
1 
 

Consistency in migration strategies and habitat preferences of brown skuas over two 1 

different years, a decade apart 2 

 3 

Running page head: Consistency in skua migration  4 

 5 

Ana P. B. Carneiro1,2*, Andrea Manica1, Thomas A. Clay1,2, Janet R. D. Silk2, Michelle King2, 6 

Richard A. Phillips2 7 

 8 

1 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, 9 

United Kingdom 10 

 11 

2 British Antarctic Survey, Natural Environment Research Council, Madingley Road, High 12 

Cross, Cambridge CB3 0ET, United Kingdom 13 

 14 

 15 

* Corresponding author: ana.bertoldi.carneiro@gmail.com 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 



2 
 

ABSTRACT: At-sea movements and activity patterns of brown skuas Stercorarius 24 

antarcticus lonnbergi from South Georgia were analysed in two winters, a decade apart, to 25 

examine the degree of consistency in migration strategies and habitat preferences during the 26 

non-breeding and pre-laying exodus periods. Oceanographic habitat preferences of tracked 27 

skuas were determined using a robust model accounting for availability. At the population 28 

level, brown skuas were broadly consistent in their choice of wintering areas and habitat 29 

preferences, although the distribution extended further east in 2012 than in 2002. Skuas 30 

preferred areas associated with static oceanography (bathymetric features) both during the 31 

non-breeding and pre-laying periods, which may explain the consistency between years in 32 

habitat use. There was no significant effect of year on departure dates from South Georgia, 33 

but birds returned earlier to the colony in 2002. Migration schedules varied according to 34 

breeding status, with failed birds departing earlier than birds that bred successfully. Although 35 

failed birds travelled further from the colony, there was little variation in dates of return. In 36 

general the timing of movements was similar between sexes, but females were more likely 37 

than males to engage in a pre-laying exodus. Brown skuas spent a much higher proportion 38 

of time sitting on the water than other seabirds during both the non-breeding and pre-laying 39 

exodus periods, and the number of flight bouts per day was surprisingly low. The selection of 40 

static features by brown skuas may indicate that skuas may have less flexibility to track 41 

environmental changes than species that use dynamic cues. 42 
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INTRODUCTION 54 

Seabirds spend most of their lives at sea, only returning to land to breed. Understanding the 55 

factors that influence their marine distribution and habitat preferences is therefore essential 56 

for mitigating threats at sea, including the establishment of an effective, evolving network of 57 

protected areas that will safeguard against future biodiversity loss (Block et al. 2011, 58 

Frederiksen et al. 2012). The open ocean is a dynamic environment, and seabirds frequently 59 

target areas of higher prey availability (Pinaud & Weimerskirch 2005, Nur et al. 2011, 60 

Quillfeldt et al. 2013). These regions are often characterised by local physical features or 61 

processes, including eddies, frontal systems, upwelling zones and shelf breaks, that 62 

increase primary production or serve to aggregate animals at higher trophic levels 63 

(Wakefield et al. 2009, Kappes et al. 2010, Pinet et al. 2011, Louzao et al. 2011a). 64 

Reductions in size, and improvements in battery-life and functionality of tracking devices 65 

since the 1990s have greatly improved our knowledge of at-sea distribution patterns and 66 

behaviour of marine predators (Phillips et al. 2008). More recently, studies that combine 67 

tracking data with remotely sensed environmental data in habitat models have provided key 68 

insights into the oceanographic factors that drive the distribution of seabirds (Péron et al. 69 

2010, Louzao et al. 2011b, Wakefield et al. 2011, Quillfeldt et al. 2015). 70 

A limitation of many biologging studies is that data are available from relatively few 71 

individuals tracked over short periods of time (Žydelis et al. 2011). In addition, as most 72 

physical characteristics of the ocean are dynamic at varying temporal and spatial scales, 73 

prey, and hence predator, distributions are expected to vary accordingly (Pinaud et al. 2005, 74 

Žydelis et al. 2011, Quillfeldt et al. 2013). Although there is evidence in some species that 75 

individuals can change their non-breeding destination (e.g. Dias et al. 2011), the general 76 

trend appears to be for high regional site fidelity among migrant seabirds (Croxall et al. 2005, 77 

Phillips et al. 2005, 2006, Thiebot et al. 2011, Guilford et al. 2011, Yamamoto et al. 2014). 78 

There is also good evidence for high year-to-year consistency in migration schedules (timing 79 

and duration of events) for birds that are faithful to their winter destinations (Croxall et al. 80 

2005, Phillips et al. 2005, Dias et al. 2011, Yamamoto et al. 2014). It is important to note, 81 

however, that in all these studies, individuals were tracked for successive years, when 82 

conditions may be more similar than after longer intervals.   83 

Individuals from the same breeding population frequently use multiple regions or habitats 84 

during their non-breeding period (Phillips et al. 2005, Kopp et al. 2011, Dias et al. 2011). 85 

These alternative strategies are often associated with differences in age, breeding status, 86 

sex, or individual preferences (Phillips et al. 2005, Ramírez et al. 2013, Quillfeldt et al. 2015). 87 

Migration schedules can also vary, especially in relation to sex or prior breeding outcome 88 
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(Phillips et al. 2005, Bogdanova et al. 2011, Catry et al. 2013a). In addition, some non-89 

breeding regions may be used by a small minority of animals: only two of 34 black-browed 90 

albatrosses Thalassarche melanophris tracked from South Georgia did not migrate to the 91 

Benguela Upwelling but instead spent the non-breeding period on the Patagonian Shelf or in 92 

Australian waters (Phillips et al. 2005); and, only two of 39 south polar skuas Stercorarius 93 

maccormicki tracked from King George Island wintered in the southern hemisphere, one off 94 

