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 25 

Abstract 26 

Ruminant production systems are important producers of food, support rural communities and 27 

culture, and help to maintain a range of ecosystem services including the sequestering of carbon in 28 

grassland soils. However, these systems also contribute significantly to climate change through 29 

greenhouse gas (GHG) emissions, while intensification of production has driven biodiversity and 30 

nutrient loss, and soil degradation. Modeling can offer insights into the complexity underlying the 31 

relationships between climate change, management and policy choices, food production, and the 32 

maintenance of ecosystem services. This paper 1) provides an overview of how ruminant systems 33 

modeling supports the efforts of stakeholders and policymakers to predict, mitigate and adapt to 34 

climate change and 2) provides ideas for enhancing modeling to fulfil this role. Many grassland 35 

models can predict plant growth, yield and GHG emissions from mono-specific swards, but 36 

modeling multi-species swards, grassland quality and the impact of management changes requires 37 

further development. Current livestock models provide a good basis for predicting animal 38 

production; linking these with models of animal health and disease is a priority. Farm-scale 39 

modeling provides tools for policymakers to predict the emissions of GHG and other pollutants 40 

from livestock farms, and to support the management decisions of farmers from environmental and 41 

economic standpoints. Other models focus on how policy and associated management changes 42 

affect a range of economic and environmental variables at regional, national and European scales. 43 

Models at larger scales generally utilise more empirical approaches than those applied at animal, 44 

field and farm-scales and include assumptions which may not be valid under climate change 45 

conditions. It is therefore important to continue to develop more realistic representations of 46 

processes in regional and global models, using the understanding gained from finer-scale modeling. 47 

An iterative process of model development, in which lessons learnt from mechanistic models are 48 
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applied to develop ‘smart’ empirical modeling, may overcome the trade-off between complexity 49 

and usability. Developing the modeling capacity to tackle the complex challenges related to climate 50 

change, is reliant on closer links between modelers and experimental researchers, and also requires 51 

knowledge-sharing and increasing technical compatibility across modeling disciplines. Stakeholder 52 

engagement throughout the process of model development and application is vital for the creation 53 

of relevant models, and important in reducing problems related to the interpretation of modeling 54 

outcomes. Enabling modeling to meet the demands of policymakers and other stakeholders under 55 

climate change will require collaboration within adequately-resourced, long-term inter-disciplinary 56 

research networks. 57 

 58 

Keywords 59 

Food security, livestock systems, modeling, pastoral systems, policy support, ruminants 60 

 61 

1. Introduction 62 

The world’s livestock production systems are facing unprecedented challenges – the need to reduce 63 

greenhouse gas (GHG) emissions, currently estimated to represent 15% of global anthropogenic 64 

emissions (Ripple et al., 2014), to adapt to global climatic and socio-economic changes (Soussana, 65 

2014; Thornton, 2010), to provide ecosystem services, and to meet the expected rapid increase in 66 

demand for meat and dairy products resulting from changes in human diets in the developing world 67 

(Tilman and Clark, 2014). In order to avoid significant environmental costs, these goals must be 68 

reached through increased production efficiency to avoid further encroachment of agriculture into 69 

pristine natural ecosystems (Popp et al., 2014). 70 

 71 
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Several major global and European reports have mapped the strategic research areas in which 72 

progress is required to overcome the challenges to livestock production systems (ATF, 2013, 2014; 73 

FACCE-JPI, 2012; Soussana, 2014). All highlight the need for research that takes account of 74 

interactions between agricultural systems, between these systems and natural ecosystems, and 75 

between strategic policy choices and on-farm management decisions. 76 

 77 

Assessments of how climate change, policy, management, and socio-economic factors impact 78 

livestock production, require an understanding of complex systems beyond that possible through 79 

direct analysis of empirical data. In this respect, mathematical modeling has an essential role in the 80 

process of developing production systems capable of overcoming the multi-faceted problems 81 

described (Graux et al., 2013; Kipling et al., 2014). The aforementioned strategic research agendas 82 

represent challenges that the livestock and grassland modeling community must address if it is to 83 

play the role required of it by society (Scholten, 2015). 84 

 85 

For modelers of ruminant production systems, the complexity of farm-scale interactions creates a 86 

major challenge for the scaling up of ‘animal’ and ‘field’ scale modeling to the national, regional and 87 

global levels most relevant for policy makers. A range of modeling approaches has been applied to 88 

European ruminant livestock systems and their various components (Box 1) with a number of 89 

technical reviews providing comprehensive comparisons of a range of models, for example 90 

(Holzworth et al., 2015; Snow et al., 2014; Tedeschi et al., 2014). 91 

 92 

 93 

 94 
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Box 1: Description of technical aspects of agricultural models) including the characteristics of the modeling areas 95 

described in this paper 96 

 97 

Empirical and mechanistic modeling:  Empirical models derive from fitting statistical functions to experimental response 

data. Their accuracy is dependent on the characteristics of the datasets used to define the modeled relationship. They 

can be used to predict new conditions as determined by changes in the variables considered. However, they cannot 

respond to changes which might affect the nature of the statistical relationships they are based on. Empirical models 

may therefore provide inaccurate predictions when the values of the modeled variables are beyond the range for which 

the relationship was tested. Mechanistic approaches model the underlying mechanisms that drive observed empirical 

relationships, and can therefore reveal and explain unexpected systemic responses to future change. However, they 

cannot predict changes arising from the effects of un-modeled processes, which may become relevant under altered 

systemic conditions. In some cases, the variables used to derive empirical models can incorporate mechanistic 

understanding, blurring the distinction between the two approaches. Models often use a mixture of empirical and 

mechanistic approaches to characterise different relationships, so that there is a continuum between relatively 

mechanistic and relatively empirical modeling. 

 

Time and variation: Models can be dynamic, to investigate how systems change over time, or static (not considering 

time as a variable). They can be deterministic (giving unique predictions) or stochastic (including random variation and 

reporting the dispersion as well as the predicted value of output variables). 

 

Scale and complexity: As scale increases so does systemic complexity, as the number of variables and interactions 

between them rises at an increasing rate. Using mechanistic models at increasing scales (from plot or animal upwards) 

therefore requires increasing effort (in terms of systemic understanding and computing power) and involves increasing 

uncertainty. At the same time, some processes average out at larger scales, and can be represented by simpler 

functions. These factors mean that more empirical approaches are used as the scale of the modeled system increases.  
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Chart: Some groups of models associated with ruminant production systems, showing their scale of focus and modeling 

approach. Model groups are those discussed in this paper, addressing aspects felt to be most relevant in the context of 

climate change. 

