image Selection

WorldView-3 satellite images were collected from four known baleen
whale habitats (Fig. 1). Images were acquired from DigitalGlobe,
WorldView-3 imagery provider. All images had a spatial resolution of
31 cm for the panchromatic band (i.e., black and white image) and
1.24 m for the multispectral bands (i.e., color image). Four multispectral
bands were acquired for all locations (i.e., blue, green, red, and near
infrared 1 (NIR1); DigitalGlobe 2017). The choice of species, and loca-
tion and time of acquisition of the satellite images was based on the fol-
lowing four prime criteria: (1) morphological differences: the candidate
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species are morphologically distinct from each other and from other
great whale species; (2) whale abundance: to optimize the likelihood of
whales being present at the sea surface in the images, images were col-
lected near the known peak in seasonal abundance for each species;
(3) sea surface conditions: ideal conditions to observe whales on satellite
imagery are few or no white caps, low glare, and low swell (see Fretwell
et al. (2014) and Abileah (2002) for details about limitations in manual
detection of whales in rough sea state on satellite imagery); and (4) other
megafauna: the image locations and times were chosen so that no other
large marine animals (e.g., Bryde’s whales, B. edeni) of similar size to
the studied whales (e.g., fin whales) were likely to be present at the time
the images were taken. Although changes in whale distribution are pre-
dicted (Learmonth et al. 2006, Schumann et al. 2013, Silber et al. 2017),
or have already happened for some species (Ramp et al. 2015), no other
marine mammals similar in size to the target species have yet been
reported to regularly occur during the periods that satellite images were
collected for this study.
At location 1 (Fig. 1), one satellite image (570 km2) of the Au’au Chan-

nel in Maui Nui, Hawaii, taken on 9 January 2015 was acquired from
DigitalGlobe archives. This region is a well known humpback whale

Figure 1. Locations of study areas: (1) Maui Nui in the United States of
America, (2) Laguna San Ignacio in Mexico, (3) Pelagos Sanctuary in the
Ligurian Sea, and (4) Península Valdés in Argentina. Black shapes in the four
subareas represent the extent of the satellite imagery acquired and used in this
study.
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breeding ground from December to April with peak abundance between
February and March (Mobley et al. 2001, Herman et al. 2011, Baird et al.
2015). No other marine mammals similar in size to humpback whales
are regularly reported in Maui Nui during this season. Rarely, blue
whales (B. musculus), fin whales, minke whales (B. acutorostrata), sei
whales, and Bryde’s whales have been sighted offshore, north of the
main Hawaiian Islands (i.e., outside and north of the Au’au Channel;
Mobley et al. 2000, Barlow 2006, Smultea et al. 2010). Although sperm
whales have been recorded in the region, they tend to stay in deep
water away from the main Hawaiian Islands (Mobley et al. 2000, Barlow
2006). Based on OBIS-SEAMAP data (Halpin et al. 2009). The probabil-
ity of observing one of these species within the acquired satellite image
was negligible. Therefore, we assumed that only humpback whales were
present in the analyzed satellite image. The Au’au Channel is partly
enclosed by four islands, and therefore has low swell and provides ideal
sea surface conditions for satellite imagery analysis.
At location 2 (Fig. 1), one satellite image (80 km2) of Laguna San Igna-

cio, Mexico, was actively collected on 20 February 2017, which coincides
with the calving season for gray whales (Jones and Swartz 1984, Urbán
et al. 2003). Although humpback whales and blue whales (B. musculus)
are encountered off the coast of Baja California during winter, no sight-
ings have been reported within Laguna San Ignacio (Urbán and Aguayo
1987, Steiger et al. 1991, Mate et al. 1999, Calambokidis and Barlow
2004, Bailey et al. 2009). Based on OBIS-SEAMAP data (Halpin et al.
2009), the probability of encountering whale species other than gray
whales was negligible. Therefore, we assumed that only gray whales
were present in the analyzed satellite image. Laguna San Ignacio is a
small, enclosed area, where the swell was expected to be low.
At location 3 (Fig. 1), four satellite images (4,230 km2) were actively