Peru and the other west of Gough Island (Kopp et al. 2011). Thus, to better identify core 95 

areas for the entire population, and also to improve the accuracy of predicted distributions 96 

based on observed habitat preferences accounting for future environmental changes, 97 

tracking studies should ideally involve large numbers of individuals in multiple years (Hindell 98 

et al. 2003, Soanes et al. 2013). 99 

The brown skua Stercorarius antarcticus lonnbergi breeds on islands from the subantarctic 100 

to the Antarctic continent, and is one of the main terrestrial consumers, primarily feeding on 101 

other seabirds, and seal carrion (Phillips et al. 2004a, Carneiro et al. 2014, 2015). To date, 102 

non-breeding ranges of brown skuas have been inferred from the distribution of just six birds 103 

tracked from South Georgia during the winter of 2002 using global location sensors (GLS); 104 

these birds dispersed over deep, subantarctic and mixed subantarctic-subtropical waters 105 

within the Argentine Basin (Phillips et al. 2007). However, stable isotope analyses of 106 

feathers from a larger sample suggested that some individuals may use continental shelf or 107 

shelf-slope waters (Phillips et al. 2009). In the present study, GLS-immersion loggers were 108 

deployed on adult brown skuas from the same population, but different individuals, in order 109 

to: (1) assess if distribution or other aspects of migration strategies have changed in the ten 110 

years since the first study, (2) identify key habitat preferences, (3) better characterise the 111 

migration period in terms of timings, durations and travel distances, (4) investigate 112 

differences in distribution and migration characteristics in relation to sex and recent breeding 113 

performance, (5) compare at-sea activity patterns between male and female non-breeders, 114 

and (6) describe the pre-laying exodus. 115 

 116 

MATERIALS AND METHODS 117 

This study was carried out during two non-breeding seasons a decade apart on brown skuas 118 

at Bird Island, South Georgia (54° 00’ S, 38° 03’ W). Bird Island is probably the most 119 

densely-populated colony of brown skuas in the world, with 132 nesting pairs per km2 120 

(Phillips et al. 2004a). A GLS-only logger (weight 7 g) or a combined GLS-immersion logger 121 

(weight 9 g) was deployed in austral summer 2001/02 on 28 breeding adults. Combined 122 
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GLS-immersion loggers (weight 1.5 g) were deployed on 25 breeding adults, none of which 123 

were in the earlier sample, in the same study area in austral summer 2011/12. All loggers 124 

were attached with a cable-tie to a British Trust for Ornithology (BTO) metal ring on the 125 

tarsus and recovered after a year. Skuas were captured on the ground by hand or using a 126 

hand net or noose pole. Only data encompassing the non-breeding and pre-laying exodus 127 

periods are analysed here. The non-breeding period was defined as the time from the start 128 

of the outward migration to the return to the breeding grounds the following season, and was 129 

assessed for each individual using both location and activity data. Departure date was 130 

identified as that immediately prior to a directed movement away from South Georgia and 131 

consecutive nights thereafter that were spent largely on the water, whereas return date was 132 

that preceding the first night spent dry (on land). As skuas with eggs or chicks at South 133 

Georgia never forage at sea, after the initial return from migration, subsequent periods of 134 

consecutive days with intervening nights spent largely on the water were classified as pre-135 

laying trips (Phillips et al. 2007, Carneiro et al. 2014).  136 

Light data were analysed using the BASTrak suite based on times of sunset and sunrise 137 

estimated from thresholds in light curves; latitude was derived from day (night) length, and 138 

longitude from the time of local midday (midnight) in relation to Greenwich Mean Time and 139 

day of the year, providing two locations per day with an average accuracy of 186 ± 114 km 140 

(Phillips et al. 2004b). Locations were excluded for 2 to 4 weeks around the equinoxes, 141 

when latitudes were unreliable. All other analyses were carried out using R software (R Core 142 

Team 2014). A hierarchical state-space model fitted to data from multiple animals was used 143 

to filter and correct observed locations for logger error (Jonsen et al. 2013, Gutowsky et al. 144 

2014). Estimates of uncertainty for each latitude and longitude are required in order to fit 145 

state-space models (Winship et al. 2012). As there are no relevant published data for skuas 146 

from double-tagging experiments, a fixed geolocation error (SD of latitudinal and longitudinal 147 

error: 1.66° and 1.82°, respectively; Phillips et al. (2004b)) derived from concurrent 148 

deployment of satellite-transmitters and GLS loggers on albatrosses was used as an 149 

estimate of uncertainty. The state-space model was fitted using Markov Chain Monte Carlo 150 

(MCMC) sampling in the bsam package (Jonsen et al. 2015). Two chains of 5,000 samples 151 

from the joint posterior probability distribution were obtained after discarding the initial burn-152 

in period of 100,000 samples, and retaining every 20th of the remaining samples. 153 

Convergence was assessed visually by checking trace, density and autocorrelation plots 154 

(Pollet et al. 2014). After processing, locations derived from curves with apparent 155 

interruptions around sunset and sunrise which were not filtered by the state-space model 156 

were removed after visualisation in ArcGIS v. 10.2.2. 157 
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Changes in the spatial distribution of brown skuas between non-breeding and pre-laying 158 

periods in 2002 and 2012 were investigated by producing 95 % (general use) and 40 % 159 

(core) utilization distributions (UDs) for each individual using kernel analysis with a cell size 160 

of 50 km and a fixed smoothing parameter (h) of 200 km (Phillips et al. 2006). The 40 % 161 

density contour was selected by noting where the relationship began to increase 162 

exponentially when incremental changes in UDs were plotted against the size of the total 163 

area identified, which is considered to be a reliable approach for defining core areas of 164 

activity (Lascelles et al. 2016). Population core and general use areas were created by 165 

merging individual UDs, assigning them equal weighting. Individual overlaps were quantified 166 

using Bhattacharyya’s affinity, which ranges from 0 (no overlap) to 1 (identical UDs) and is 167 

considered to be the most appropriate index for quantifying the degree of similarity among 168 

UD estimates (Fieberg & Kochanny 2005). Kernel analysis and individual overlap 169 

calculations were carried out using the adehabitatHR package (Calenge 2006). Analyses of 170 

similarity (ANOSIM) were used to test for significant differences in the 95 % and 40 % 171 

overlaps by year, sex, and breeding status (failed or successful birds in the year of 172 

deployment) using the vegan package (Oksanen et al. 2015). The dissimilarities between the 173 

UDs were included in a distance matrix (also known as a dissimilarity matrix). ANOSIM uses 174 

a bootstrap randomization procedure to test for differences between groups; if two groups 175 

are different, then dissimilarities between the groups should be greater than those within the 176 

groups (Oksanen et al. 2015). R values from ANOSIM are equivalent to a correlation 177 

coefficient and range from -1 to 1, with 0 indicating completely random grouping.   178 

Oceanographic habitat preferences of the tracked skuas during the non-breeding and pre-179 

laying periods were determined using a case-control approach in binomial generalized 180 

additive models (GAMs). For each animal location, we simulated 50 temporally-matched 181 

pseudo-absences (controls) representing accessible areas where animals could potentially 182 

have travelled (see e.g. Wakefield et al. 2011, Žydelis et al. 2011, Raymond et al. 2015). 183 