 98 

 99 

A recent review of modeling of grazed agricultural systems (Snow et al., 2014) highlighted the need 100 

for better modeling of extreme events, animal-mediated nutrient transfers, pests, weeds and gene-101 

environment interactions. The present paper provides a strategic overview of ruminant production 102 

systems modeling in Europe in the context of climate change. The focus on Europe reflects the 103 

continent’s large agricultural sector and its importation of agricultural products, which make it a 104 

major contributor to agricultural GHG emissions (Davis and Caldeira, 2010), while its recognition of 105 

the serious impacts of climate change make it a key location for research and innovation related to 106 

food security (Soussana et al., 2012a). The overview of ruminant production systems modeling 107 

presented here (Fig. 1) includes consideration of stakeholder engagement in the modeling process, 108 

and the role of economic modeling (at farm, regional and global scale). The purpose is: 1) to 109 
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provide an overview of how current ruminant systems modeling supports the efforts of 110 

stakeholders and policymakers to predict, mitigate, and adapt to climate change and 2) to provide 111 

ideas about how modeling resources can be enhanced to best meet these challenges. 112 

 113 

 114 

Fig. 1: An overview of a ruminant production system in the context of modeling of how climate change is affected by 115 

and affects such systems. For clarity, this system does not include on-farm arable production. Key: A = physical system 116 

including off-farm inputs and outputs (emissions included in LCA); B = on-farm system (emissions included in farm-scale 117 

modeling); C = Impacts of changes in management and its drivers; Dashed lines = relationships requiring further 118 

development in models 119 

 120 

 121 

In relation to climate change, models of ruminant systems can be divided into those that focus on 122 

the impacts of climate change on such systems (Section 2), and those that focus on emissions of 123 

GHGs from them (Section 3). At the regional and global levels, economic modeling seeks to gain an 124 

overview of both of these processes and the interactions between them, in order to inform policy 125 
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choices (Section 4), while engagement with stakeholders is essential to ensuring that modeling has 126 

a positive real-world impact (Section 5). Section 6 considers how best to overcome the challenges 127 

to the integration of these different aspects of modeling, and recommends some priorities for 128 

action. 129 

 130 

2. Modeling the impacts of climate change on ruminant livestock systems 131 

 132 

Climate change is expected to have a range of impacts on ruminant production systems, including 133 

the direct effects of changing conditions on grass and feed crop production (such as changing yields 134 

and quality) and livestock health (such as increased heat stress) and indirectly, for example through 135 

impacts on livestock pathogens, and pests affecting grasses and other crops. Section 2 explores 136 

some of the main climate change impacts and the state of modeling in relation to each. 137 

 138 

2.1. Modeling livestock pathogens and disease 139 

 140 

Climate change has already affected patterns of livestock disease (Kenyon et al., 2009; Purse et al., 141 

2005; Wilson and Mellor, 2008), and further changes are predicted (Fox et al., 2015; 2011; van Dijk 142 

et al., 2008). A variety of climatic factors influence pathogen survival and development, including 143 

moisture, temperature and UV levels (Chaparro et al., 2011; O’Connor et al., 2006; Stromberg, 144 

1997; van Dijk et al., 2009). These variables affect spatial distribution, parasite and disease 145 

intensity, and seasonal patterns of infection (Fox et al., 2011). Climate change will not influence all 146 

pathogens equally. Vector-borne parasites are especially sensitive to climate, as vector lifecycles 147 

and vectorial capacity are strongly influenced by abiotic conditions (Purse et al., 2005; Wilson and 148 

Mellor, 2008). Climate change is also having profound impacts on macro-parasites (Broughan and 149 
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Wall, 2007; Fox et al., 2011), as survival and development of their free-living stages are governed by 150 

temperature and moisture availability. Despite potential for pathogen outbreaks to compromise 151 

food security and animal welfare, there are few predictions of future disease risk in livestock (Fox et 152 

al., 2012). In this context, modeling is a vital tool for understanding how climate change will affect 153 

pathogen risk, supporting the development of effective prevention and control measures. 154 

 155 

Predictive species distribution models are often based on correlative ecological niche models in 156 

which species’ environmental requirements are inferred from current geographic distributions 157 

(Elith and Leathwick, 2009; Heikkinen et al., 2006; Pagel and Schurr, 2012). Insights into the biology 158 

of parasite dynamics should be used to improve and parameterize these models, and to choose the 159 

most proximal environmental predictors (Guisan and Thuiller, 2005). Correlative modeling has 160 

already provided projections of future risk for livestock pathogens including vector borne Blue 161 

Tongue Virus (Tatem et al., 2003) and liver fluke, which spends large parts of its lifecycle outside its 162 

definitive host (Fox et al., 2011). A bottleneck for developing models for a broader range of species 163 

is the limited availability of pathogen distribution data. Additionally, correlative models do not 164 

contain underlying dynamical processes, rapidly accruing uncertainty when projected climate 165 

change forces extrapolation (Fox et al., 2012). To overcome this limitation, and to identify potential 166 

for qualitative shifts in system behaviour, a process-based mechanistic approach is needed. 167 

Mechanistic models are based on detailed knowledge of host and pathogen physiology and attempt 168 

to replicate underlying mechanisms that drive species’ responses to environmental variables 169 

(Robertson et al., 2003). As such models do not rely on empirical relationships between climate 170 

variables that may alter with climate change, they are comparatively robust under spatio-temporal 171 

extrapolation (Dormann, 2007; Hijmans and Graham, 2006) and can predict consequences of subtle 172 

interactions between system components under climate influence. Fox et al., (2015) used a 173 
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process-based model to demonstrate that small temperature changes around critical thresholds 174 

can drive sudden changes in nematode risk in grazing livestock. There is now a need to 175 

parameterise such models for particular pathogens, and apply them to specific farming systems 176 

under climate change projections. 177 

 178 

At the farm level, husbandry has a dominant influence on disease transmission (Fox et al., 2013; 179 

Smith et al., 2009); long term predictive models therefore need to incorporate the effects of 180 

management responses to climate change. An optimal modeling approach is likely to combine 181 

mechanistic processes and physiological thresholds with correlative bioclimatic modeling, 182 

incorporating changes in livestock husbandry and disease control. Despite recent advances in 183 

statistical methodologies, model-fitting and climate projections, progress remains limited by the 184 

paucity of active surveillance data, and empirical data on physiological responses to climate 185 

variables. By combining improved empirical data and refined models with a broad view of livestock 186 

systems, robust projections of livestock disease risk can be developed. 187 

 188 

2.2. Modeling heat stress in cattle  189 

 190 

High and extreme temperatures, in combination with other factors such as humidity and solar 191 

radiation, are known to cause heat stress in a range of domestic animals, with effects on 192 

productivity, growth, development (Collier and Gebremedhin, 2015) and reproduction (de Rensis et 193 

al., 2015). The Temperature Humidity Index (THI) has been widely used to explore these 194 

relationships in livestock, and to model expected responses to climatic change (Gaughan and Hahn, 195 

2010). THI has some recognized limitations, including the assumption that all animals respond to 196 

thermal stressors in the same way, and a lack of consideration of other important variables 197 
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(including solar radiation, wind speed, duration of exposure) (Gaughan et al., 2012). Improved 198 

indices have been proposed, including THI adjusted for wind speed and solar radiation, a number of 199 

respiration rate indices and the heat load index (Gaughan et al., 2012). Whatever the index used, 200 

climate change is expected to raise average temperatures and increase the frequency of 201 

temperature extremes. Heatwaves are predicted to become  more frequent, particularly in 202 

