

Article (refereed) - postprint

Harris, Michael P.; Albon, Steve D.; Wanless, Sarah. 2016. **Age-related** effects on breeding phenology and success of common guillemots Uria aalge at a North Sea colony.

© 2016 British Trust for Ornithology

This version available http://nora.nerc.ac.uk/513978/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This is an Accepted Manuscript of an article published by Taylor & Francis Group in Bird Study on 14/07/2016, available online: http://dx.doi.org/10.1080/00063657.2016.1202889

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

2	Age-effects on breeding phenology and success of Common
3	Guillemots Uria aalge at a North Sea colony
4	MICHAEL P. HARRIS ^{1*} , STEVE D. ALBON ² AND SARAH WANLESS ¹
5 6	¹ Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK; ² The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
7	Short title: Age-effects in Common Guillemots
8 9 10 11 12 13 14 15 16 17 18	Keywords: Age of first breeding, Alcidae, Lifetime breeding success, Long-term studies, Recruitment, Murre
19 20 21	
22 23 24	
25 26	
27 28 29	
30 31	
32 33	
34 35	
36 37	
38	*Correspondence author. Email: mph@ceh.ac.uk

- 40
- 41
- 42
- 43 **Capsule** Common Guillemots Uria galge show delayed breeding and marked age-related changes in 44 reproductive success consistent with improved performance with experience.
- 45
- 46 Aims To determine age of first breeding and age-related effects on breeding phenology and success 47 of Common Guillemots.
- 48

49 Methods Resighting data from a long-term colour-ringing study of Common Guillemot chicks were 50 combined with observations of breeding phenology and success to follow the recruitment process, 51 breeding phenology and success of 62 birds at a major North Sea colony over a 30 year period.

- 52 53 **Results** The median age of first breeding of Common Guillemots was 6.6 years. There were no 54 detectable costs of first breeding on return rates or the likelihood of breeding the next season but
- 55 first time breeders bred later and less successfully. Age of first breeding and lifetime breeding
- 56 success both varied among individuals but there was no clear optimal age of first breeding and early
- 57 first breeding was not associated with higher lifetime breeding success.
- 58

59 **Conclusions** Common Guillemots in the Isle of May population delayed breeding for 3-4 years 60 beyond physiological maturity. The marked increase in breeding success with age was consistent 61 with improved performance with experience rather than selection for higher quality individuals. 62 Findings from this study will inform population models by providing improved estimates of age of 63 first breeding and age-related changes in reproductive performance.

- 64
- 65
- Age of first breeding and subsequent decisions on whether or not to breed in a given season are key 66
- 67 components of life-time reproductive success and can be influenced by both intrinsic and extrinsic
- 68 factors (Newton 1989, Stearns 1992, Viallefont et al. 1995). Age of first breeding is also an essential
- 69 prerequisite for the formulation of population models (Lebreton et al. 1992). However, the
- 70 parameter is often underestimated, particularly in studies where the duration of data collection is
- 71 short relative to the potential lifespan of the study species (Dillingham et al. 2012 and references
- 72 therein). The best method of obtaining an accurate estimate of the age of first breeding is to follow
- 73 cohorts of individually marked chicks until all surviving members have recruited into the breeding
- 74 population. Seabirds are characterised by high survival rates (typically >90% in adults) and deferred
- 75 maturity (typically 2 – 7 years, but >10 years in albatrosses and petrels) (Schreiber & Burger 2001).
- 76 Thus age of first breeding and age-related breeding effects can potentially play a key role in seabird

population dynamics (Pardo *et al.* 2013) but collecting the requisite data can be very time
consuming.

79 The Common Guillemot Uria aalge (hereafter Guillemot) is one of the most numerous and 80 well-studied seabirds in the North Atlantic and North Pacific (Cramp 1985, Gaston & Jones 1998, 81 Ainley et al. 2002). Survival rates are high (90-94% per annum in adults; Meade et al. 2013, Lahoz-82 Monfort et al. 2014) and the age of first breeding is typically given as 5-7 years (Birkhead & Hudson 83 1977, Harris et al. 1994, Ainley et al. 2002). However, Guillemots have been recorded living up to 84 over 42 years in the wild so there is plenty of scope for very protracted prebreeding periods (EURING 85 2014). To our knowledge, no previous study has investigated changes in Guillemot breeding 86 performance in relation to age and breeding experience using known age birds. However, estimates 87 based on birds ringed as breeding adults and using years since ringing or years prior to death as 88 proxies for age, suggest that breeding success increases over the first 10 years and, along with 89 survival, declines in the oldest individuals (Crespin et al. 2006, Reed at al. 2008). In the present study 90 we used long-term data on individually marked Guillemot chicks at a North Sea colony to elucidate 91 (1) the age of first breeding in this population, (2) the process of recruitment and (3) age and 92 experience-related changes in the timing of breeding and breeding success. For a subsample of these 93 birds where we had complete breeding histories from recruitment to death, we were also able to 94 calculate the first estimates of lifetime breeding success for this species.