These were created using correlated random walks (CRWs), based on the distribution of 184 

observed turning angles and distances between successive locations, using the 185 

adehabitatLT package (Calenge 2006). A constraint function defined by the minimum convex 186 

polygon (MCP) of all observed locations, increased by a 200 km buffer to account for GLS 187 

logger error was used to restrict the CRWs (Žydelis et al. 2011). The number of simulated 188 

locations was determined by measuring changes in  values of each parameter by running 189 

global models with all observed locations and varying numbers of simulated pseudo-190 

absences (Žydelis et al. 2011). Fifty CRWs were sufficient for most parameters, even though 191 

a few would have ideally required even more CRWs. However, and given the computational 192 
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requirements associated with large numbers of CRWs, we used 50 for all our models (see 193 

electronic supplementary material, S1).  194 

A set of oceanographic variables were included as candidate predictors in the habitat 195 

models on the basis of their biological relevance, i.e., their potential influence on skua 196 

distribution. To account for geolocation error, a buffer of 200 km was created around each 197 

observed and simulated location. A spatially weighed average of all oceanographic data was 198 

calculated for each of those locations. Potential predictors were: (1) depth (a proxy for 199 

coastal or pelagic domains), extracted from ETOPO1 at a spatial resolution of 0.01°, 200 

downloaded from https://www.ngdc.noaa.gov/mgg/global/global.html, and, for 2002 and 201 

2012, (2) chlorophyll a (CHL A, a surrogate of marine productivity), 8-day composites 202 

derived from SeaWIFS and Aqua MODIS, respectively, with a 0.09° spatial resolution, (3) 203 

sea surface temperature (SST, a proxy for water mass), a product from NOAA Pathfinder 204 

Advanced Very High Resolution Radiometer (AVHRR) v. 5.2 at 0.04° spatial and daily 205 

temporal resolutions, (4) eddy kinetic energy (EKE) and (5) sea level anomaly (SLA), which 206 

are indices of mesoscale activity, were daily delayed time AVISO DUACS products with a 207 

0.3° spatial resolution. All remotely-sensed variables were extracted using the Marine 208 

Geospatial Ecology Tools (MGET) for ArcGIS v. 10.2.2 (Roberts et al. 2010). As the volume 209 

of missing data prevented the use of daily composites, an average of three 8-day or 24 1-210 

day composites centred on the date of the location was created for the dynamic predictors. 211 

After creating the composites, values for CHL A were still missing for ~ 24 % of locations. 212 

Such a large proportion is likely to affect inference because of the systematic pattern in the 213 

occurrence of missing values (Wakefield et al. 2011), therefore, CHL A was discarded as a 214 

predictor in the analyses. All composites were created from customized functions and the 215 

raster package in R. Additionally, spatial gradients of SST (SST gradient, an indicator of the 216 

presence of frontal systems) and depth (depth slope, a proxy for topographic features) were 217 

calculated as the standard deviation of the mean. 218 

Prior to GAM analysis, predictors were tested for colinearity by calculating all pairwise 219 

Spearman rank correlations (rs), and when |rs| > 0.5, predictors were not included in the 220 

same model. Habitat selection was examined using GAMs because data exploration 221 

indicated potentially non-linear relationships between response and predictors. GAMs take 222 

into account non-linear relationships using non-parametric smoothers to fit flexible curves to 223 

data (Aarts et al. 2008), and were implemented within the mgcv package (Wood 2006). 224 

Smooth functions for model predictors were specified using cubic regression splines with 225 

shrinkage to avoid overparameterization and to identify the most parsimonious number of 226 

knots (Wood 2006). The number of knots, representing maximum degrees of freedom of 227 
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each smooth, was manually limited by k = 4 to avoid excessive flexibility and model 228 

overfitting that would have no ecological meaning (Mannocci et al. 2014). Due to the 229 

dynamic nature of oceanographic predictors and possible changes in habitat preferences, 230 

year, but not sex or breeding status, was included as an interaction in the models.  231 

The best minimum models were determined by forward selection using k-fold cross-232 

validation (Wakefield et al. 2011), testing the goodness of fit of each individual, in turn, 233 

against the prediction based on the other 24 individuals. Cross-validation was preferred over 234 

information criteria, e.g. the Akaike Information Criterion (AIC), as the latter can lead to 235 

overparameterized models because of violation of the independence assumption inherent 236 

within tracking datasets (Aarts et al. 2008, Cleasby et al. 2015). Cross-validation prevents 237 

overparameterization by using a set of data for fitting the model and another set for 238 

assessing predictive performance (Aarts et al. 2008). Each model was trained on 24 folds 239 

and tested, in turn, on the remaining, withheld fold which represented an individual. Model 240 

selection was based on the predictive ability of the model using the area under the receiver 241 

operating curve (AUC) averaged across the 25 sets of results (i.e., individuals) using the 242 

pROC package (see Raymond et al. 2015). AUC values between 0.5-0.7 indicate poor 243 

model predictive ability, values from 0.7-0.9 indicate reasonable model discrimination ability, 244 

and values higher than 0.9 indicate very good model discrimination (Pearce & Ferrier 2000). 245 

The forward selection procedure consisted initially of fitting all possible single predictor 246 

models with and without the year-interaction and ranking those models according to AUC. 247 

The best ranking model was chosen, and then, each of the remaining predictors was added 248 

in turn; the best model among this new set was then retained if the AUC increased 249 

significantly. This process was continued until there was no further increase in the AUC. The 250 

significance of the increase in AUC between two models was tested with a paired t-test. 251 

Using cross-validation and paired t-tests to compare AUCs is somewhat conservative; 252 

however, we considered this approach to be the best solution to avoid overparameterization, 253 

as it prevents adding parameters that only contribute trivially to increasing AUC. Habitat 254 

preference models were fitted separately for the non-breeding and pre-laying periods.  255 

Timing (departure and return dates, and duration), the size of the core and general use 256 

areas (40 % and 95 % UDs), travel speeds and distances (summed great circle distances 257 

between the locations) were compared between birds of different sex and breeding status 258 

during the pre-laying exodus and migration periods. The effect of year was included in 259 

models for the migration but not pre-laying period because of the reduced sample size (only 260 

two birds engaged in a pre-laying exodus in 2002). All main effects and interactions were 261 

tested in linear models. AIC values were used to rank all possible models according to their 262 
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degree of parsimony; the best model was the one with the lowest AIC. If two or more models 263 

were within 2 AIC units from the best-supported model, differed by one parameter and had a 264 

similar maximized log-likelihood value, only the most parsimonious model was selected. The 265 

latter suggests that improvements in model fit have not been enough to overcome the 266 

penalty of an additional parameter (Burnham & Anderson 2002, Arnold 2010). Unless 267 

indicated otherwise, all data are presented as mean ± SD. 268 

 269 

At-sea activity analysis 270 

The combined GLS-immersion loggers tested for saltwater immersion every three seconds. 271 