Southern Europe and the Mediterranean, with expected decreases in relative humidity away from 203 

the coasts unlikely to offset the impacts of increased temperature (Fischer and Schar, 2010).  As a 204 

result, increases are expected in the number of days when THI in Europe exceeds calculated 205 

thresholds for heat stress in dairy cattle (Dunn et al., 2014; Segnalini et al., 2013).  206 

 207 

Mechanistic models have been developed to characterise heat flows and changes in body 208 

temperature in cattle (Thompson et al., 2014) and thermal balance in pigs and poultry (Mitchell, 209 

2006), while empirical equations are used to model the negative relationship between increases in 210 

THI above calculated thresholds, dairy cow milk yield and milk composition (Bertocchi et al., 2014; 211 

Bohmanova et al., 2007; Gorniak et al., 2014; Hammami et al., 2013; Hill and Wall, 2015) and dairy 212 

and beef cattle mortality (Morignat et al., 2015; Vitali et al., 2009). Models are also used to test the 213 

design of livestock housing in relation to airflow and temperature (Herbut and Angrecka, 2015) and 214 

to model the temperature effects on animals of other physical variables such as bedding type 215 

(Radoń et al., 2014). 216 

 217 

Although the empirical modeling of thermal comfort zones and THI thresholds is valuable for 218 

livestock management, empirical approaches cannot incorporate the whole range of factors that 219 

modify livestock susceptibility to increasing THI, such as geographic location, production system, 220 

breed, genotype, age, physiological and productive phase, acclimation state, presence and type of 221 
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cooling systems, and management (Bernabucci et al., 2010; Nardone et al., 2010) or interactions 222 

between these variables. For ruminants, mechanistic modeling of thermal balances and heat stress 223 

needs to be linked to models of productivity and growth, and scaled up to herd level, taking 224 

account of variation in individual growth and performance. The impacts of rising temperatures on 225 

livestock need to be characterised in regional and global modeling, to better understand the 226 

economic consequences of climate change related heat stress at a broader scale (see Section 4). In 227 

addition, more modeling is needed to explore the impact of heat stress on livestock water 228 

requirements(Howden and Turnpenny, 1998) , given that demand for water for crops is also likely 229 

to rise under climate change (Leclère et al., 2013), putting pressure on European water resources. 230 

There is a need to develop mechanistic models capable of identifying the most effective adaptation 231 

options in relation to heat stress  (Lacetera et al., 2013) at farm- and policy-levels, from the 232 

exploration of genetic approaches (Collier and Gebremedhin, 2015) to systemic switches away from 233 

dairy cows towards more heat-tolerant livestock such as goats in southern Europe (Silanikove and 234 

Koluman, 2015). 235 

 236 

2.3. Modeling grassland productivity and nutritional value 237 

 238 

Climate change impacts on grasslands are expected to vary across Europe, with warmer 239 

temperatures and higher rainfall extending growing seasons in the north (Höglind et al., 2013) while 240 

the risk of drought is likely to increase in Mediterranean regions (van Oijen et al., 2014). Grassland 241 

productivity is known to be sensitive to temperature and water stress (Knapp et al., 2001) with 242 

impacts varying between different plant communities (Kreyling et al., 2008; Peterson et al., 1992).  243 

 244 
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Several types of model have been applied to grassland systems (Bellocchi et al., 2013); grassland-245 

specific models (Kochy, 2008; Ma et al., 2015; Wu et al., 2007) models originally developed for 246 

crops and adapted to grasslands (Coucheney and Buis, 2015; Perego et al., 2013; Williams et al., 247 

2008), and plant functional type-based models (Chang et al., 2013; Dury and A Hambuckers, 2011; 248 

Hidy et al., 2012; Waha et al., 2012). Previous modeling focussed on grassland productivity (Li et al., 249 

2011; Woodward, 2001), mainly characterising monospecific swards or simple mixtures (Blackburn 250 

and Kothmann, 1989; Lazzarotto et al., 2009). Such models do not address the need for modeling of 251 

more diverse plant communities (Duru et al., 2009). Although functional classifications can simplify 252 

the characterisation of plant species (Cruz et al., 2002; Jouven et al., 2006) process-based 253 

biogeochemical models such as PaSim (Ma et al., 2015) usually use an average vegetation when 254 

simulating mixed swards, due to the challenges of modeling changes in botanical composition. 255 

 256 

Although modeling of the impacts of climate change on yields from mono-specific grassland swards 257 

is well developed (Graux et al., 2013; Vital et al., 2013), fewer models assess the impacts of climate 258 

on nutritive value, which is vital with respect to animal production. Some models can simulate the 259 

development of nutritive value in timothy on cut swards (Bonesmo and Belanger, 2002; Jégo et al., 260 

2013) and on pastures (Duru et al., 2010), and PaSim includes parameters relating to sward quality, 261 

including variation in digestibility with plant age and between plant components (Ben Touhami et 262 

al., 2013). However, in general the simulation of nutritive value is limited to species-specific 263 

responses, with little modeling of how interactions between species affect sward quality responses 264 

in multi-species grasslands. The characterisation of physiological and genetic adaptation of 265 

grassland species to changing conditions also requires more attention from modelers. 266 

 267 
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In addition to simulating the impacts of climate change in southern Europe, grassland models need 268 

to characterise changes in yield and nutritive value related to the expected prolongation of the 269 

growing season in northern and high altitude grasslands. Adding ‘winter’ modules to process-based 270 

models of grass growth offers one solution to this challenge. Such modules need to include the 271 

effects of changing winter conditions on sward growth (Höglind et al., 2013; Jégo et al., 2014; Jing 272 

et al., 2013) and to model the presence or absence of snow and the process of hardening and de-273 

hardening, which is particularly important for Scandinavian grasslands (Höglind et al., 2010; 274 

Thorsen and Höglind, 2010a, b). Run-off of phosphorous from grasslands is also an issue of concern 275 

in the context of higher predicted rainfall in northern Europe. A number of models characterise 276 

phosphorous run-off (Benskin et al., 2014) but modeling of how this is affected by interactions 277 

between changing weather conditions and management choices needs to be improved. 278 

 279 

To support grassland-based agriculture under climate change, grassland models require improved 280 

soil-water components, and need to be applicable to a wider range of species mixtures and 281 

management types. The capacity of models to predict the impacts of climate change on both yields 282 

and the nutritive value of forages needs to improve, in order to support policy choices and 283 

management decisions aimed at optimizing these parameters (Höglind and Bonesmo, 2002; Jégo et 284 

al., 2013; Jing et al., 2013). Lessons may be learnt from modeling developed for non-European 285 

semi-arid grazing lands, for example relating to the impact of grazing on erosion (Bénié et al., 2005). 286 

Integrated approaches including environmental and socio-economic aspects of grassland systems, 287 

such as the Sustainability and Organic Livestock Model (SOL) (FAO, 2012) demonstrate potential 288 

pathways for improving grassland modeling in the context of climate change. 289 

 290 

2.4. Modeling grassland biodiversity and interactions with productivity 291 
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 292 

European grasslands are often hot-spots of biodiversity (Marriott et al., 2004) despite severe 293 

declines in species-rich grassland habitats driven by agricultural intensification and land 294 

abandonment (Henle et al., 2008). The development of the EU Biodiversity Strategy to 2020 295 

exemplifies concern about the loss of biodiversity and related ecosystem services (Maes et al., 296 