95

96 METHODS

Fieldwork was carried out between 1983 and 2015 on the Isle of May, Firth of Forth, southeast
Scotland (56° 11'N, 2° 33'W). Over the study period the Guillemot breeding population varied
between 10,-20,000 pairs. Each year between 1983 and 2012, an average of 246 ± se 10 chicks were
marked with long-lasting hard metal rings on one leg and a colour-ring with a unique three digit
alpha-numeric inscription on the other leg. Searches for these birds were made throughout the

102 colony each subsequent summer up to and including 2015 to record when they were first seen back 103 on the Isle of May and to follow the process of recruitment into the breeding population (see later). 104 Concurrently, a detailed study was undertaken of c.700 pairs of Guillemots breeding in front of five 105 permanent hides (details in Harris & Wanless 1988). Breeding sites were numbered on photographs 106 and were checked at least three times a day during the laying period and at least once a day for the 107 rest of the breeding season. All colour-ringed birds recorded in these areas were followed in detail 108 so that for each individual that had been ringed as a chick and which subsequently recruited into 109 these areas we knew: (a) the year of hatching, (b) when the bird was first seen anywhere on the Isle 110 of May, (c) when it was first seen where it later bred, (d) its sex from observations of copulations 111 (unknown for six individuals), (e) its age when it (or its mate) first laid an egg, (f) the date of laying of 112 the single egg by the ringed bird (or its mate) relative to other pairs in the same study area (Wanless 113 & Harris 1988; unknown for the few birds breeding at sites that were difficult to see clearly) and (g) 114 whether or not it bred successfully (defined as the male parent accompanied by its chick aged >14 115 days leaving the site and not returning again that season (Varoujean et al. 1979)). Laying date and 116 breeding success of these birds continued to be recorded either until they disappeared, presumably 117 because they had died since Guillemots are extremely faithful to a very small area of the colony once 118 they have bred (Harris et al. 1996), or until the study ended. The intensity of observations 119 throughout the study meant that visits and/or breeding attempts by colour-ringed birds were very 120 unlikely to have been missed. The high intensity of observations also enabled return rate of these 121 known-age birds to be used to estimate survival rates from one season to the next. 122 Bird age was taken as the number of calendar years after ringing (e.g. a chick hatched in 1983 123 and found breeding in 1988 was five years old). Many of the most recent recruits and a few of the 124 older birds were still alive at the end of the study resulting in records of breeding age and years 125 breeding being right censored. To avoid the potential bias that long-lived birds have higher fitness, 126 thereby leading to spurious positive correlations with age and experience, we used within-subject

127 centring (van de Pol & Wright 2009) to separate within-subject effects (i.e. phenotypically plastic or

facultative behavioural responses) from between-subject effects (i.e. evolutionarily fixed
behavioural responses based on the individual).

Laying date was standardised (a) relative to the median date within each year for each study area, to allow for annual variation in timing of breeding, and (b) within individuals to their specific mean to allow for birds that bred consistently early or late. The relationship between relative laying date and the number of times that a bird had bred was analysed using a linear mixed model with individual fitted as a random effect.

136 Breeding success was analysed in relation to age and experience (defined as the number of 137 years since an individual had first bred where 1 = year of first breeding) using a Generalized Linear 138 Mixed Model (GLMM), where the dependent variable was binary (success or failure), individual and 139 calendar year were random terms, and the fixed effects were either bird age or the number of years 140 since first breeding. In 29 instances (5.8% of 502 records) involving 16 individuals, a bird was known 141 to be alive but not definitely proved to have bred and in these cases the bird was scored as being 142 unsuccessful in these years. To check that the right censored data did not bias the results, the 143 analysis of the effect of age or the number of breeding events on breeding success was repeated 144 after distinguishing three different 'phenotypes' of birds (a) last seen when 12 or less years old (the 145 median age of birds when last seen that disappeared before the end of the study), (b) last seen at 13 146 years or older (median 15.5 years), and (c) still alive at the end of the study (median 15.5 years) 147 regardless of when they had entered the data set. This last group inevitably includes many younger 148 individuals. As previously, both individual and year were fitted as random effects. Models were fitted 149 using GenStat version 17.

150

130

- 151 **RESULTS**
- 152

153 Age of first breeding and the recruitment process

154 Sixty-two colour-ringed birds recruited into in the study areas and all were paired with unringed and 155 therefore unaged mates. The youngest bird bred for the first time at 4 years and the oldest at 11 156 years (Table 1). Overall, the modal age of first breeding was 6 years (35% of all birds) and the median was 6.6 years. The distribution of age of first breeding did not differ between the two sexes (χ^2 = 157 158 5.16, df = 6, P > 0.5 after pooling birds aged 10 and 11 years). At the end of the study eight colour-159 ringed birds were prospecting in the study areas. The oldest was 6 years old so it seems unlikely that 160 there were any older birds still to recruit and thus that Guillemots in this population normally 161 recruited by the time they were 12 years old. Restricting the data to the 1983-2003 cohorts (i.e. 162 birds aged >12 years at the end of the study), gave a median age of first breeding of 6.7 years (Table 1). 163