The number of positive tests was recorded for each 10-min period, providing a value that 272 

ranged from 0 (continuously dry) to 200 (continuously wet). Each 10-min period was 273 

categorised as daylight or darkness using sunset and sunrise times estimated from the 274 

thresholds in light curves recorded by the same loggers. The activity data were used to 275 

determine the proportion of time spent flying during daylight and darkness, and daily (each 276 

consecutive light and dark period). The proportion of the total time spent on water, and time 277 

spent in flight in each day that occurred during darkness, as well as the duration and number 278 

of flight bouts per day, were also calculated. A flight bout was defined as any continuous 279 

sequence of 10-min periods of completely dry (0) values. This method is likely to 280 

underestimate the number of flight bouts as birds may engage in multiple short periods of 281 

flight within 10 minutes. However, Phalan et al. (2007) found a close correlation between 282 

bouts derived from lower and higher resolution loggers (which record immersion every 10 283 

seconds), indicating that bouts are adequate as proxies of activity.  At-sea activity 284 

characteristics were compared between sexes, and between daylight vs. darkness using 285 

linear mixed-effect models with individual identity included as a random effect. Year was not 286 

included in the models because of the limited sample size for 2001/02 (only three birds for 287 

the non-breeding period and two birds for the pre-laying exodus). Proportion data were 288 

arcsine transformed. Models including all combinations of variables as well as their 289 

interactions were tested using AIC values following the approach described above.  290 

 291 

RESULTS 292 

Eight out of 28 breeding adults (29 %) fitted with loggers in summer 2001/02 returned to 293 

breed in 2002; seven loggers were retrieved (one bird was not recaptured), of which one 294 

failed to download. Immersion data were only available for three of the loggers. The low 295 
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return rate of instrumented birds was attributed to the accretion of goose barnacles Lepas 296 

spp. to the self-amalgamating tape wrapped around the logger causing an increase in load 297 

on the leg, and is discussed in Phillips et al. (2007). Of 25 birds fitted with a logger in 298 

2011/12, 22 returned to breed in the following season, from which 19 loggers were retrieved 299 

(three loggers were lost). Return rates were higher for birds with devices (22 of 25; 88 %) 300 

than for control birds (60 of 82; 73 %), all fitted with a plastic colour-ring with a unique alpha-301 

numeric sequence in the first season, but the difference was not statistically significant 302 

(Fisher’s exact test, P = 0.18).  303 

 304 

Non-breeding period 305 

Tracked skuas started their outward migration on 4 March ± 19 days (range: 3 February to 306 

22 April, n = 24). There was no significant effect of year on mean departure date (Table 1), 307 

but birds returned to South Georgia ca. 10 days earlier in 2002, on 5 October ± 8 days 308 

(range: 30 September to 15 October, n = 3), compared with 16 October ± 10 days (range: 26 309 

September to 4 November, n = 19) in 2012. The migration period lasted ca. 225 ± 20 days 310 

(range: 192 to 270, n = 22), and was similar between years (Table 1). Departure dates and 311 

durations of the migration period, but not return dates, varied according to breeding status 312 

and sex (Table 1). Excluding one bird that failed in early February and only started its 313 

outward migration on 4 April, failed birds departed earlier than birds that bred successfully, 314 

on 21 February ± 16 days (range: 3 February to 31 March, n = 12) and 16 March ± 15 days 315 

(range: 1 March to 22 April, n = 12), respectively (Table 1). Males departed 3 to 4 weeks 316 

later than females, on 17 March ± 18 days (range: 19 February to 22 April, n = 10), 317 

compared with 23 February ± 14 days (range: 3 February to 22 March, n = 15; Table 1); 318 

however, the effect of sex probably only reflects differences associated with breeding status, 319 

as the proportion of tracked males that bred successfully was higher than the proportion of 320 

females (60 % vs. 40 %). The mean distance travelled during migration was 391.9 ± 71.6 km 321 

per day (range: 272.9 to 540.2 km, n = 24), with no effect of year, sex or breeding status 322 

(Table 1). Maximum distances from the colony varied according to breeding status, ranging 323 

from 1,824 to 5,066 km (3,009 ± 1,043, n = 13) for failed birds, and from 1,445 to 3,363 km 324 

(2,400 ± 489 km, n = 11) for successful birds. There was no difference in the maximum 325 

distance travelled from the colony between 2002 and 2012, nor between males and females 326 

(Table 1).  327 

Skuas were distributed over a wide area (95 % UDs) during the non-breeding period, 328 

ranging from 2,437,500 to 9,455,000 km2 (4,442,500 ± 1,470,068 km2, n = 24; Fig. 1). The 329 
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distribution was limited to waters between the northern extent of the Subtropical Front and 330 

the southern boundary of the Antarctic Circumpolar Current, and between the Argentine and 331 

Agulhas basins. Core areas were 717,396 ± 244,662 km2 (range: 370,000 to 1,597,500 km2, 332 

n = 24; Fig. 1). Although the non-breeding range appeared to be more extensive in 2012 333 

than 2002, there was no significant effect of year, sex or breeding status on distribution 334 

according to the results of the ANOSIM (R = 0.0 – 0.1, P > 0.05), nor did these factors affect 335 

the size of individual 95 % and 40 % UDs (Table 1). 336 

The best model predicting skua distribution from oceanographic variables during the non-337 

breeding period achieved an accuracy of AUC = 0.76 (reasonable discrimination ability). 338 

However, the predictive accuracy when calculated separately for each individual varied from 339 

AUC = 0.50 (no discrimination) to AUC = 0.91 (very good discrimination). The most 340 

important predictors of habitat use by the tracked skuas were, in order of decreasing 341 

importance, depth and depth slope. Model response curves indicated that probability of 342 

occurrence was higher in both shallow and deep water (i.e., lowest in mid-depths), and in 343 

areas with steeper depth slopes (Fig. 2). There was no effect of year on habitat preference 344 

during the non-breeding period, nor did the tracked birds prefer areas according to SST, 345 

SST gradient, EKE or SLA. 346 

 347 

Pre-laying exodus 348 

After the return to South Georgia, two out of three (67 %) and 10 out of 19 (53 %) brown 349 

skuas that returned to breed in 2002 and 2012, respectively, engaged in a pre-laying 350 

exodus. No characteristic of the pre-laying exodus (start and return dates, duration, distance 351 

travelled per day and maximum range from the colony) differed significantly between males 352 

and females, nor between birds that bred successfully or failed in the previous season 353 

(Table 1). However, the majority (75 %) of pre-laying trips were performed by females. 354 