2012) highlighting the importance of models that characterise the effects of agricultural practices 297 

and climate change on grassland biodiversity (above and below ground and including plants, 298 

invertebrates, birds and mammals).   299 

 300 

Decision Support System (DSS) models seek to predict the impacts of policies (and related changes 301 

in management practices) that target biodiversity conservation as an objective in itself. Recently, 302 

these have included approaches which bridge the gap between detailed models of specific sites and 303 

regional models that may overlook many important aspects of biodiversity (Johst et al., 2015; 304 

Mouysset et al., 2014). In such models, management information and knowledge of the ecological 305 

niches of different species or species groups are combined to predict the biodiversity impacts of 306 

different strategies, and the economic costs associated with achieving more favourable 307 

environmental outcomes (Johst et al., 2015; Mewes et al., 2015). Designed to characterize different 308 

management strategies and conditions, they could potentially be adapted to include the impacts of 309 

climate change on biodiversity (Johst et al., 2015; Mewes et al., 2015). Lee et al., (2010) addressed 310 

climate change related issues directly, combining empirical models with projections of future CO2 311 

and nitrogen deposition to identify areas where grassland productivity may increase and 312 

biodiversity decrease. 313 

 314 
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Bio-economic optimisation models have also been applied to investigate how policy changes and 315 

subsequent management decisions could affect biodiversity (Mouysset et al., 2014; Schönhart et 316 

al., 2011). This can be achieved by including biodiversity as a target in multi-objective models, by 317 

assessing the impacts on biodiversity of choices made to meet other objectives, by including limits 318 

to biodiversity damage as constraints, or by including agrobiodiversity (such as mixed cropping) in 319 

management options (Allen et al., 2014). Nelson et al., (2009) used a spatially explicit model of land 320 

use change in Oregon (USA) to demonstrate a positive relationship between biodiversity and 321 

ecosystem services, and to show how a trade-off between these characteristics and commodity 322 

production could be alleviated using payments for carbon sequestration. This type of model can be 323 

applied to increase understanding of how management choices relating to climate change 324 

mitigation and adaptation impact biodiversity as well as productivity. 325 

 326 

While the aforementioned models consider trade-offs between production and biodiversity treated 327 

as a goal in itself, biodiversity can also be viewed in terms of its contribution to productivity. This is 328 

the context in which (plant) biodiversity is considered in the grassland models described in Section 329 

2.3. The positive relationship between biodiversity and a range of ecosystem services (Isbell et al., 330 

2011; Oliver et al., 2015) provides a framework for a more ‘holistic’ quantification of the value of 331 

biodiversity, beyond its direct relationship with productivity. Modeling grassland biodiversity under 332 

different managements and environmental conditions requires a formalization of the role of 333 

mechanisms of plant species coexistence (Chesson, 2000), and their impacts on community 334 

structure (HilleRisLambers et al., 2012). Some mechanistic models of plant community dynamics 335 

include the explicit simulation of plant growth, development, and competition among species 336 

(Soussana et al., 2012b) including developmental plasticity in plant morphology arising from 337 

interaction with neighbours (Maire et al., 2013). Studies of biodiversity in permanent grasslands 338 
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have often focused on this sub-plot scale, but do not consider how the landscape context affects 339 

biodiversity (Zobel, 2015). This would require comparative studies of local communities along 340 

broad-scale environmental gradients and in different biogeographic regions (Lessard et al., 2012). 341 

At this larger scale, detailed plant competition models are not feasible, being complex and difficult 342 

to initialize and parameterize. This explains the simplified treatment of these processes in larger 343 

scale models (see Section 2.3) achieved, for example, by identifying a main plant species and 344 

representing the others implicitly as a single competing species (Soussana et al., 2012b). 345 

 346 

Principles have been developed for bridging the gap from small-scale mechanistic modeling to 347 

whole community approaches (Confalonieri, 2014), and there are opportunities to learn from 348 

modeling of crop systems (Balbi et al., 2015) and from techniques applied in other modeling 349 

disciplines. Tixier et al., (2013) consider the use of ecological network modeling approaches to 350 

enable multi-scale explorations of the impacts of environmental and management change on 351 

biodiversity and productivity. Examples include the use of linked crop and food web models to 352 

quantify feedbacks between crop management and pest-predator interactions, thus addressing 353 

trophic relationships which are often overlooked (Tixier et al., 2013). 354 

 355 

The modeling of grassland biodiversity can help to capture important non-commodified benefits of 356 

livestock systems. Ignoring such benefits can lead to sub-optimal policy and management decisions 357 

(Meier et al., 2015). Given the pressure to increase agricultural production and efficiency under 358 

climate change, ensuring that biodiversity impacts are incorporated into models used to advise 359 

decision-makers is vital. To achieve this with an increasing level of sophistication will require new 360 

research and empirical data, particularly in poorly understood but highly important aspects of 361 

biodiversity, such as its role in soil dynamics (Lemaire et al., 2005). Modeling complex multi-scale 362 
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agri-ecosystems can reveal hidden relationships and improve policy and management choices 363 

(Allen et al., 2014; Tixier et al., 2013). In the context of climate change, and its potential impacts on 364 

ecosystem services, this capability is essential. 365 

 366 

3. Modeling GHG emissions from ruminant systems 367 

 368 

3.1. Farm-scale GHG emissions 369 

 370 

On-farm GHG emissions are most often modeled using the IPCC (2006) methodology, in which 371 

emissions factors are defined according to ascending levels of detail (Tiers 1, 2 and 3). Tiers 1 and 2 372 

use empirical emission factors, standardised across countries (Tier 1) or using country-specific 373 

variables which better represent aspects of farming technology (Tier 2). Tier 3 models usually 374 

represent a change in approach from empirical to mechanistic modeling. For the construction of 375 

emission inventories, Tier 2 approaches are adequate, while for on-farm purposes the data 376 

demands of complex Tier 3 type models make simpler approaches more useable. However, the 377 

applicability of empirical Tier 1 and 2 approaches is limited by the data from which they were 378 

derived. For the estimation of emissions factors and how changes in management affect them, 379 

more detailed Tier 3 type modelling is required. The main on-farm sources of GHGs from ruminant 380 

production systems are emissions of CH4 from enteric fermentation and from manure, losses of 381 

NO3, NH3 and N2O from manure management and application, and from housing, and N2O 382 

emissions from grasslands and other soils (Gerber et al., 2013). 383 

 384 

 385 
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While Tier 2 approaches to predicting enteric CH4 emissions ignore digestive and fermentative 386 

processes, some models allow the assumption of a fixed CH4 emission per unit of gross energy 387 

intake to be replaced with predictions that vary with dietary characteristics such as digestibility 388 