164 All 62 birds were seen on the Isle of May for several years prior to recruiting into the study 165 areas (Fig. 1). The median ages when they were first seen anywhere in the colony and where they 166 later bred were 3.43 years (range 2-7) and 3.95 years (range 2-7), respectively. The earlier that an 167 individual returned to the Isle of May, and to where it subsequently bred, the younger it was when it 168 first bred (r = 0.31, P = 0.015 and r = 0.32, P = 0.010, respectively; both n = 62). Guillemots recruiting 169 to a site that was not occupied in the previous year (39% of cases) did so when they were 170 significantly younger than birds replacing birds at previously used sites (61% of cases; median age of recruitment at unoccupied sites = 6.0 years, previously occupied sites = 6.95 years, χ^2 = 7.54, df = 2, 171 172 P = 0.023 after pooling birds aged 4 and 5 years, and 7 to 11 years). The type of site used was not 173 associated with sex (71%, n = 28 males recruited to previously occupied sites compared to 57%, n =28 females; χ^2 = 1.24, df = 1, *P* = 0.27). 174

Excluding the four birds that were first recorded breeding in 2015, 91.4% of birds returned in the season following their first breeding attempt, a value which did not differ significantly from values after subsequent breeding attempts (mean = 85.2%: 95% Cl 78.3, 92.0). The frequency of nonbreeding by birds in the year following their first breeding attempt (37.8%, *n* = 53) was identical to the value for years after subsequent breeding events (37.8%, *n* = 424).

181 Changes in laying date and breeding success with age and experience

182 Laying date became progressively earlier over the first four breeding years (Exponential regression: 183 $F_{2,435}$ = 14.78, P < 0.001: Fig. 2) with the advance being most marked between the first and second 184 years (3.4 days). There was no significant difference between the sexes in the advance in laying date 185 with experience ($F_{1,420} = 0.2$, P > 0.6). After 12 years of breeding, individuals tended to breed later 186 than in their prime (4-11 years of experience). There were no differences in the slopes of the 'within' 187 individual effect and the 'between' individual effect (Table 2a: -0.995 \pm se 1.2), so the effect of 188 experience was not due to the early disappearance of some birds. 189 The median age of first successful breeding was 7.67 years (Fig. 1; range 6-15 years). Success 190 of four- and five-year-olds was extremely low with only one of 12 attempts resulting in a fledged 191 chick (Fig. 3a). There was no significant difference in the probability of success of the first breeding 192 attempt of Guillemots that recruited to a previously occupied site (32%, n = 38) and those that recruited to a site that had been unoccupied the previous season (30%, n = 24; $\chi^2 = 0.04$, df = 1, P =193 194 0.84).

195 After accounting for the random effects of individual and year, breeding success increased significantly with both age (Fig. 3a: Wald statistic, χ^2 = 11.08, P < 0.001) and years since first breeding 196 (Fig. 3b: Wald Statistic, $\chi^2 = 14.33$, P < 0.001). In neither case did the slope of the 'within' individual 197 198 effect differ significantly from the 'between' individual effect (Table 2b & c: age = $0.0633 \pm se$ 199 0.0525, years since first breeding = $0.0823 \pm se 0.059$). Thus there was no evidence that the increase 200 in success with age/experience was due to 'poor quality' individuals dying when relatively young. 201 This is illustrated graphically in Figure 3b which shows that there were no significant differences in 202 the effect of experience between the three phenotype (those disappearing at 12 years or younger, 203 those disappearing at 13 years or older and those still alive in 2015; slopes: Wald statistic 2.04, df = 204 2, *P* > 0.3; intercepts: Wald statistic 1.08, df = 2, *P* > 0.5).

205	Breeding success was also higher among individuals breeding earlier in the season,
206	regardless of age and experience (Wald statistic = 15.89, $P < 0.001$). In general birds that were
207	successful laid two days earlier than unsuccessful breeders ($F_{1,433}$ = 12.18, $P < 0.001$).
208	
209	Lifetime breeding success
210	The number of chicks fledged by the 34 birds that entered and left the population during the study
211	showed considerable variation ranging from nine individuals (26%) failing to fledge any young to one
212	male that fledged 19 chicks from 21 attempts (Fig. 4). The median number of chicks fledged was
213	3.09. There was no overall relationship between age of first breeding and lifetime breeding success
214	($r = -0.016$, $P = 0.52$, Fig. 5). The number of chicks fledged by the 28 individuals still alive at the end
215	of the study period ranged 0 – 12 (median 5.5).