Skuas departed to sea on 30 October ± 9 days (range: 18 October to 15 November, n = 12), 355 

which was 16 ± 8 days (range: 8 to 39 days, n = 12) after their first return to the colony, for a 356 

pre-laying exodus that lasted six to nine days (7 ± 1 days, n = 12). All trips were to the north 357 

of South Georgia, ranging from 772 to 2,636 km from the colony (1,553 ± 580 km, n = 12). 358 

Trips were to subantarctic and mixed subantarctic-subtropical waters (Fig. 1). The tracked 359 

birds covered 455 ± 212 km per day (range: 195.5 to 953 km per day, n = 12). Individual 360 

core areas and 95 % UDs during the pre-laying exodus ranged from 195,000 to 402,500 km2 361 

(256,250 ± 61,158 km2, n = 12) and from 1,105,000 to 2,360,000 km2 (1,538,333 ± 345,694 362 

km2, n = 12), respectively. There were no significant effects of sex or breeding status on 363 
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distributions (ANOSIM results, R = -0.1 – 0.2, P > 0.05), nor on the size of individual core 364 

and general use areas according to linear models (Table 1). 365 

Depth was the main predictor of skua distribution during the pre-laying period. The best 366 

model had reasonable discrimination ability (AUC = 0.77). Variation among individuals, 367 

however, was considerable, with predictive accuracies ranging from none (AUC = 0.50) to 368 

very high (AUC = 0.93). Probability of occurrence of brown skuas increased in areas with 369 

greater water depth (Fig. 3). Habitat selection by tracked skuas was not affected by year, 370 

SST, SST gradient, EKE, SLA, and depth slope.   371 

 372 

At-sea activity patterns 373 

Given the few birds sampled in 2002, immersion data from both years were pooled. Brown 374 

skuas from South Georgia spent a considerably smaller percentage of time in flight than on 375 

the water during both the non-breeding and pre-laying exodus periods (Tables 2 and 3). 376 

During the non-breeding period, females spent more time than males in flight during 377 

darkness, probably as a consequence of longer, but not more frequent, flight bouts (Tables 2 378 

and 3). Skuas were more active (i.e., performed more flight bouts), during daylight than 379 

darkness; however, the bouts in daylight were shorter. During the pre-laying exodus, 380 

although the proportion of time spent in flight appeared to be higher in daylight than 381 

darkness, this was not reflected in the best model, nor in this case, was there a significant 382 

difference between males and females (Tables 2 and 3). Flight bout duration, however, was 383 

longer during darkness, and females engaged in more flight bouts per day than males. There 384 

was no difference in the number of flight bouts per day between daylight and darkness, nor 385 

in the duration of flight bouts between males and females during the pre-laying exodus 386 

(Tables 2 and 3). 387 

 388 

DISCUSSION 389 

Distribution and habitat use 390 

With the inclusion of the new, large sample from 2012, this study represents the most 391 

detailed published analysis of movements and activity patterns of brown skuas during the 392 

non-breeding and pre-laying exodus periods. Although habitat use of brown skuas was 393 

described previously in terms of differences in bathymetry, sea surface temperature and 394 

chlorophyll a concentrations between core and peripheral areas (Phillips et al. 2007), this is 395 
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the first study to present a robust model of habitat preference, accounting for availability. The 396 

loggers deployed in summer 2011/12 had no deleterious effect on adult survival; indeed, 397 

return rates were higher, but not statistically significant, for birds with devices than for control 398 

birds. Although some birds in the larger sample tracked in winter 2012 travelled to areas 399 

east of those used in winter 2002, there were no statistically significant differences in 400 

distribution, the size of the core and general use areas, nor in habitat preferences, despite 401 

the decade that had elapsed between the two series of deployments. Similarly, northern 402 

hemisphere skuas (great Stercorarius skua and long-tailed S. longicaudus skuas) tracked 403 

during two or three consecutive years migrated to the same general regions, and had similar 404 

migration schedules (Sittler et al. 2011, Magnusdottir et al. 2012, Gilg et al. 2013).  405 

The brown skuas tracked in this study were not limited to any specific water mass; however, 406 

most of their core areas were in subantarctic and mixed subantarctic subtropical waters 407 

during both the non-breeding season and the pre-laying exodus. They preferred regions with 408 

either shallow or deep waters, and increasing depth slopes, during the migration period, 409 

whereas in the pre-laying exodus, they selected habitat based solely on water depth. This 410 

confirms the inference from stable isotope analysis that a minority of brown skuas winter in 411 

shelf-slope waters (Phillips et al. 2007, 2009). Depth gradients are steeper at seamounts, 412 

and where shelf-edge fronts form, which are zones of intense mixing and enhanced primary 413 

production (Bost et al. 2009, Louzao et al. 2011b, Wakefield et al. 2011, Scales et al. 2014). 414 

Also, several studies have shown associations of seabirds with frontal systems influenced by 415 

bathymetric features (Phillips et al. 2005, 2006, Paiva et al. 2010a, Paiva et al. 2010b, 416 

Louzao et al. 2011b, Rayner et al. 2012). 417 

 In the present study, the core areas of several individuals (as well as the composite 40 % 418 

UDs for the population) overlapped extensively with regions of steeper slopes around the 419 

Falkland Escarpment, which forms the boundary between the Falkland Plateau and the 420 

Argentine Basin (Fig. 1). The Falkland Escarpment is a region subject to high frontal 421 

probability during the austral autumn, winter and spring, mostly associated with the presence 422 

of eddies from the Brazil-Malvinas Confluence, where the warm Brazil Current and the cold 423 

Malvinas Current meet (Saraceno et al. 2004). Moreover, five birds targeted areas of 424 

shallower bathymetry around the Discovery Rise and its associated seamounts during their 425 

migration in 2012, whilst one bird travelled as far as the Agulhas Basin, reaching turbulence 426 

zones from the Agulhas Return Current, where primary productivity is enhanced. 427 

Although the skuas showed a preference for oceanographic characteristics that are often 428 

found in areas with abundant and predictable prey, it is noteworthy that much of the 429 

Argentine Basin, which was one of the main wintering areas, is not particularly productive 430 
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based on chlorophyll a concentrations (Phillips et al. 2007). This suggests that bathymetric 431 

features alone cannot entirely explain the observed distribution of brown skuas. Quillfeldt et 432 

al. (2013) suggested that the occurrence of Antarctic prions Pachyptila desolata in deep 433 

waters to the east of the Patagonian Shelf may be to avoid competition with larger seabirds. 434 

The same may be true for brown skuas, as the Patagonian Shelf is used year-round by 435 

numerous albatross and petrel populations from Tristan da Cunha, Gough, the Falkland 436 