collected for a region of the Pelagos Sanctuary in the Mediterranean Sea,
spanning French, Monégasque, and Italian waters. Three were taken on
19 June 2016 and one was acquired on 26 June 2016. In the summer, fin
whales are known to be present in the deep western offshore water of
this sanctuary (Forcada et al. 1995, Notarbartolo di Sciara et al. 2003,
Panigada et al. 2011). The choice of location for the images was based
on the findings of Panigada et al. (2008) who used habitat models to
identify an area where fin whale abundance was likely to be the highest.
In the Pelagos Sanctuary no other large marine animals similar in size to
the Mediterranean fin whale (i.e., maximum body length of 24 m) have
been observed with any regularity or in high abundance. Sperm whales
(i.e., maximum body length of 18 m) are usually found next to steep
topographic features such as canyons, some of which are located near
the northern edge of the studied images (Moulins et al. 2008, Jefferson
et al. 2015). Based on OBIS-SEAMAP data (Halpin et al. 2009, Lanfredi
and Notarbartolo di Sciara 2011, Boisseau 2014, Lanfredi and Notarbar-
tolo di Sciara 2014, Frey 2015, Van Canneyt 2016), there was a probabil-
ity of 87% that a large whale species encountered in the acquired
satellite image was a fin whale, and a probability of 13.04% that it was a
sperm whale. The different body shape should limit misidentification
between a fin whale (i.e., sleek, streamlined) and a sperm whale (i.e.,
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log-like; Jefferson et al. 2015). Whale-like objects observed on the
images of the Pelagos were included in the visual and spectral analysis
only if they had a streamlined body shape. In the northwestern Mediter-
ranean Sea there have been rare observations of humpback whales
(Frantzis et al. 2004, Dhermain et al. 2015) measuring a maximum of
18 m (Jefferson et al. 2015). Based on OBIS-SEAMAP data, the probabil-
ity of observing a humpback whale within the boundaries on the
acquired satellite images was negligible. Therefore, we assumed only fin
whales were present in the analyzed satellite image. Summer sea condi-
tions in the northern Mediterranean are characterized by calm sea condi-
tions (Panigada et al. 2008). Due to the size and enclosed nature of the
Mediterranean basin, the swell was expected to be lower than that in the
open ocean.
At location 4 (Fig. 1), one satellite image (560 km2) taken on

16 October 2014 of Golfo Nuevo in Península Valdés, Argentina, was
acquired from DigitalGlobe archives. It coincides with the calving sea-
son for the southern right whales. During the past four decades that
their population has been monitored, southern right whales inhabit Pen-
ínsula Valdés between May and December, with peak abundance from
mid-August until early October (Payne 1986, Cooke et al. 2015, IWC
2013, Crespo et al. 2014). Based on OBIS-SEAMAP data (Halpin et al.
2009), the probability of encountering any other large whale species
was null. Although killer whales (Orcinus orca) are the only other large
marine mammal known to enter this bay, they are much smaller than
southern right whales and arrive later, around December (Iñiguez
2001). Consequently, we assumed only southern right whales could be
observed on the analyzed satellite image. Regarding the sea surface con-
ditions required for satellite imagery analysis, Golfo Nuevo is sheltered
and relatively calm sea conditions were expected compared to the open
ocean.

Visual Image Analysis

One observer, experienced in whale identification at sea, visually identi-
fied and manually counted all large whale species on each satellite image.
Throughout this manuscript, whale identification on satellite imagery
refers to the classification of an object as a whale. The manual counting
method involved loading all acquired satellite images into ArcGIS 10.4
ESRI 2017. To improve whale detectability, pan-sharpened images (i.e.,
high resolution color images) were created using the ESRI algorithm in
ArcGIS 10.4 ESRI 2017. This algorithm combined the low resolution mul-
tispectral images (i.e., 1.24 m) with the high resolution panchromatic
images (i.e., 31 cm) to generate high resolution multispectral images (i.e.,
31 cm). Each pan-sharpened image was manually and systematically
scanned using a grid system at a scale of 1:1,500 m. Detected objects
needing more scrutiny were looked at a higher scale (e.g., 1:500). To scan
an area of 100 km2 took approximately 3 h and 20 min.
Determining if an object was a whale, and accounting for the confi-