(Graux et al., 2011) or diet composition (Schils et al., 2007). More mechanistic approaches including 389 

an integrated assessment of digestive and fermentative aspects of enteric CH4 emissions provide a 390 

more detailed analysis for a wider range of conditions (Bannink et al., 2011). Predictions may 391 

include effects on nitrogen utilisation and excreted nitrogen compounds as a source of GHG 392 

emissions (Dijkstra et al., 2011).  393 

 394 

Since emissions from one link in the manure management chain (e.g. housing) reduce the source 395 

strength in subsequent links (e.g. storage), predicting responses to changes such as the 396 

implementation of mitigation strategies requires the use of models based on mass-conservation 397 

principles (Sommer et al., 2009).Current Tier 3 type modelling of CH4 emissions from manure 398 

incorporates the non-linear effects of management variables (type and quantity of organic matter 399 

inputs to the manure, manure storage type, duration and temperature) (Li et al., 2012; Sommer et 400 

al., 2009). However, although there are complex models of anaerobic slurry digestion (Batstone et 401 

al., 2002) –  an important mitigation option (Weiske et al., 2006) – , it is not generally incorporated 402 

in farm-scale models.. Modelling of this process at farm-scale should include the leakage of CH4 403 

which can significantly reduce the offset of GHG emissions (Miranda et al., 2015).  The main sources 404 

of NH3 emissions from manure management are animal housing, manure storage and applications 405 

to land. In addition to factors affecting CH4 emissions, NH3 emissions are dependent on the air 406 

temperature and ventilation of housing and the weather conditions during manure application. 407 

These factors can be mediated by management changes (e.g. acidification of slurry, anaerobic 408 

digestion, covering manure storage, and the use of injection equipment to apply slurry to land). The 409 
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modelling method recommended in the Air Pollutant Emission Inventory Guidebook (EEA, 2013) 410 

improves on IPCC Tier 1 and 2 approaches by separately recognising housing as an NH3 emissions 411 

source. This makes it easier to assess the efficacy of mitigation options and to synthesize empirical 412 

data, as both often focus on individual emissions sources.  Tier 3 approaches, such as that of Rotz et 413 

al. (2014) (based on the Integrated Farm System Model) enable a more nuanced investigation of 414 

the effect of manure management on NH3 emissions, which is particularly useful when assessing 415 

relative sensitivity to climatic variables and interactions with other pollutant emissions. Nutrients in 416 

manure originate primarily from animal excreta, so are affected by the quantity and quality of the 417 

feed ration. Estimating feed intake and quality for grazing animals remains a challenge for modeling 418 

NH3 emissions. 419 

 420 

Mechanistic (Tier 3 type) models of N2O emissions from manure and soil (Li et al., 2012) are 421 

available, however, some aspects (such as parameterizing and predicting oxygen deficit in soil when  422 

require further improvement.  N2O emissions also arise from leaching of NO3 from pastures, and 423 

this process has been modeled from the microcosm to the catchment-area scale (Cannavo et al., 424 

2008). The  approach of Cichota et al., (2013) tackles the complex spatial element of NO3 leaching 425 

from urine patches, but further efforts are needed to represent the effect of different management 426 

options on nitrogen dynamics, including interactions with soil variables and weather conditions.  427 

 428 

Across all areas of GHG emissions modeling, better model characterisation of interactions between 429 

different components of ruminant systems are required, in order to meet the need for more 430 

robust, flexible farm-scale modeling of strategies to mitigate GHG emissions and adapt to climate 431 

change. One example is the need to better incorporate the impacts of heat stress and animal 432 

disease (Sections 2.1 and 2.2) into farm-scale models of GHG emissions. More focus is required on 433 
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the simultaneous modelling of the effect of management on carbon, nitrogen and phosphorus 434 

losses as exemplified by Ryals et al. (2015). This would allow the multiple pollutant cost 435 

effectiveness of mitigation measures to be assessed (Eory et al., 2013) (taking into account the 436 

impacts of mitigation measures targeting one GHG source on the emissions of other pollutants).  437 

 438 

3.2. Modeling carbon sequestration in grassland soils  439 

 440 

Grasslands managed for ruminant production store and sequester large amounts of carbon; in 441 

Europe, modeling studies have estimated that there are currently 5.5 Gt of soil carbon stored in the 442 

top 30cm of grassland soils (Lugato et al., 2014) giving grassland carbon sequestration a potentially 443 

major role in climate change mitigation (Glaesner et al., 2014). The importance of soil carbon to soil 444 

quality is also being recognised (Lugato et al., 2014) leading to increased interest in modeling the 445 

effect of agricultural management on soil carbon stocks. Modeling of this positive impact of 446 

grassland-based ruminant production is therefore vital to understanding the interactions between 447 

mitigation and adaptation strategies, to improving production efficiency, and to viewing farms in 448 

the context of ‘Climate Smart Landscapes’ (Scherr et al., 2012). 449 

 450 

The IPCC (2006) have identified Tier 3 modeling as having the greatest potential for understanding 451 

the effect of agricultural management and climatic and soil conditions on soil carbon. These models 452 

could be applied to improve the current Marginal Abatement Cost Curve analyses used to identify 453 

cost-effective measures for reducing GHG emissions, which often make a range of assumptions in 454 

relation to soil carbon  (Leip et al., 2010; Nayak et al., 2015). They may also provide uncertainties 455 

associated with mitigation strategies and their interaction with climatic factors, nitrogen cycles and 456 

management practices. Tier 3 models used range from those requiring the user to define the 457 
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monthly input of plant residues, such as RothC (Coleman and Jenkinson, 1996) to those describing 458 

agricultural production in as much detail as soil processes, such as SPACSYS (Wu et al., 2007) and 459 

PaSim (Ma et al., 2015). There are also dynamic deterministic models of soil processes, such as 460 

DNDC (Li et al., 1992) and DailyDayCent (Parton et al., 1998), which represent crop growth using 461 

empirical functions. Many of the models can be applied to a range of plant species (Yagasaki and 462 

Shirato, 2013) and are typically verified at a small number of sites, where detailed data can be 463 

readily obtained (El-Maayar and Sonnentag, 2009; Yagasaki and Shirato, 2014). 464 

 465 

One of the main objectives of soil carbon modeling is to assess the effects of management and 466 

climate change across management systems and pedo-climatic zones. For this purpose, Tier 3 467 

models are currently being run at regional, national, continental and global scales (Gottschalk et al., 468 

2012; Lugato et al., 2014). The DNDC model has also been coupled to CAPRI to provide predictions 469 

on soil carbon at the European scale (Britz and Leip, 2009). However, the analysis was limited by 470 

the emissions factor for carbon sequestration embedded in CAPRI, which assumes continual carbon 471 

sequestration by grasslands (Soussana et al., 2007; 2010).  472 

 473 

The assumptions used in CAPRI highlight how differences in model design, and in the level of detail 474 

at which processes are characterised, will have an impact on the predictions produced. In order to 475 

understand the range of possible results predicted by models, ensemble modeling may be used 476 

(Robertson et al., 2015; Smith et al., 1997; van Oijen et al., 2014). However, to reduce differences in 477 

the outcomes of current modeling of carbon and nitrogen cycles, model algorithms and structure 478 

also need to be improved in order to better characterise physical and biophysical processes (Lu and 479 

Tian, 2013; Tian et al., 2011). Particular challenges surround the initialization of such models, 480 

including a lack of information about the initial state of carbon and nitrogen pools for particular 481 
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sites (limited by measuring techniques and the detailed data and parameterisation required) (Hill, 482 