Islands, South Georgia, and New Zealand (Croxall & Wood 2002, Phillips et al. 2006, Catry 437 

et al. 2013b, Copello et al. 2013). The ranges of the tracked brown skuas still overlapped to 438 

some extent with non-breeding Falkland skuas S. antarcticus antarcticus (Phillips et al. 439 

2007), and even more with wandering albatrosses Diomedea exulans, year-round (Jiménez 440 

et al. in press). However, inter-specific competition between these taxa may be alleviated by 441 

trophic partitioning of resources or differences in behaviour. Whilst δ13C values are similar 442 

for wandering albatrosses and brown skuas, δ15N values in feathers from wandering 443 

albatrosses are much higher, and their activity patterns differ (Phalan et al. 2007, Phillips et 444 

al. 2009, Ceia et al. 2012). Therefore, although the tracking and isotope data indicate that 445 

they occur in the same general area, wandering albatrosses feed at substantially higher 446 

trophic levels. Although δ15N values in brown skuas are significantly higher than in non-447 

breeding Antarctic prions, this is not by a full trophic level, suggesting there is some diet 448 

overlap (Phillips et al. 2007, 2009). Antarctic prions feed on a wider range of small 449 

zooplankton taxa, whereas brown skuas probably have a mixed diet that includes 450 

zooplankton, low trophic level squid or fish (Phillips et al. 2007, Grecian et al. 2015). Finally, 451 

skuas breeding at the Falkland Islands occur closer to the Patagonian shelf-break and to a 452 

lesser extent in open waters than brown skuas (Phillips et al. 2007).  453 

As brown skuas select habitats based mainly on static oceanography (water depth), their 454 

return to the same general area each year is not surprising, assuming that prey preferences 455 

are also consistent. Similarly, the use of neritic waters and areas of steeper bathymetric 456 

relief by black-browed albatrosses varied very little over multiple breeding seasons (Pinaud 457 

& Weimerskirch 2005, Wakefield et al. 2011, Catry et al. 2013b). The recurrent use of similar 458 

areas may increase familiarity with feeding conditions, including fine-scale resource 459 

distribution, and potentially help reduce inter-specific competition (Quillfeldt et al. 2013, 460 

Ramírez et al. 2015). Although habitat preferences were consistent between years, the 461 

tracked skuas had multiple migration destinations in 2012, which should ensure that a 462 

proportion of the population would escape from detrimental changes during winter if those 463 

are constrained spatially (Phillips et al. 2009, Dias et al. 2011). At the population level, core 464 

and general use areas did not differ significantly between years, but a few individuals in 465 

2012 travelled to regions east of those exploited in 2002 (Fig. 1). Two birds in this latter 466 
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group remained exclusively in the Agulhas Basin or in waters around the Discovery Rise, 467 

whereas another four birds used areas around the Discovery Rise and in the Argentine 468 

Basin. The existence of several non-breeding destinations for the same population has been 469 

confirmed for many seabird species, including south polar and great skuas (Phillips et al. 470 

2005, Kopp et al. 2011, Dias et al. 2011, Magnusdottir et al. 2012, Tranquilla et al. 2013, 471 

Ramírez et al. 2015). That the minority strategies were not detected in brown skuas from 472 

South Georgia in the first set of deployments probably reflects the modest sample size rather 473 

than indicates that birds have explored new environments in the subsequent decade. This is 474 

supported by the stable isotope data which suggests that some birds sampled in 2001/02 475 

had exploited neritic or shelf-slope waters in the previous winter (see above), and by the lack 476 

of any substantial differences between years in distribution based on randomizations, or in 477 

habitat preferences (this study). Regardless, the two tracking datasets provide an adequate 478 

representation of the distribution of the majority of individuals. Indeed, in an analysis of 15 479 

years of tracking data, Bogdanova et al. (2014) suggested that one or two years of data is 480 

usually sufficient to identify a considerable proportion of the long-term foraging areas for 481 

species which feed on spatially stable habitats. Furthermore, the distributions of general (95 482 

% UD) and core areas (40 %) of the tracked skuas were not influenced by sex or breeding 483 

status, which are complicating factors in other studies (Bogdanova et al. 2011, 2014).  484 

 485 

Migration schedules 486 

Failed birds departed from the breeding grounds earlier than successful birds, in line with 487 

other studies (Phillips et al. 2005, Bogdanova et al. 2011, Quillfeldt et al. 2015). If migration 488 

commences earlier, more time may be allocated to undertake farther movements. Indeed, 489 

maximum distance from the colony was higher for failed than for successful breeders. Failed 490 

birds may also be in better condition to undertake longer migrations, as costs associated 491 

with breeding have been lower (Bogdanova et al. 2011). The latter is particularly likely for 492 

skuas at South Georgia, which are able to exploit abundant seal carrion only in December 493 

and January; thereafter, the availability of carrion declines steeply and breeding birds are 494 

forced to target other, less profitable prey (Phillips et al. 2004a, Anderson et al. 2009, 495 

Carneiro et al. 2014). Therefore, a movement away from the breeding grounds to areas with 496 

more favourable conditions should be expected for failed birds that are no longer under 497 

central-place constraints.  498 

The mean date of return to South Georgia, however, was similar for all tracked individuals 499 

within the same year, suggesting that previous breeding outcome ceased to be important at 500 
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some stage during the migration period (Phillips et al. 2005). Similar arrival dates may 501 

decrease the chances of nest site usurpation by prospectors seeking to adopt a vacant site 502 

(Furness 1987). Indeed, it has been suggested that nesting habitat in the study area is 503 

saturated, with few opportunities for the establishment of new territories (Phillips et al. 504 

2004a). The explanation for the later return of tracked birds to the colony in 2012 than 2002 505 

is less clear. Shifts in phenology are expected as a response to climate change, and in the 506 

Southern Ocean, dates of arrival and of the first egg have been later for a number of species 507 

(Barbraud & Weimerskirch 2006). In summer 2002/03, brown skuas at South Georgia laid 508 

later, and had lower hatching success, fledging success and chick growth rates than in the 509 

mid-1980s (Phillips et al. 2004a). Later arrival in 2012 than 2002 may therefore be indicative 510 

of poorer environmental conditions during the preceding winter, potentially reflecting a 511 

longer-term trend, but this would need to be confirmed by more extensive tracking. There 512 

was no consistent effect of sex on timing of movements, in accordance with previous studies 513 

of arrival times of brown skuas at the South Orkney Islands, and of migration schedules of 514 

long-tailed skuas in the high Arctic (Burton 1968, Gilg et al. 2013).  515 

Prior to egg-laying and after returning from migration, ca. 55 % of tracked skuas travelled to 516 

waters to the north of South Georgia in a pre-laying exodus. Although timings and distances 517 

travelled were unaffected by sex and previous breeding status, a pre-laying exodus was 518 

more commonly performed by females. At this time of year, food resources accessible on 519 

land for skuas are likely to be limited. There is very little carrion available from seals, and 520 

most burrow-nesting petrels have yet to return (Carneiro et al. 2014). Skuas arrive earlier at 521 

their breeding grounds to defend their territories and (re)establish pair bonds, but it is 522 

possible that to acquire enough resources for egg formation, females have to return to feed 523 

at sea. In most seabird species, females are generally away for longer periods or travel 524 

further to reach more productive waters (Guilford et al. 2009, Hedd et al. 2014, Quillfeldt et 525 

al. 2014, but see Pinet et al. 2012). Moreover, given the exceptionally high nesting density at 526 