217

218 DISCUSSION

219 Compared to breeding success and adult survival, age of first breeding has received much less 220 attention in studies of marine birds and as a consequence minimum rather than mean or median age 221 often has to be used in analyses (Weimerskirch 2002). The pattern of recruitment we recorded over 222 a 30 year period on the Isle of May accorded closely with previous shorter studies at this colony and 223 those elsewhere in the breeding range, with individuals first seen back when they were 2-3 years 224 old, becoming attached to a specific part of the colony when they were 3-5 years old and typically making their first breeding attempt when they were 6-7 years old (Birkhead & Hudson 1977, Halley 225 226 et al. 1995, Lee et al. 2008). Only three Guillemots (one male, one female and one unknown sex) 227 were recorded breeding when they were 4 years old. However, in captivity Guillemots have bred

(although not successfully) when they were 3 years old (Swennen 1977). Scattered records in the
literature suggest that birds in the wild have bred at 3 years but in all these cases there is
uncertainty about the validity of the record, e.g. the possibility of allo-parenting by neighbours, and
thus definite conformation of free-living Guillemots breeding at 3 years of age is lacking (Wanless &
Harris 1985, Harris *et al.* 1994, Lee *et al.* 2008). Our results, therefore, indicate that Guillemots have
a delayed onset of reproduction several years beyond the age of physiological maturity.

234 There appears to be little information on sex-related differences in age of first breeding in 235 seabirds. Among the auks, Gaston and Jones (1998) found that, on average, female Brünnich's 236 Guillemots U. lomvia bred when they were one year younger than males. In Common Guillemots the 237 process of recruitment was remarkably similar in the two sexes with no significant differences in the 238 age of first return to the island, the age at which birds moved into the area where they subsequently 239 bred or the age at which breeding first occurred and was first successful. However, the recruitment 240 process was influenced by the type of site a bird recruited to with Guillemots using a site that had 241 not been occupied in the previous season breeding a year earlier than those which first bred at a site 242 that had previously been occupied. To our knowledge this effect does not seem to have been 243 recorded previously in Guillemots. It suggests some sort of social constraint whereby birds need 244 additional time and/or experience to recruit to a site that has recently been bred at by other birds, 245 presumably associated with replacing a bird that had died or evicting the previous owner. Although 246 competition for the best breeding sites in Guillemot colonies is intense (Birkhead 1978), suitable 247 sites on the Isle of May do not appear to be limited since even when the population was declining in 248 the 2000s, new sites continued to be occupied and the colony boundary expanded (Harris et al. 249 1997, personal observations). Given the availability of sites, it is unclear why some Guillemots 250 apparently delay the age of first breeding by recruiting to a previously occupied site rather than using a new one, particularly since there is no difference in breeding success of the first breeding 251 252 attempt in the two types of site.

253 Guillemots typically breed annually but individuals sometimes skip a year's breeding (Reed 254 et al. 2015). However, in contrast to the situation in the closely related Brünnich's Guillemot and 255 several other species of seabird, the frequency of skipping in Guillemots was not significantly higher 256 the year after first breeding compared to subsequent years (Wooller & Coulson 1977, Ollason & 257 Dunnet 1988, Viallefont et al. 1995, Gaston & Hipfner 2000). Similarly, we also found no significant 258 difference in return rates of first time and experienced breeders. Taken together these results 259 suggest that during the study period, costs of the first breeding attempt were not sufficient to 260 reduce subsequent overwinter survival or the likelihood of breeding the following season.

261 We did, however, find some marked differences in two key components of breeding 262 performance (laying date and breeding success). Thus, first time breeders bred significantly later in 263 the season than those with breeding experience and were less successful. However, in contrast to 264 Brünnich's Guillemots in which breeding became progressively earlier over the first 8 seasons 265 (Hipfner 1997), in Common Guillemots breeding advanced by 3-4 days between the first and second 266 attempt and by a further day in birds breeding 4-11 times. Most Guillemots breeding for the first 267 time failed to rear a chick but thereafter success increased steadily reaching 66% by the 10th attempt and 75% by the 15th attempt. Thus whilst low success in the first year could potentially have been 268 269 due to poorer environmental conditions later in the season, subsequent improvements in success in 270 the absence of changes in laying date are indicative of intrinsic effects. Experimental studies in 271 European Shags Phalacrocorax aristotelis concluded that intrinsic effects were the main reason for 272 lower breeding success in first time breeders (Daunt et al. 1999) but this approach would be challenging to carry out on Guillemots and would likely result in many eggs being lost. 273

In long-lived birds breeding success typically shows an inverse U-shaped relationship with age, increasing during the first few years, then plateauing before declining in the oldest age classes (Newton 1989, Forslund & Pärt 1995). An earlier study of Guillemots on the Isle of May based on birds individually marked as adults and using years since ringing as a proxy for age, found that

278 success improved over the first 9-13 years and then remained stable for the next 6-10 years, before 279 declining after 19 years of breeding (about 25 years of age; Crespin et al. 2006). In our smaller 280 sample of known age birds there was no detectable decrease in success in the oldest birds, though 281 some of these were still alive and may not yet have reached senescence since only seven were older 282 than 21 years. Distinguishing whether the improvement with experience is directly due to age-283 related improvements in breeding performance or is a consequence of lower quality (i.e. less 284 successful birds) having higher mortality and thus disappearing from the population, can be difficult 285 with observational studies. However, the method recently proposed by van de Pol & Wright (2009) 286 provides a powerful way of distinguishing between the two competing hypotheses by comparing 287 'within' and 'between' individual effects. In the case of Guillemots it indicates that the data are 288 consistent with genuine age-related improvements in performance rather than the selection 289 hypothesis, a conclusion supported by the simpler analysis classifying individuals into three 290 phenotypes.