dence of the observer in the identification of whale-like objects, involved
the use of a classification method (see Appendix S1). The classification
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was trialed using two additional observers in order to check for consis-
tency and identify any classification parameters that vary between
observers. A random subset of 10 whale-like objects per species was
provided to both observers (see Appendix S1). The classification
allowed categorizing each whale-like object as “definite,” “probable,”
“possible.” The proportion of “definite” whales among all counted
whales (i.e., including “probable” and “possible” individuals) was calcu-
lated for each candidate species.
A selection of whale-like objects classified as “definite” were used to

describe obvious morphological differences among species when
viewed from space. The following anatomy, if visible, was measured in
ArcGIS 10.4 ESRI 2017: (1) body length (A in Table 1), (2) body width
(B in Table 1), (3) flipper length (C in Table 1), (4) fluke width (D in
Table 1). Mean and standard deviation were calculated for all
measured anatomy, then compared to known measurements of large
whale species (Jefferson et al. 2015). Characterization of surface and
near surface water disturbances associated with each species was also
recorded (Table 2). Boats and planes were also recorded as nonwhale
objects.

Spectral Image Analysis

One of the motives of this research was also to assess what parame-
ters can be helpful when attempting to automate the detection of
whales on satellite images. Each pixel of a satellite image contains
quantifiable information (Rees 2013), not visible to the human eye. A
human eye can only see the red, blue, and green wavelengths of the
electromagnetic spectrum (Nathans et al. 1986), whereas sensors on
the WorldView-3 satellite can detect additional wavelengths of the
electromagnetic spectrum (DigitalGlobe 2017). The sensors of the
WorldView-3 also assign a value to each of the wavelength ranges
it can detect (i.e., each multispectral band), which the human eye can-
not see. The assigned value is called the spectral radiance
(W �m−2 � sr−1 � μm−1). It is the amount of light reflected by the target
for a specific wavelength (Rees 2013). Each pixel from the WorldView-
3 satellite images acquired for this study held four radiances, one for
each of the multispectral bands, or wavelength ranges: blue
(450–510 nm), green (510–580 nm), red (630–690 nm) and NIR1
(770–895 nm; DigitalGlobe 2017).
Spectral analysis was performed on each image to characterize each

whale species, and to investigate if and how they differ from each other,
their surrounding environments, and nonwhale objects (e.g., boats and
planes). First, we corrected the multispectral image of each location for
the top of atmosphere using ENVI software (Harris Geospatial). The top
of atmosphere correction is a necessary step before analyzing the radi-
ances of surfaces and objects on the Earth. Without this correction, a sat-
ellite image will show the overall radiance value of the surfaces and the
particles contained in the atmosphere (Rees 2013). Then, we extracted
the four radiances for each pixel of whale-like objects, water and non-
whale objects from the satellite image.
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The radiance of whale-like objects was collected only for “end mem-
bers.” In remote sensing “end members” refers to a group of pure pixels
(e.g., pixels filled with whale only) as opposed to mixed pixels (e.g.,
pixels filled with water and whale; Rees 2013). In this study, the “end
members” were chosen among the “definite” individuals. The whales
showing most of their body length were selected. Following this, we
identified the pure pixels of every selected “definite” whales by describ-
ing every pixel of the selected “definite” whales with one, or a combina-
tion of the characteristics listed in Appendix S2. Some pixels were made
of both water and submerged whale, or submerged whale and nonsub-
merged whale (i.e., mixed pixels). We removed these mixed pixels from
the analysis, as they could bias the spectral analysis, and only retained
the purest “whale pixels” (i.e., only submerged whale, or only nonsub-
merged whale).
The radiance of the surrounding environment of whales (i.e., water)

was assessed by manually selecting 100 pure pixels of water for each
location, in clusters of five pixels. None of these pixels contained either
white caps, or shallow water (i.e., where the seabed was visible and the
sea was lighter in color than the surrounding waters).
For nonwhale objects, we separately measured the radiance of boats

and planes. For each type of nonwhale object (i.e., boats or planes),
100 pure pixels were selected manually in clusters of five among all the
counted objects.
For the acquisition of the radiance of whale-like objects, surrounding

environments, and nonwhale objects, we used ArcGIS 10.4 ESRI 2017.
The radiance was averaged for each whale species, and per location, for
each type of nonwhale object and the surrounding waters. To allow for
quantitative comparisons to be made between species, between whale-
like and nonwhale objects, and between whale-like objects and their sur-
rounding waters, the standard error of the mean was also calculated for
each pixel set.