2003) and the need to improve methods such as ‘spin-up’ simulations to overcome these practical 483 

limitations (Lardy et al., 2011). The sensitivity of soil carbon and nitrogen stocks and GHG emissions 484 

to climatic changes demands model based integrated assessment approaches (Li et al., 1994). 485 

Properly validated process-based biogeochemical models incorporating coupled carbon-nitrogen 486 

cycling can be effective tools for examining the magnitude and spatial-temporal patterns of carbon 487 

and nitrogen fluxes. However, the development and testing of such models will require more 488 

effective collection, collation and sharing of high quality experimental data (del Prado et al., 2013; 489 

Smith et al., 2002).  490 

 491 

3.3. Environmental impacts beyond the farm 492 

 493 

The impacts of livestock production extends far beyond the farm, including local impacts on 494 

surrounding ecosystems and wider impacts related to the production and transport of purchased 495 

inputs. The modeling of on-farm emissions supports the identification of mitigation strategies that 496 

are efficient at farm level. However, approaches (such as IPCC methodologies) which do not take 497 

into account off-farm environmental impacts, can risk favouring systems and strategies that 498 

transfer emissions to other locations, rather than reducing them (O'Brien et al., 2012). The Global 499 

livestock environmental assessment model (GLEAM) applies a static process-based modelling 500 

approach to assess GHG emissions associated with meat and dairy products, incorporating both on- 501 

and off-farm emission sources (Opio et al., 2013). GLEAM uses Tier 2 equations and regional scale 502 

data to capture the impacts of varying local conditions not revealed by global or national average 503 

data (FAO, 2016). Models such as GLEAM that integrate simulation modeling and Life Cycle analysis 504 

(LCA) approaches, offer modeling solutions that make environmental sense at the global as well as 505 
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the local scale (de Boer et al., 2011). The development of more holistic LCA methodologies 506 

(Bruckner et al., 2015; Huysveld et al., 2015) and the exploration of new LCA applications, for 507 

example as a farm decision support (DSS) tool (Meul et al., 2014) may present further opportunities 508 

to combine farm-scale modeling and LCA approaches. Farm-scale modelers share many of the 509 

challenges recognised in LCA, such as the need to increase standards and consistency of data and 510 

assumptions (Eshel et al., 2015) and to ensure that users correctly interpret the outcomes of 511 

studies (Cederberg et al., 2013; Meul et al., 2014). 512 

 513 

4. Regional and global economic modeling of livestock systems  514 

 515 

The development of economic models of livestock systems, including modules that balance and 516 

optimise animal diets in terms of cost, has been driven by the high share of livestock products in EU 517 

agricultural outputs, with animal production accounting for 42% of EU-28 agricultural output 518 

(Marquer et al., 2014), as well as by the high cost of feed. At global and regional level, models of 519 

agriculture and trade are used to explore how livestock production may alter in response to the 520 

impacts of climate change on the economics of production (Audsley et al., 2015; Havlík et al., 2014) 521 

This may include the effects of technological change, population growth (Schneider et al., 2011), 522 

the consequences of various assumptions about land availability (Schmitz et al., 2014), and the 523 

impact  of changes in human diet (Bajzelj et al., 2014). Modeling is also used to explore the regional 524 

and global consequences of different approaches to climate change mitigation, in order to identify 525 

optimal solutions (Havlík et al., 2014). 526 

 527 

Results from recent modeling of European agriculture suggest that socio-economic factors will have 528 

a greater impact than climate change on land use, production systems and their outputs (Audsley et 529 
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al., 2006; Leclère et al., 2013). However, with respect to ruminant production systems, most 530 

regional and global models only take into account indirect climate change impacts, arising from 531 

changes in crop yields and prices. Aspects not currently addressed include, the effects of increased 532 

and extreme temperatures on livestock health and production, changes in pathogen spread and 533 

abundance, changes in grassland yield, changes in crop and grassland nutritional quality, 534 

competition for water resources and the impact of adaptation strategies (from animal genetics to 535 

changing management choices). Work in these areas is developing; Chang et al., (2015) modeled 536 

changes in European grassland productivity between 1961 and 2010, while Schönhart and Nadeem 537 

(2015) used empirical relationships between THI and animal health to estimate the costs of climate 538 

change impacts on dairy cow productivity in Austria. Other aspects, such as the non-commodified 539 

benefits of ruminant systems (Section 2.4) are often overlooked. Policies affect individual farmers 540 

and their choices, making exploration of the impacts of farm-level decisions valuable for the 541 

assessment of policy and mitigation strategies (Eory et al., 2014). Leclère et al., (2013) 542 

demonstrated how autonomous farm-scale decision making could be incorporated into regional 543 

modeling. However, their characterisation of livestock systems focussed only on impacts of climate 544 

change stemming from changes in crop prices and yield. Achieving a fuller representation of 545 

livestock systems in regional and global economic modeling, by increasing the number of variables 546 

considered, and by strengthening the basis of assumptions, should therefore be a priority.  547 

 548 

In the context of the previous discussion, modeling of climate change impacts on livestock 549 

production still remains highly uncertain. Developing a range of consistent future scenarios would 550 

improve model comparability, and might allow more factors to be incorporated into modeling. The 551 

development of such scenarios has begun (Antle et al., 2015) however, comparisons of global 552 

economic models within the Agricultural Model Intercomparison and Improvement Project (AgMIP) 553 
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(http://www.agmip.org) (von Lampe et al., 2014) revealed wide inter-model variation in predictions 554 

even when models used identical future scenarios (Nelson et al., 2014; Valin et al., 2014). Although 555 

the uncertainty in such predictions is normal in the field of economics, it is great compared to that 556 

usually encountered in the natural sciences. The problem of modeling uncertainty has been tackled 557 

in climate and crop modeling using model ensembles (Martre et al., 2015) but for economic 558 

modeling, other improvements are needed before this approach can be considered. Models 559 

developed to make predictions about relatively stable economic environments need to be 560 

evaluated to understand if they are adequate for characterising the periods of high socio-economic 561 

uncertainty expected to accompany climate change, including developing a better understanding of 562 

the parameters driving empirically modeled relationships. Improved transparency and sharing of 563 

methods is required for such model evaluation and improvement to be effective. In addition to 564 

improving existing regional scale economic models, new models are needed to adequately analyse 565 

complex dynamic processes and uncertainty; dynamic stochastic general equilibrium models, which 566 

could be useful in this context, are so far only applied to financial market analyses. 567 

 568 

 569 

5. Stakeholders and modeling 570 

 571 

Engagement between agricultural stakeholders and modelers has long been recognised as vital to 572 

developing models that can support effective farm- and policy-level decision making (Voinov and 573 

Bousquet, 2010), with engagement processes involving the development of modeling tools 574 

(participatory modeling) or the application of existing models to solve a problem. Different 575 

approaches to stakeholder engagement in the context of agricultural systems have been defined 576 

(Colvin et al., 2014; Neef and Neubert, 2011). Martin et al (2013) identified two types of approach 577 

http://www.agmip.org/
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to farm system design initiatives that make use of modeling: 1) optimisation approaches and 2) 578 

participation and simulation-based approaches. These types of stakeholder engagement are 579 

consistent with descriptions of ‘hard’ and ‘soft’ system approaches (Matthews et al., 2011; van 580 