291 Estimates of lifetime breeding success in seabirds are rare and we are aware of only one 292 other published value for an auk. Results from the study of Cassin's Auklet Ptychoramphus aleuticus 293 by Pyle et al. (2001) with a mean value of 3.7 chicks fledged and a range of 0-34 chicks are similar to 294 those for Guillemots. Both studies were carried out when the populations were declining for all or 295 part of the study period and the low values for lifetime breeding success probably reflect that 296 breeding conditions were poor (Harris et al. 2015). More recent estimates from the Isle of May when 297 the breeding population has been increasing, suggest that lifetime fledging success has also increased with a median value of at least 5.5 chicks for individuals still alive at the end of the study. 298

Life history theory predicts that the timing of reproductive events during an individual's life will affect its fitness (Caswell 1982). Starting to breed early can increase the number of reproductive events over an individual's lifetime and thus potentially increase lifetime breeding success, particularly in species with a clutch size of one such as the Guillemot. Although our study was based

303 on a relatively small number of individuals, the intensity of observations gives us confidence that the 304 ages of first breeding and breeding performances recorded reflect the individual variation associated 305 with this population. Whilst the majority of Guillemots first bred when they were 6 or 7 years, 306 overall timing of first reproduction varied from 4 to 11 years. In species where age of first breeding 307 is variable certain ages can be associated with a high reproductive success (Newton 1989). However, 308 although lifetime breeding success in Guillemots showed considerable individual variation there was 309 no clear optimal age of first breeding, no evidence that success was higher in birds recruiting at the 310 median age and no relationship between age of first breeding and lifetime breeding success. A 311 recent study exploring the relationship between age of first breeding and lifetime reproductive 312 success across 34 species of birds, including a few seabirds, concluded that a delayed onset of 313 reproduction beyond maturity is an optimal strategy that is explained by a long lifespan and costs of 314 early reproduction (Mourocq et al. 2016). In our population the age when an individual started to 315 breed had no effect on lifetime breeding success hence delaying breeding was no more optimal than 316 earlier breeding.

317

318

319 **ACKNOWLEDGEMENTS**

We thank Mark Newell and Carrie Gunn for assistance in collecting the breeding data, many other people for helping ring Guillemot chicks and the associate editor and two reviewers for helpful comments on the original manuscript. Scottish Natural Heritage kindly gave us permission to work on the Isle of May National Nature Reserve.