RESULTS

Whale Morphology and Behavior

A total of 211 whale-like objects were observed across the four studied
areas, covering approximately 5,440 km2 (Table 1). Individuals of each
of the four species were detected within their respective satellite images
by manual scanning (Fig. 2). Most of the individuals identified were
adults with the exception of gray whale calves (two “definite,” four
“probable,” and two “possible”) and one “possible” southern right whale
calf. In terms of confidence in identification of an object as a whale, fin
whales had the highest proportion of “definite” individuals, followed by
gray whales, with humpback and southern right whales having the low-
est proportion (Table 1). Comparison of the classification system
between observers showed consensus in terms of whale identification
when more subjective parameters (e.g., body color) were down
weighted (Appendix S1). There was no change in definite identifications
for humpback whales and fin whales between the consensus
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identification (i.e., three observers) and the single observer identifica-
tion. For gray whales and southern right whales, there were 10% less
definite identifications when the consensus identification was used, than
when a single observer was used (Appendix S1).
The total number of whale-like objects (categorized as “definite,”,

“probable,” and “possible” whales) for fin whales included three individ-
uals that were likely observed twice, as three of the four satellite images
acquired for the Pelagos Sanctuary were taken on the same day with
intervals of <30 s. These three whales were observed in the overlap
region of these images in slightly different locations, suggesting move-
ment. Among the 25 “possible” humpback whales, seven were included
in this category based solely on the presence of whale signs, including
flukeprints (Levy et al. 2011), that were not associated with any other

Figure 2. Pan-sharpened WorldView-3 satellite images of four “definite” gray
whales in Laguna San Ignacio (top left), a “definite” fin whale in the Pelagos
Sanctuary (top right), two “definite” humpback whales in Maui Nui (bottom
left), and a “definite” southern right whale in Península Valdés (bottom right).
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whales recorded in the image. These seven whale signs were estimated
to be too far apart from any detected whales to be associated with them,
and it is possible that they were associated with whales that dived too
far below the surface to be visible on the satellite images.
The length and width measurements of the body were acquired for all

the surveyed species. However, other body measurements such as flip-
per length or fluke width could not be measured for all individuals. No
flukes were observed on any of the humpback whales, nor flippers for
southern right whales (Table 1).
Some distinct body characteristics known to be unique features for

each species were observed on some individuals, such as long flippers
for the humpback whales; these were observed on five of the counted
individuals. White head callosities, a characteristic specific to right
whales, were positively identified on four of the recorded “definite”
southern right whales (Table 1).
Along with body features, other evidence of whale presence was

observed (Table 2). Some are related to surface water disturbance: after-
breach, flukeprint, wake, and contour (see Table 2 for a description).
There were also other signs associated with near surface disturbances:
blow and defecation. Fluke prints and contours were observed for each
surveyed species. Wake and blow were seen for three out of the four
species. After-breach splashing was only detected for the humpback
whale, likewise with defecation for the southern right whale.

Spectral Characteristics of Whales

The purest “whale pixels” that were retained for the spectral analyses
were of submerged whales, as there were no pure pixels of whales
above the sea surface for fin whales, gray whales, and humpback
whales. There were six pure “whale pixels” of southern right whales
below the sea surface, seven of humpback whales, 26 of gray whales,
and 34 of fin whales. The spectral signatures of the four candidate spe-
cies were overall similar in shape (Fig. 3). Comparatively, gray whales
had the highest radiance values (i.e., they were the lightest), followed
closely by fin whales, then southern right whales and humpback whales,
which are much darker (Fig. 3).
Comparisons of whale with their environment showed two main

results: (1) the radiance values for gray whales and fin whales distin-
guished them from the surrounding waters of the location where they
were studied, as well as the waters of the other study locations (Fig. 4);
and (2) southern right whales and humpback whales had very similar
radiance values relative to the surrounding waters of the location where
they were studied, but were distinct relative to waters from other loca-
tions (Pelagos and San Ignacio; Fig. 4). Overall none of the spectral sig-
natures of the four candidate species differed greatly from the spectral
signatures of their environment (Fig. 4).