Paassen et al., 2007). Optimisation or hard system approaches are positivist; the problem to be 581 

addressed is quickly identified and is not contested, system boundaries are identified, and scientific 582 

data are used to generate a range of solutions, using modeling tools to explore these options 583 

(Martin et al., 2013). Stakeholders are engaged most in the process of understanding system 584 

parameters, processes and inputs and outputs, but rarely in defining the problem or evaluating 585 

solutions. In contrast, participatory or ‘soft’ system approaches emphasise the need to explore 586 

stakeholder perceptions in order to identify problems and potential solutions, in a process of 587 

collaborative or collegiate engagement. This goes beyond the contractual and consultative levels of 588 

participation (Barreteau et al., 2010) more common in optimisation approaches. Processes are 589 

based on mutual learning, from which solutions can emerge through iterative and reflective 590 

relationships between stakeholders and researchers (Colvin et al., 2014; Martin et al., 2013). This 591 

reflects the fact that, in addition to being learning tools, models can play an important role in 592 

creating a community from disparate groups of stakeholders, and in putting issues onto the political 593 

agenda (Sterk et al., 2011). In a wider context, these categories relate to the knowledge production 594 

practices identified by Rodela et al., (2012) which range from ‘positivist truth-seeking’ (in which the 595 

scientist has the role of a neutral outsider) to ‘post-normal searches for negotiated agreement’ (in 596 

which the scientist is an advocate and participant in the process). 597 

 598 

Challenges for participatory approaches include the time and effort required by stakeholders and 599 

researchers to engage fully in mutual learning, which can lead to ‘participation fatigue’ (Neef and 600 

Neubert, 2011) and the difficulty of generalising from tailor-made solutions to inform policy level 601 
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decision making at a larger scale (Colvin et al., 2014). Van Latesteijn (1999) illustrated the challenge 602 

of relating small-scale, deep scientific findings to the large scale, wide and shallow outlook of 603 

policymakers, with scientists required to present more simple and convincing ‘facts’ about the 604 

future. Another challenges is that processes including stakeholders often arrive at ‘exploitative 605 

innovation’ solutions, which use existing knowledge to adjust current systems, rather than 606 

‘explorative innovation’ solutions that facilitate novel changes (Martin et al., 2013). The bottom-up 607 

way in which explorative innovations emerge can challenge existing frameworks, and as a result 608 

may face institutional barriers to implementation (Colvin et al., 2014). However, these types of 609 

innovation are important in adapting agricultural production systems to climate change conditions 610 

(Martin et al., 2013). 611 

 612 

In order to develop and best utilise modeling tools to support farm- and policy-level decision-613 

making in the context of climate change, it will be essential for modelers to work with social 614 

scientists to identify and apply effective approaches to stakeholder engagement, integrating many 615 

knowledge forms and perspective (Rodela et al., 2012).If existing models are to be available for 616 

application to real-world problems, they need to be open to modification, ‘tested, wrapped, 617 

documented and archived’ (Voinov and Bousquet, 2010). A range of recent work contributes to 618 

building the modeling capacity required to support effective decision making in relation to climate 619 

change adaptation and mitigation in livestock production systems. This includes, successful trans-620 

disciplinary approaches to supporting agricultural systems vulnerable to climate change (van 621 

Paassen et al., 2007) and deliberative approaches to model evaluation (Bellocchi et al., 2015).  622 

 623 

6. Synthesis 624 

 625 
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The preceding sections demonstrate the richness and complexity of modeling relating to European 626 

ruminant production systems, with models applied at all scales to support stakeholders facing the 627 

challenges of climate change (Table 1). Ruminant systems are multi-faceted, with each component 628 

interacting with others, and (singly and as part of the wider systemic whole) interacting with other 629 

biophysical, economic and social systems and processes. A number of broad challenges to the 630 

modeling of ruminant systems in the context of climate change have been identified here (Table 1).  631 

 632 

Table 1: Areas of ruminant systems modeling covered in this paper, their current applications and broad challenges for 633 

improvement in relation to climate change 634 

Modeling topic Current applications Some broad Challenges 

Farm-scale 

emissions 

DSS at farm level, contributions to 

national emissions inventories, assessing 

impacts of policy 

Need for more Tier 3 type modeling to improve 

understanding of systemic interactions, to 

validate empirical (Tier 1 & 2 type) relationships 

and to incorporate adaptation and mitigation 

strategies and impacts of impaired animal health  

carbon 

sequestration 

Contributions to inventories of carbon 

stocks, policy level predictions of variation 

with climate & changes in land use 

Improved data collation and sharing, facilitating 

more mechanistic (Tier 3 type) modeling of the 

impacts of climate change, land use change and 

adaptation and mitigation options 

LCA Providing evidence to guide policy level 

and on-farm choices 

Linking to farm-scale modeling to incorporate 

wider environmental impacts into farm-scale 

environmental and economic assessments; 

standardising assumptions and data 

Heat Stress DSS at farm level to support 

avoidance/control of heat stress, 

estimates of impacts  of increased THI on 

Need for more mechanistic modeling of heat 

stress and its impacts under climate change, 

incorporation of the variables affecting stress, 
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 635 

production & reproduction and of adaptation and mitigation strategies 

Pathogens DSS at farm level, estimates of impacts on 

productivity, policy support (risks of 

spread for specific pathogens and 

vectors), assessing impacts of policy 

Improved data on pathogen ecology and spread 

to facilitate more mechanistic modeling of future 

impacts under climate change, outbreak intensity 

and management responses 

Grasslands DSS at farm level, projections of yield 

change under future climates at the 

regional scale 

Modeling of climate change impact on grass 

quality, modeling multi-species swards, modeling 

impact of adaptation and mitigation strategies 

Biodiversity & 

ecosystems 

DSS at farm level, bio-economic 

optimisation models including biodiversity 

constraints/goals, links to ecosystem 

services  and regional impacts of policy 

Developing linkages to agricultural models to  

facilitate multi-species modeling and to include 

the non-commodified value of ruminant systems 

in environmental/economic evaluations 

Regional 

economics 

Policy level assessments of economic 

impacts of climate change on livestock 

agriculture, based on changes in crop yield 

and price, including changes in livestock 

systems land use 

Incorporating impacts of climate change on 

ruminant systems beyond changes in feed 

prices/yield (e.g. impact of heat stress, increased 

water use, increased disease risk, potential 

changes in soil carbon storage). Including non-

commodified benefits from these systems 

Stakeholder 

engagement 

Defining modeling scenarios and priorities 

(including climate change impacts and 

relevance of modeled adaptation and 

mitigation strategies), use of models for 

learning, community building and 

highlighting issues at policy level (Sterk et 

al. 2011) 