324

325 **REFERENCES**

326	Ainley, D. G., Nettleship, D. N., Carter, H. R. & Storey, A. E. 2002. Common Murre (Uria aalge). In
327	Poole, A. & Gill, F. (eds.), The Birds of North America. The Birds of North America, Inc.,
328	Philadelphia, PA.
329	Birkhead, T. R. 1978. Behavioural adaptations to high density nesting in the common guillemot Uria
330	aalge. Anim. Behav. 26: 321-331.
331	Birkhead, T. R. & Hudson, P. J. 1977. Population parameters for the Common guillemot Uria aalge.
332	Ornis Scand. 8: 145-154.
333	Caswell, H. 1982. Life history strategies. In Cherrett, M. (ed.) <i>Ecological Concepts</i> : 285-305.
334	Blackwell, Oxford.
335	Cramp, S. E. 1985. The Birds of the Western Palearctic, Vol. IV. Oxford University Press, Oxford.
336	Crespin, L., Harris, M. P., Lebreton, J. D. & Wanless, S. 2006. Increased adult mortality and reduced
337	breeding success with age in a population of Common Guillemot Uria aalge using marked
338	birds of unknown age. J. Avian Biol. 37: 273-282.
339	Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific
339 340	Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific reproductive success is independent of environmental effects. <i>Proc. R. Soc. Lond. B</i> 266:
339 340 341	Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific reproductive success is independent of environmental effects. <i>Proc. R. Soc. Lond. B</i> 266 : 1489-1493.
339340341342	 Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific reproductive success is independent of environmental effects. <i>Proc. R. Soc. Lond. B</i> 266: 1489-1493. EURING (2014). <u>http://www.euring.org/data-and-codes/longevity-list/guillemot</u> (accessed 30 May
 339 340 341 342 343 	 Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific reproductive success is independent of environmental effects. <i>Proc. R. Soc. Lond. B</i> 266: 1489-1493. EURING (2014). <u>http://www.euring.org/data-and-codes/longevity-list/guillemot</u> (accessed 30 May 2016).
 339 340 341 342 343 344 	 Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific reproductive success is independent of environmental effects. <i>Proc. R. Soc. Lond. B</i> 266: 1489-1493. EURING (2014). http://www.euring.org/data-and-codes/longevity-list/guillemot (accessed 30 May 2016). Dillingham, P. W., Elliott, G. P., Walker, K. J. & Fletcher, D. 2012. Adjusting age at first breeding of
 339 340 341 342 343 344 345 	 Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific reproductive success is independent of environmental effects. <i>Proc. R. Soc. Lond. B</i> 266: 1489-1493. EURING (2014). http://www.euring.org/data-and-codes/longevity-list/guillemot (accessed 30 May 2016). Dillingham, P. W., Elliott, G. P., Walker, K. J. & Fletcher, D. 2012. Adjusting age at first breeding of albatrosses and petrels for emigration and study duration. <i>J. Ornithol.</i> 153: 205-217.
 339 340 341 342 343 344 345 346 	 Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific reproductive success is independent of environmental effects. <i>Proc. R. Soc. Lond. B</i> 266: 1489-1493. EURING (2014). http://www.euring.org/data-and-codes/longevity-list/guillemot (accessed 30 May 2016). Dillingham, P. W., Elliott, G. P., Walker, K. J. & Fletcher, D. 2012. Adjusting age at first breeding of albatrosses and petrels for emigration and study duration. <i>J. Ornithol.</i> 153: 205-217. Forslund, P. & Pärt, T. 1995. Age and reproduction in birds - hypothesies and tests. <i>Trends Ecol. Evol.</i>
 339 340 341 342 343 344 345 346 347 	 Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific reproductive success is independent of environmental effects. <i>Proc. R. Soc. Lond. B</i> 266: 1489-1493. EURING (2014). http://www.euring.org/data-and-codes/longevity-list/guillemot (accessed 30 May 2016). Dillingham, P. W., Elliott, G. P., Walker, K. J. & Fletcher, D. 2012. Adjusting age at first breeding of albatrosses and petrels for emigration and study duration. <i>J. Ornithol.</i> 153: 205-217. Forslund, P. & Pärt, T. 1995. Age and reproduction in birds - hypothesies and tests. <i>Trends Ecol. Evol.</i> 10: 374-378.
 339 340 341 342 343 344 345 346 347 348 	 Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific reproductive success is independent of environmental effects. <i>Proc. R. Soc. Lond. B</i> 266: 1489-1493. EURING (2014). http://www.euring.org/data-and-codes/longevity-list/guillemot (accessed 30 May 2016). Dillingham, P. W., Elliott, G. P., Walker, K. J. & Fletcher, D. 2012. Adjusting age at first breeding of albatrosses and petrels for emigration and study duration. <i>J. Ornithol.</i> 153: 205-217. Forslund, P. & Pärt, T. 1995. Age and reproduction in birds - hypothesies and tests. <i>Trends Ecol. Evol.</i> 10: 374-378. Gaston, A. & Jones, I. L. 1998. <i>The Auks Alcidae</i>. Oxford University Press, Oxford.
 339 340 341 342 343 344 345 346 347 348 349 	 Daunt, F., Wanless, S., Harris, M. P. & Monaghan, P. 1999. Experimental evidence that age-specific reproductive success is independent of environmental effects. <i>Proc. R. Soc. Lond. B</i> 266: 1489-1493. EURING (2014). http://www.euring.org/data-and-codes/longevity-list/guillemot (accessed 30 May 2016). Dillingham, P. W., Elliott, G. P., Walker, K. J. & Fletcher, D. 2012. Adjusting age at first breeding of albatrosses and petrels for emigration and study duration. <i>J. Ornithol.</i> 153: 205-217. Forslund, P. & Pärt, T. 1995. Age and reproduction in birds - hypothesies and tests. <i>Trends Ecol. Evol.</i> 10: 374-378. Gaston, A. & Jones, I. L. 1998. <i>The Auks Alcidae</i>. Oxford University Press, Oxford. Gaston, A. J. & Hipfner, J. M. 2000. Thick-billed Murre (<i>Uria lomvia</i>) No. 497. In. Poole, A. & Gill, F.

- Halley, D. J., Harris, M. P. & Wanless, S. 1995. Colony attendance patterns and recruitment in
 immature Common Murres (*Uria aalge*). *Auk* 112: 947-957.
- Harris, M. P. & Wanless, S. 1988. The breeding biology of Guillemots *Uria aalge* on the Isle of May
 over a six-year period. *Ibis* 130: 172-192.
- Harris, M. P., Halley, D. J. & Swann, R. L. 1994. Age of first breeding in Common Murres. *Auk* 111:
 207-209.
- Harris, M. P., Wanless, S. & Barton, T. R. 1996. Site use and fidelity in the Common Guillemot Uria
 aalge. Ibis 138: 399-404.
- 359 Harris, M. P., Heubeck, M., Newell, M. A. & Wanless, S. 2015. The need for year-specific correction
- factors (k values) when converting counts of individual Common Guillemots *Uria aalge* to
 breeding pairs. *Bird Study* 62: 276-279.
- Harris, M. P., Wanless, S., Barton, T. R. & Elston, D. A. 1997. Nest site characteristics, duration of
 use and breeding success in the Guillemot *Uria aalge. Ibis* 139: 468-476.
- Hipfner, J. M. 1997. The effects of parental quality and timing of breeding on the growth of nestling
 Thick-billed Murres. *Condor* 99: 353-360.
- 366 Lahoz-Monfort, J. J., Harris, M. P., Morgan, B. J. T., Freeman, S. N. & Wanless, S. 2014. Exploring
- 367 the consequences of reducing survey effort for detecting individual and temporal variability
 368 in survival. *J. appl. Ecol.* 51: 534-543.
- 369 Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. 1992. Modelling survival and testing
- biological hypotheses using marked animals: a unified approach with case studies. *Ecol.*
- 371 *Monogr.* **62**: 67-118.
- 372 Lee, D. E., Abraham, C. L., Warzybok, P. M., Bradley, R. W. & Sydeman, W. J. 2008. Age-specific
- 373 survival, breeding success, and recruitment on Common Murres (*Uria aalge*) of the
- 374 California Current System. Auk **125:** 316-325.