Nonwhale Objects

In all the analyzed satellite images, except the one from Península Val-
dés, nonwhale objects were observed and clearly discernible from
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Figure 3. Radiance values of the four studied species for four multispectral
bands. The shaded areas around the dotted lines correspond to the standard
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whale-like objects. Boats and planes were the only types of nonwhale
objects that were detected (Fig. 5). Various types and sizes of boats were
observed across the three locations (i.e., the Pelagos Sanctuary, Laguna
San Ignacio, and Maui Nui) such as ferries, fishing boats, cargo and sail
boats. Planes, (i.e., passenger and smaller aircraft) were detected in the
Pelagos Sanctuary and Maui Nui. Among all the nonwhale objects that
were observed, the ones of smaller or similar size to whales were confi-
dently identified (and discriminated from whales) due to their recogniz-
able shape and, sometimes, due to the presence of other features such
as fishing gear (Fig. 5).
The spectral analysis of nonwhale objects demonstrated differences

from whales in radiance values that could be used in an automated
whale detection system. Boats and planes displayed higher radiance
values than the gray, fin, and humpback whales (Fig. 6). The spectral
signatures of the planes detected in the Pelagos Sanctuary showed a
concave-down negative slope, compared to the fin whale spectral signa-
ture, which was comparatively straight (Fig. 6b). On the satellite image
of Maui Nui, the planes exhibited a spectral signature similar to the
humpback whales except for a slight plateau between the green and red
bands (Fig. 6c). In comparison, boats were the only nonwhale object
detected on the satellite image of Laguna San Ignacio (Fig. 6a). They
showed a similar spectral signature to the gray whales, but could again
be confidently discriminated due to their features.

DISCUSSION

The four study species were detected on WorldView-3 satellite images,
which are the first whale observations for this satellite system, and the
first satellite-based detections of fin and gray whales. While earlier work

Figure 5. Panchromatic WorldView-3 satellite images of nonwhale objects: a
fishing boat with visible net in Laguna San Ignacio (left) and a small aircraft in
Maui Nui (right).
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detected right whales and probable humpback whales using Worldview-
2 and IKONOS 2 satellite imagery, respectively (Abileah 2002, Fretwell
et al. 2014), the higher spatial resolution of WorldView-3 made it possi-
ble to characterize each of the four surveyed species, and generate more
confident observations. Characterizing each of these species was also
possible due to the careful selection of time and location of acquisition
of the imagery. Each image was taken when and where only one whale
species was present, and near their respective peak abundance period.
Several characteristics helped identify objects as whales, including

size, coloration, and specific features (e.g., white head callosities, fluke).
The size of the observed objects (i.e., length and width) was the first
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indication that an object could be a whale when compared to the known
body size range (Shirihai and Jarrett 2006, Jefferson et al. 2015). In this
study, gray whales were the only species found within their size range;
all other species appeared smaller than expected. Adult southern right
whales and humpback whales were close to the lower limit of their
documented size range. The average body length of fin whales was
below its known size range (Shirihai and Jarrett 2006, Jefferson et al.
2015). This discrepancy in body length compared to known size range
is likely due to ascending or descending whales positioned diagonally to
the sea surface. Additionally, flukes were rarely detected in the images
of fin whales, southern right whales and humpback whales, which
would lead to underestimates of body length. If there were doubts about
the size of a whale-like object, other characteristics could be used to
help identify whether it was a whale (e.g., white head callosities). For
instance, sea surface water disturbance such as flukeprints (Levy et al.
2011) were observed for all the studied species. Smaller details (i.e.,
body features) also helped identify the observed objects as whales.
Fluke and flippers were some of the main body features that could be
observed among the four candidate species. Species-specific features
were also observed and helped identify objects as whales, such as white
head callosities which are distinctive of right whales for example. These
smaller features, as well as body length and shape were, however, not
equally seen for each species.
Identifying an object as a whale was more challenging for some spe-

cies due to specific behaviors, which affect their detectability in the
water. The “definite” observations were made when a whale was posi-
tioned parallel to the sea surface, which whales tend to do when travel-
ing. In this position, body features such as fluke, flippers, as well as the
general shape of the animal were visible. For example, the streamlined
body shape could clearly be noticed for some fin whales and for gray
whales with their more robust body. In contrast, the humpback whales
were not as confidently identified. Their well-documented acrobatic
nature on the breeding grounds (Helweg and Herman 1994, Frankel
et al. 1995, Clapham and Mead 1999) hindered identification on the sat-
ellite image, as whale-specific characteristics such as body shape, flip-
pers, or fluke were indistinct.
A strong contrast between a whale and its surrounding environments