South Georgia, loss of the territory to conspecifics is more likely if the breeding site is 527 

unattended for longer periods, suggesting it may be beneficial for one member of the pair to 528 

remain close to the colony. Indeed, high attendance rates and fewer joint nest absences 529 

have been reported for skuas at South Georgia during incubation and chick-rearing when 530 

compared to sites elsewhere (Pietz 1987, Catry & Furness 1999, Caldow & Furness 2000, 531 

Carneiro et al. 2014).  532 

 533 

At-sea activity patterns 534 
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Brown skuas spend much less time flying during the non-breeding and pre-laying periods 535 

than albatrosses and petrels, particularly during daylight (Phillips et al. 2007, this study). The 536 

number of flight bouts per day was surprisingly low. This suggests that birds may forage 537 

opportunistically using a sit-and-wait strategy as previously described for other species, 538 

including white-chinned petrels Procellaria aequinoctialis, grey-headed albatrosses 539 

Thalassarche chrysostoma, and Desertas petrels Pterodroma deserta (Catry et al. 2004, 540 

Mackley et al. 2010, Péron et al. 2010, Ramírez et al. 2013). Alternatively, brown skuas may 541 

feed on large items of carrion or moribund prey, as they do on land during the breeding 542 

season (Phillips et al. 2004a, Anderson et al. 2009, Carneiro et al. 2014). Amongst 543 

procellariids, the species with activity patterns during the non-breeding season that are most 544 

similar (i.e., low flight activity) to those of wintering brown skuas are wandering albatrosses 545 

and white-chinned petrels, which to some extent also rely on scavenging (Xavier et al. 2004, 546 

Mackley et al. 2010, 2011). These two species nonetheless spend considerably more time in 547 

flight, possibly because they use dynamic soaring to reduce flight costs, whereas skuas 548 

usually flap continuously in cruising flight and so would expend more energy if travelling long 549 

distances between prey patches (Pennycuick 1987, Catry et al. 2011, Gutowsky et al. 2014).  550 

Although both sexes were more active during daylight, females spent proportionally more 551 

time flying during darkness than males in the non-breeding season. This reflects their longer, 552 

but not more frequent, flight bouts. As females have higher wing loading and less 553 

manoeuvrability than males (Phillips et al. 2002, Carneiro et al. 2014), they might land less 554 

frequently because of the greater cost of taking off (Shaffer et al. 2001, Phillips et al. 2004c). 555 

The greater manoeuvrability of males would also be an advantage during daylight when 556 

feeding by kleptoparasitism (Phillips et al. 2002), but the limited time spent flying suggests 557 

that either this foraging mode is rare, or that when used, it is highly successful. Although in 558 

theory, darkness should tend to limit movements, as aerial detection and capture of prey is 559 

more difficult (Phalan et al. 2007, Mackley et al. 2011), this seems not to affect females to 560 

the same degree as males, but it could explain their longer flight durations at night. The 561 

number of flight bouts per day during the pre-laying exodus was also higher for females, 562 

suggesting that they increase their foraging effort to acquire enough resources for egg 563 

formation.  564 

 565 

CONCLUSIONS 566 

Although seabird distributions are expected to vary temporally and spatially according to the 567 

dynamic nature of the marine environment, the population of brown skuas tracked from 568 
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South Georgia during migration and the pre-laying exodus visited the same general area and 569 

showed similar habitat preferences between 2002 and 2012. They preferred habitats 570 

associated with static features (i.e., bathymetry), which may explain the consistency found 571 

between years. Further studies comparing years of contrasting foraging conditions would 572 

reveal whether skuas are able to change their foraging strategies to compensate for 573 

environmental changes. In addition, this study highlighted the need for large sample sizes to 574 

detect strategies used by a small proportion of the population. The existence of multiple non-575 

breeding destinations may be advantageous given increasing anthropogenic impacts on 576 

marine ecosystems. 577 
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Table 1: Summary of linear models for the effects of sex, breeding status (successful 

or failed) and year on characteristics of the non-breeding period and pre-laying 

exodus of brown skuas tracked from South Georgia in winter 2002 and 2012. + 

indicates predictors that were retained by the most parsimonious models, n/a (not 

applicable) indicates predictors that were not retained in the analysis. Interactions 

are not shown because they were not retained in the best models. 

  Sex Status Year d.f. AICc ∆AICc 

Non-breeding period 

Departure dates + + 4 193.6 0.0 

Return dates + 3 169.2 0.0 

Duration + + 4 175.3 0.0 

Size of core area (40% UD) 2 667.2 0.0 

Size of general use area 

(95% UD) 2 753.3 0.0 

Distance travelled per day 2 -11.7 0.0 

Max. distance from colony + 3 10.8 0.0 

Pre-laying exodus             

Departure dates n/a 2 -46.6 0.0 

Return dates n/a 2 90.6 0.0 

Duration n/a 2 38.0 0.0 

Size of core area (40% UD) n/a 2 1.6 0.0 

Size of general use area 

(95% UD) n/a 2 1.3 0.0 

Distance travelled per day n/a 2 19.1 0.0 

Max. distance from colony     n/a 2 85.5 0.0 
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Table 2: Summary of activity patterns of brown skuas tracked from South Georgia during the non-breeding period and pre-laying exodus in 
winter 2002 and 2012.Values are presented as mean ± SD (range). 