375	Meade, J., Hatchwell, B. J., Blanchard, J. L. & Birkhead, T. R. 2013. The population increase of
376	Common Guillemots Uria aalge on Skomer Island is explained by intrinsic demographic
377	properties. J. Avian Biol. 44: 55-61.
378	Mourocq, E., Bize, P., Bouwhuis, S., Bradley, R., Charmantier, A., de la Cruz, C., Drobniak, S. M.,
379	Espie, R. H. M., Herenyi, M., Hotker, H., Kruger, O., Marzluff, J., Moller, A. P., Nakagawa,
380	S., Phillips, R. A., Radford, A. N., Roulin, A., Torok, J., Valencia, J., van de Pol, M.,
381	Warkentin, I. G., Winney, I. S., Wood, A. G. & Griesser, M. 2016. Life span and reproductive
382	cost explain interspecific variation in the optimal onset of reproduction. Evolution 70: 296-
383	313.
384	Newton, I. 1989. Lifetime Reproduction in Birds. Academic Press, London.
385	Ollason, J. C. & Dunnet, G. M. 1988. Variation in breeding success in Fulmars. In Clutton Brock, T. H.
386	(ed.) Reproductive Success: 263-278. Chicago University Press, Chicago.
387	Pardo, D., Barbraud, C., Authier, M. & Weimerskirch, H. 2013. Evidence for an age-dependent
388	influence of environmental variations on a long-lived seabird's life-history traits. Ecol. 94:
389	208-220.
390	Pyle, P., Sydeman, W. J. & Hester, M. 2001. Effects of age, breeding experience, mate fidelity and
391	site fidelity on breeding performance in a declining population of Cassin's auklets. J. Anim.
392	<i>Ecol.</i> 70: 1088-1097.
393	Reed, T. E., Kruuk, L. E. B., Wanless, S., Frederiksen, M., Cunningham, E. J. A. & Harris, M. P. 2008.
394	Reproductive senescence in a long-lived seabird: Rates of decline in late-life performance
395	are associated with varying costs of early reproduction. Amer. Nat. 171: E89-E101
396	Reed, T., Harris, M. & Wanless, S. 2015. Skipped breeding in common guillemots in a changing
397	climate: restraint or constraint? Front. Ecol. Evol. 3: 1-13.
398	Schreiber, E. A. & Burger, J. 2001. Biology of Marine Birds. CRC Press, Boca Raton.
399	Stearns, S. C. 1992. The Evolution of Life Histories. Oxford University Press, Oxford.
400	Swennen, C. 1977. Laboratory Research on Sea Birds. Netherlands Institute for Sea Research, Texel.

- 401 van de Pol, M. & Wright, J. 2009. A simple method for distinguishing within- versus between-subject
 402 effects using mixed models. *Anim. Behav.* 77: 753-758.
- 403 Viallefont, A., Cooke, F. & Lebreton, J.-D. 1995. Age-specific costs of first-time breeding. *Auk* 112:
 404 67-76.
- Wanless, S. & Harris, M. P. 1985. Two cases of guillemots *Uria aalge* helping to rear neighbours'
 chicks on the Isle of May. *Seabird* 8: 5-8.
- Wanless, S. & Harris, M. P. 1988. The importance of relative laying date on breeding success of the
 guillemot *Uria aalge. Ornis Scan.* 19: 205-211.
- 409 Weimerskirch, H. 2002. Seabird demography and its relationship with the marine environment. In
- 410 Schreiber, E. A. & Burger, J. (eds.) *Biology of Marine Birds*: 115-135. CRC Press, Boca Raton.
- 411 Wooller, R. D. & Coulson, J. C. 1977. Factors affecting age of first breeding of Kittiwake Rissa
- 412 *tridactyla. Ibis* **119**: 339-349.

APPENDIX

Figure 3b Figure 2 Figure 3a x-value More than 12 Still 12 years or less years alive

Table 1. Sample sizes for plots shown in Figures 2 and 3

421

Figure 1. Age distribution at key stages in the recruitment process of 62 known-age Common
Guillemots. (a) Age (years) first seen on the Isle of May, (b) age first seen in study areas, (c) age of
first breeding attempt and (d) age of first successful breeding. (Twelve birds had not fledged a chick
by the end of the study.)