is required to detect whales on satellite imagery (LaRue et al. 2017). In
comparison to humpback and southern right whales, fin and gray
whales contrasted more strongly with their surrounding waters, with
their light body coloration appearing a useful feature assisting identifica-
tion. While Maui humpback whales and Península Valdés right whales
did not show strong contrast in this study, more confident identifications
may be made where they occur in lighter toned habitats, areas where
the surrounding water is lighter in color. All species were clearly spec-
trally and visually distinct from nonwhale objects (e.g., boats and
planes), even though sizes were sometimes similar. Boats and planes,
the only types of nonwhale objects observed on the satellite images, had
clear specific outlines, different from whales. This dissimilarity was also
seen in the spectral analysis with the different radiance values.
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Although our study demonstrates that different species of large whales
can be detected and counted using satellite images, manual scanning is
time demanding. To reduce the time spent manually scanning satellite
images, an automated system should be developed. The visual and spec-
tral characterizations of the four study species could be used to inform
and develop automated systems to detect them. Various methods cur-
rently exist to automatically identify specific objects (e.g., Rees 2013,
Fretwell et al. 2014, Maire et al. 2015). A common method used to ana-
lyze satellite images is based on a purely pixel analysis (i.e., only the
spectral characteristics) of a given object. Our results from the spectral
analysis show that such a method is not likely to prove useful, as the
four candidate species had similar spectral signatures with their habitat.
However, other methods, such as an object-based image analysis (e.g.,
Groom et al. 2011, Yang et al. 2014) or a deep learning approach (e.g.,
Maire et al. 2015), may be more useful because these research tech-
niques include the shape and texture of the object in addition to the
spectral characteristics. The whale characteristics used to identify whale-
like objects could be useful, particularly body shape and surface or near
surface disturbances associated with a whale.
While a reliable automated detection method is under development,

another way to reduce the time required to manually scan satellite
images is to implement crowdsourcing projects (Supriadi and Prihat-
manto 2016, Rey et al. 2017), requiring citizen scientists to scan the
images and manually count the whales. One example of this approach is
being taken for Weddell seals (Leptonychotes weddellii) on the Tomnod.
com platform. However, for identification of whale signs, experienced
marine mammal observers may be required, necessitating the careful set
up of such a project. To maximize the utility of this approach, we recom-
mend the following parameters to be considered when developing a sat-
ellite imagery based whale study (see Appendix S3 for more details):
(1) behavior: e.g., traveling or resting, which means the animal full body
length will likely be parallel to the surface; (2) coloration relative to sur-
rounding waters: e.g., if observing a whale in deep water, lighter colors
should be more easily discernible; (3) size: animal above 10 m in total
length; (4) sea surface: e.g., species found in calm coastal water com-
pared to open ocean might be easier to detect due to a potentially lower
swell; and (5) cooccurrence of similar species, e.g., potential challenge
for misidentification of species and potential for a positive bias in
species-specific counts.
The constraint of animal size when using VHR satellite images to

detect whales must be improved for broader applications. Spatial resolu-
tion of satellite images has improved since Abileah (2002), yet it does
not appear to be high enough to detect smaller cetacean species or
whale calves. In our study, two of the images were acquired during calv-
ing season, one for gray whales in Laguna San Ignacio (Jones and Swartz
1984, Urbán et al. 2003) and one for southern right whales in Península
Valdés (Crespo et al. 2014, Cooke et al. 2015). Therefore, the presence
of calves, which have an approximate length of 5 m for both species,
was expected. However, few calves were observed on the satellite
images and fewer with high confidence. This is likely explained by their
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bodies being too small to clearly identify major anatomical features.
Some of their behaviors, such as riding on the back of their mother,
would also make it difficult to discern calves on VHR satellite images
(Smultea et al. 2017).
As with the traditional survey methods, surface presence is an issue