  
Daylight Darkness 

Male  Female Male  Female 
Non-breeding period 

% time in flight 

2002 25.9 ± 0.0 (25.9 - 25.9) 19.8 ± 6.9 (14.9 - 24.7)  11.4 ± 0.0 (11.4 - 11.4) 15.1 ± 1.4 (14.1 - 16.1) 

2012 24.8 ± 4.5 (18.8 - 33.0) 25.9 ± 5.4 (17.9 - 37.5) 16.9 ± 3.9 (12.1 - 22.7) 24.5 ± 7.9 (9.2 - 42.0) 

Total time in flight (h per day) 

2002 3.0 ± 0.0 (3.0 - 3.0)  2.3 ± 0.8 (1.7 - 2.9) 1.4 ± 0.0 (1.4 - 1.4) 1.9 ± 0.2 (1.8 - 2.1) 

2012 2.6 ± 0.5 (2.0 - 3.5) 2.9 ± 0.7 (1.9 - 4.1) 2.2 ± 0.5 (1.6 - 3.1) 3.2 ± 1.1 (1.2 - 5.6) 

Total time on water (h per day) 

2002 8.5 ± 0.0 (8.5 - 8.5) 9.3 ± 0.8 (8.7 - 9.9) 11 ± 0.0 (11.0 - 11.0) 10.5 ± 0.2 (10.4 - 10.6) 

2012 8.0 ± 0.5 (7.2 - 8.6) 8.3 ± 0.8 (6.9 - 9.5) 11.2 ± 0.5 (10.6 - 11.7) 9.7 ± 1.2 (7.7 - 11.7) 

No. flight bouts per day 

2002 2.3 ± 0.0 (2.3 - 2.3)  2.0 ± 1.0 (1.3 - 2.7) 0.9 ± 0.0 (0.9 - 0.9) 1.3 ± 0.1 (1.2 - 1.4) 

2012 1.8 ± 0.8 (0.9 - 2.7) 2.2 ± 0.7 (1.0 - 3.7) 1.3 ± 0.3 (1.0 - 1.9) 1.4 ± 0.4 (0.9 - 2.0) 

Duration flight bouts (min) 

2002 29.1 ± 0.0 (29.1 - 29.1) 32.9 ± 4.4 (29.8 - 36.0) 85.9 ± 0.0 (85.9 - 85.9) 89.7 ± 1.5 (88.7 - 90.8) 

2012 30.8 ± 2.2 (28.6 - 35.1) 46.1 ± 29.3 (33.4 - 135.7) 95.6 ± 15.4 (81.6 - 119.3) 119.7 ± 43.7 (57.6 - 188.9) 

Pre-laying exodus 

% time in flight 

2002 23.4 ± 0.0 (23.4 - 23.4) 11.5 ± 0.0 (11.5 - 11.5) 1.4 ± 0.0 (1.4 - 1.4) 0.3 ± 0.0 (0.3 - 0.3) 

2012 13.6 ± 3.3 (11.3 - 15.9) 19.1 ± 9.0 (12.6 - 40.0) 9.9 ± 6.1 (5.6 - 14.2) 17.8 ± 10.0 (5.2 - 33.0) 

Total time in flight (h per day) 

2002 3.6 ± 0.0 (3.6 - 3.6) 1.7 ± 0.0 (1.7 - 1.7) 0.2 ± 0.0 (0.2 - 0.2) 0.0 ± 0.0 (0.0 - 0.0)  

2012 2.0 ± 0.4 (1.7 - 2.3) 2.6 ± 1.4 (1.1 - 5.6) 0.9 ± 0.6 (0.5 - 1.3) 1.9 ± 1.2 (0.4 - 4.0) 

Total time on water (h per day) 

2002 12.0 ± 0.0 (12.0 - 12.0) 13.6 ± 0.0 (13.6 - 13.6) 8.1 ± 0.0 (8.1 - 8.1) 8.6 ± 0.0 (8.6 - 8.6) 

2012 12.4 ± 0.7 (11.9 - 12.9) 10.6 ± 2.2 (7.9 - 13.5) 8.6 ± 0.8 (8.1 - 9.1) 8.8 ± 2.4 (6.1 - 13.0) 
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N. flight bouts per day 

2002 2.0 ± 0.0 (2.0 - 2.0) 1.1 ± 0.0 (1.1 - 1.1) 0.5 ± 0.0 (0.5 - 0.5) 0.1 ± 0.0 (0.1 - 0.1) 

2012 0.5 ± 0.2 (0.3 - 0.7) 2.0 ± 1.9 (0.7 - 6.1) 0.8 ± 0.2 (0.7 - 1.0) 1.4 ± 1.0 (0.3 - 3.4) 

Duration flight bouts (min) 

2002 46.0 ± 0.0 (46.0 - 46.0) 34.4 ± 0.0 (34.4 - 34.4) 63.3 ± 0.0 (63.3 - 63.3) 28.2 ± 0.0 (28.2 - 28.2) 

2012 23.7 ± 2.7 (21.8 - 25.6) 40.5 ± 18.4 (26.1 - 77.5) 62.3 ± 6.8 (57.5 - 67.1) 67.5 ± 40.8 (24.9 - 147.2) 
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Table 3: Summary of linear mixed-effects models of activity patterns of brown skuas 

tracked from South Georgia in 2002 and 2012 during the non-breeding period and pre-

laying exodus. + indicates predictors retained in the most parsimonious models. 

Non-breeding period LightDark Sex LightDark:Sex d.f. AICc ∆AICc 

% of time spent in flight + + + 6 -1399.6 0.0 

No. of flight bouts per day + 3 -3.7 0.0 

Duration of flight bouts  + + 4 373.1 0.0 

Pre-laying exodus 

% of time spent in flight 3 -82.9 0.0 

No. of flight bouts per day + 3 50.0 0.0 

Duration of flight bouts  + 3 32.0 0.0 
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Fig. 1: Utilization distributions (40 % and 95 %) of individual brown skuas tracked from South 864 

Georgia during the non-breeding season in 2002 [a] and 2012 [c]. Composite of individual 865 

utilization distributions (40 % and 95 %) during non-breeding and pre-laying exodus in 2002 866 

[b] and 2012 [d] overlaid on bathymetric map. Black lines correspond to STF (Subtropical 867 

Front), SAF (Subantarctic Front), PF (Polar Front), and SACCF (Southern Antarctic 868 

Circumpolar Current Front).  869 
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Fig. 2: Response curves of predictors retained in the most parsimonious habitat model for 876 

brown skuas during the non-breeding period. Dashed lines indicate estimated 95 % 877 

confidence intervals, with covariate values as a rug along the bottom of the figure. 878 
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Fig. 3: Response curves of predictors retained in the most parsimonious habitat model for 893 

brown skuas during the pre-laying exodus. Dashed lines indicate estimated 95 % confidence 894 

intervals, with covariate values as a rug along the bottom of the figure. 895 
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Supplement 1 

Effects of different numbers of correlated random walks (CRWs) on model performance. Number of 

simulations was tested by running global models with all observed locations and varying numbers of 

simulated pseudo-absences. The number of simulations was determined by measuring changes in  

values of each parameter, being set when  stabilized. SST refers to sea surface temperature, SLA to sea 

level anomaly, and EKE to eddy kinetic energy.  
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