426

Figure 2. The mean relative laying date (± se) of Common Guillemots plotted against the number of
breeding years. The asymptotic regression (Relative lay date = -0.957+17.3*(0.263**Number of
breeding years) is fitted through all the 440 records. Sample sizes are given in the appendix.

430

431 Figure 3. Breeding success (chicks fledged/breeding attempt) of Common Guillemots in relation to 432 (a) age and (b) years since breeding started. The regression lines are fitted to the observed binomial 433 data rather than the mean breeding success shown by the points. In (b) three 'phenotypes' are 434 distinguished, birds that disappeared when they were 12 years or younger (circles), those that were 435 older than 12 years when they disappeared (diamonds), and those that were still alive in 2015 436 (crosses). Sample sizes are given in the appendix. In (a) squares indicate sample size <10 and in (b) 437 small symbols indicate sample size < 5. A common regression line is fitted since there were no 438 significant differences in slopes between phenotypes or differences in intercepts (see text).

439

Figure 4. Frequency distributions of (a) Lifetime breeding success (total number of chicks fledged
during a Common Guillemot's lifetime; n = 34) and (b) numbers of chicks fledged by birds still alive at
the end of the study (n = 28).

- 443 Figure 5. Lifetime breeding success in relation to their age of first breeding of 34 Common
- 444 Guillemots. Some points are slightly offset for clarity.
- Table 1. Frequency distribution of ages of first recorded breeding of Common Guillemots on the Isle
- 446 of May.

	Age at first breeding (years)									
	n	4	5	6	7	8	9	10	11	Median
Male	28	1	5	10	3	3	5	0	1	6.46
Female	28	1	2	10	8	4	2	1	0	6.67
All including unknown sex	62	3	7	22	12	9	7	1	1	6.59
Chicks from 1983-2003 cohorts	55	2	6	19	10	9	7	1	1	6.69

Table 2. Separating the within-individual effects from the between-individual effects on (a) relative
laying date in relation to years of breeding experience (because of the exponential relationship, see
Fig. 2, years of breeding experience was log_e+1), (b) breeding success in relation to age, and (c)
breeding success in relation to years of breeding experience. In all cases there was no significant
difference in the slopes of the relationships comparing within individuals and between individuals.

	Coefficient	se	P - value			
(a) Relative laying date						
Intercept	0.728	0.418				
Within individual effect	-2.55	0.552	< 0.001			
Between individual effect	-1.563	1.064	0.140			
Difference in effects	-0.995	1.200	n.s.			
	Variance component					
Random individual effects	3.98	1.74				
(b) Age						
Intercept	0.2364	0.2003				
Within individual effect	0.0727	0.0318	0.023			
Between individual effect	0.1360	0.0450	0.004			
Difference in effects	0.0633	0.0525	n.s.			
	Variance component					
Random individual effects	0.374	0.154				
Random year effects	0.485	0.216				
(b) Years breeding experience						
Intercept	0.2333	0.1987				
Within individual effect	0.0697	0.0318	0.029			
Between individual effect	0.1520	0.0505	0.004			
Difference in effects	0.0823	0.0590	n.s.			
Variance component						
Random individual effects	0.344	0.175				
Random year effects	0.487	0.218				

460

- 461 Figure 1. Age distribution at key stages in the recruitment process of 62 known-age Common
- 462 Guillemots. (a) Age (years) first seen on the Isle of May, (b) Age first seen in study areas, (c) Age of
- 463 first breeding attempt and (d) Age of first successful breeding. (Twelve birds had not fledged a chick

464 by the end of the study.)

465 466

Figure 2. The mean relative laying date (±SE) of Common Guillemots plotted against the number of breeding years. The asymptotic regression (Relative lay date = -0.957+17.3*(0.263^{Number of} breeding years) is fitted through all the 440 records. Sample-sizes are given in the appendix.

477 Figure 3. Breeding success (chicks fledged/breeding attempt) of Common Guillemots in relation to 478 (a) age and (b) years since breeding started. The regression lines are fitted to the observed binomial 479 data rather than the mean breeding success shown by the points. In (b) three 'phenotypes' are 480 distinguished, birds that disappeared when they were younger than 12 years (circles), those that were older than 12 years when they disappeared (diamonds), and those that were still alive in 2015 481 482 (crosses). Sample sizes are given in the appendix. In (a) squares indicate sample size <10 and in (b) 483 small symbols indicate sample size < 5. A common regression line is fitted since there were no 484 significant differences in slopes between phenotypes or differences in intercepts (see text).

485

476

- 487 Figure 4. Frequency distributions of (a) Lifetime breeding success (total number of chicks fledged
 488 during a Common Guillemot's lifetime; n = 34) and (b) numbers of chicks fledged by birds still alive at
- 489 the end of the study (n = 28).

493			
494			
495			
496			
497			

498 Figure 5. Lifetime breeding success in relation to their age of first breeding of Common Guillemots.