when surveying whale populations (Marsh and Sinclair 1989, Buckland
and Turnock 1992, Buckland et al. 2001). Deep-diving species provide
future challenges (to growth and density estimates) due to relatively
lower sightings. Comparative studies between aerial and satellite-based
methods are needed to assess the utility of satellite imagery for estimat-
ing density relative to aerial surveys. A better understanding of how
deep below the sea surface a whale is likely to be visible on satellite
images is also required. As suggested by Fretwell et al. (2014), large
reflectance panels could be installed underwater in key habitats, to assist
with calibrating the depth at which whales are visible. Another idea
would be to install artificial whale models at various depths, similar to
what Pollock et al. (2006) and Robbins et al. (2014) did with artificial
dugong (Dugong dugon) and shark models to estimate the detectability
of these animals from aircraft.
Per unit area, VHR satellite imagery has the potential to provide a

cheaper and safer means of studying wildlife in remote places compared
to traditional surveys (Fretwell et al. 2014, LaRue et al. 2011). The cost
of acquiring VHR satellite imagery has reduced in the past decade
(Fretwell et al. 2014, LaRue et al. 2017), with discounts available for the
nonprofit sector, particularly education (LaRue et al. 2017). The person-
nel and analysis time are roughly comparable between VHR satellite
imagery and traditional surveys, although less personnel are usually
required for satellite imagery analysis. However compared to the main
cost of most traditional surveys (i.e., fuel and charter of the survey plat-
form), satellite imagery can be substantially cheaper, particularly for
remote areas. A considerable advantage of using satellite imagery is that
no time-consuming logistics and permitting are involved in this
approach.

Conclusion

This survey is the first to address detection and species description
(both visually and spectrally) of whales with WorldView-3 satellite imag-
ery, suggesting that great whales can be detected on VHR satellite imag-
ery. However, some species such as humpback whales and southern
right whales were more difficult to detect on satellite images, although
they are easily identifiable from boat or aerial surveys. This is due to
either their body coloration being similar to their environment or to
their behavior, which can make it difficult to discern body shape from
above. The opposite is true for species with less acrobatic behavior at
the surface, or lighter body coloration, such as fin and gray whales,
which appear more easily discernible on satellite images in our study.
VHR satellite technology could, therefore, be useful to monitor some
whale species, especially over large areas of the ocean. Next steps in
development of this approach will be (1) to automate or semiautomate
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the detection of each species following methods by Fretwell et al.
(2014), and using an object-based image analysis approach which is
likely to be more appropriate based on this study findings; and (2) to
compare sightings data from the VHR satellite imagery approach with
data collected from traditional survey methods, to test the efficacy of
high resolution satellite imagery for measuring population density.
Downstream, this technique has the potential to be used to measure
whale densities and assessment density changes through time, following
a thorough review of how satellite imagery analysis compares with tradi-
tional surveys for making such measurements.
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SUPPORTING INFORMATION

The following supporting information is available for this article online
at http://onlinelibrary.wiley.com/doi/10.1111/mms.12544/suppinfo.

Appendix S1. Classification method and validation.
Table S1. List of parameters to identify whale-like objects on satellite

images based on Jefferson et al. (2015) and Woodward et al. (2006).
The minimum values for “body length range” corresponds to size of
calves. The maximum values for “body length range” corresponds to the
maximum length of an adult.

Table S2. Classification score equation and categorization for the
studied species: gray whale, southern right whale, humpback whale and
fin whale. Some classification parameters (Table S1) were down-
weighted, if there was less than 75% consensus. Other parameters, char-
acteristic of whales (i.e., flukeprint, fluke and flipper), where up-
weighted only if more than 75% consensus was reached. For fin whales,
the flukeprint parameter had to be down-weighted, as it reached less
than 75% consensus (Table S3).

Table S3. Percentage of consensus reached for each parameter listed
in Table S1 per species.

Table S4. Results of the classification score and categorization com-
parison between the three observers, including the consensus for the
categorization.
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Appendix S2. List of pixel descriptions for whales.
Appendix S3. Recommendation matrix concerning which large

whale species might be ideal candidates for VHR satellite surveys based
on species information from Shirihai and Jarrett (2006), and Jefferson
et al. (2015). Note that this matrix does not consider the possibility of
cooccurrence with similar species, as this aspect varies between locali-
ties for each species.
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