Finding approaches that overcome issues relating 

to the time taken for engagement (researchers 

and stakeholders), scaling up lessons learnt in 

specific case studies to policy level, finding ways 

to incorporate qualitative values communicated 

by stakeholders (including the public) into 

modeling, such as the social value of biodiverse 

landscapes. 
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One major challenge for ruminant systems modeling is that regional and global scale models often 636 

overlook the direct impacts of climate change on such systems. This is of concern given the role of 637 

ruminant systems in the provision of ecosystem services and other social benefits (Section 2.4), and 638 

due to the interactions between livestock agriculture and other systems. The development of socio-639 

economic scenarios representing consistent, realistic suites of management and policy choices 640 

‘packaged’ at regional level (Valdivia et al., 2013) offers a path for better incorporating 641 

understanding of farm- and policy-level decision making into models, and for giving weight to the 642 

‘non-commodified’ value of ruminant systems. At the same time, empirical representations of 643 

biophysical processes and interactions in regional and global models can be evaluated and 644 

improved using knowledge gained from mechanistic modeling at field, animal and farm-scales. In 645 

this respect, complex and simple modeling approaches can be seen not in opposition, but as part of 646 

an iterative process of model development (Fig. 2) applicable to all levels of modeling, not just the 647 

regional level. This can allow the development of ‘smart’ empirical modules which reduce model 648 

complexity in a robust manner, rather than through the use of assumptions to fill gaps in 649 

knowledge. 650 
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 651 

Fig. 2: How the simple-complex model problem can be re-framed as an iterative development process. Black triangles 652 

represent the level of model complexity. 653 

 654 

The purpose of modeling is not to fully represent every aspect of real world systems (Cederberg et 655 

al., 2013); models will always incorporate simplification and uncertainty. Rather, their value is in 656 

providing an understanding of complex systems, predicting change in such systems, and revealing 657 

systemic relationships that would otherwise be hidden (van Paassen et al., 2007). Modelers need to 658 

clearly present and explain model outputs, their meaning and limitations. In turn, decision-makers 659 

(particularly at policy level) need to develop a sufficiently good understanding of the real world 660 

systems with which they are dealing for them to use model outputs and other evidential sources 661 
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appropriately. In this context, the interpretation of modeling results becomes a joint concern of 662 

modelers and the users of model outputs. 663 

 664 

Engaging with stakeholders at all stages of research, including in the definition of problems, is likely 665 

to increase the chances that model outputs and their strengths and weaknesses will be understood 666 

at a deep rather than superficial level (Voinov and Bousquet, 2010). Through such engagement, the 667 

required level of model complexity, accuracy and scope can emerge from deliberative processes 668 

(Bellocchi et al., 2015; Colvin et al., 2014). In this respect, individuals with knowledge of both the 669 

research and stakeholder communities can act as ‘bridges’ between different groups (Sterk et al., 670 

2011). Social scientists are often well placed to fulfil this role, promoting and guiding mutual 671 

learning and facilitating the achievement of positive outcomes (Colvin et al., 2014). The challenge 672 

for modelers is to use the process described to create models that are both ‘user friendly’ and 673 

robust at appropriate levels of complexity.  674 

 675 

The disparate nature of modeling relating to ruminant systems, demonstrated in this paper, means 676 

that there are many barriers to achieving the types of collaborative interaction between modelers 677 

required to meet the challenge of climate change. Technical issues related to linking models are 678 

one major obstacle to more joined-up modeling of ruminant systems. The development of 679 

modeling platforms supporting modular approaches and utilising compatible software and coding, 680 

can help build capacity within a highly adaptive framework (Holzworth et al., 2015). Such systems 681 

can also facilitate the exchange of methods and information between modeling fields and between 682 

groups within a field, stimulate the spread of best practice, prevent duplication, and increase model 683 

comparability. Strategic modeling platforms can also play a valuable role in providing policy level 684 

advice. Livestock modelers can look towards initiatives set up in relation to crop systems, such as 685 
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MARS (Monitoring Agricultural ResourceS) (https://ec.europa.eu/jrc/en/mars), for examples of 686 

what is required to communicate model predictions at the European level.  687 

 688 

Developing models of ruminant farming systems can take years, while major decisions relating to 689 

GHG mitigation and the adaptation of livestock systems to climate change are required urgently. 690 

Therefore, in addition to developing new modeling, it is important that best use is made of existing 691 

data and models, ensuring that knowledge gained and tools developed are made available to 692 

decision-makers at a range of scales. In this context, researchers and funders need to support the 693 

development of data sharing resources such as those within the Global Research Alliance (GRA) 694 

(http://globalresearchalliance.org) (Yeluripati et al., 2015) and in projects such as the EU knowledge 695 

hub Modeling European Agriculture for Food Security under Climate Change (MACSUR) 696 

(http://macsur.eu). As technological capacity for data sharing and data processing grows, it also 697 

needs to be matched by the development of better communication between modelers and 698 

experimental and theoretical researchers. Such connections support modelers by facilitating model 699 

development, but also benefit data providers, by providing a path to demonstrate and explore the 700 

implications of their findings and to indicate areas for future research. The development of 701 

networks that bring together the disparate collection of disciplines relevant to livestock systems 702 

modeling is therefore essential, both for the sharing of current data and modeling resources, and 703 

for the development of new modeling platforms. Barriers to inter-disciplinary working (Siedlok and 704 

Hibbert, 2014) mean that creating structures to build modeling capacity and share knowledge 705 

across disciplinary boundaries requires carefully considered, coherent and long-term support from 706 

funders and policymakers.  707 

 708 

https://ec.europa.eu/jrc/en/mars
http://globalresearchalliance.org/
http://macsur.eu/
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This paper has attempted 1) to provide an overview of how current ruminant production systems 709 

modeling supports the efforts of stakeholders and policymakers to predict, mitigate, and adapt to 710 

climate change and 2) to provide ideas about how modeling resources can be enhanced to best 711 

meet these challenges. More focussed assessments of specific modeling fields and the priorities for 712 

their development, would be useful in shaping priorities for future research in the context of 713 

climate change. 714 

 715 

7. Future Perspectives 716 

 717 

The overview of European ruminant system modeling presented provides pointers towards the 718 

future development required across modeling disciplines, in order to meet the challenges of 719 

climate change. Unfolding challenges for modelers in a climate change world include 1) Better 720 

characterisation of adaptation strategies and complex biophysical processes, 2) More modeling of 721 

interactions between the diverse components of agro-ecosystems (including management 722 

strategies addressing different policy targets) and 3) Better linkage between  animal health and 723 

disease, animal growth and nutrition, crop and grassland and farm- and regional-scale modelers. 724 

Four key areas need to be addressed if the potential for agricultural modeling to help tackle the 725 

challenges of climate change is to be properly exploited: 726 

 727 

• Making modeling more relevant to real-world problems by increasing the accessibility, 728 

visibility and comparability of models for different uses, and by engaging with stakeholders 729 

at all stages in modeling research and development 730 

 Developing modeling capacity through mutual learning and increased technical 731 

compatibility across modeling disciplines, and between modelers working at different scales  732 
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 Fostering better links between modelers and empirical researchers to ensure that high 733 

quality data and research findings can be easily accessed by modelers, and that modeling 734 

outputs can more effectively inform the focus of new experimental and theoretical research 735 

• Ensuring that modeling outputs, their strengths, limitations and purpose are understood by 736 

those that use them, recognising that achieving this will require the commitment of time 737 

and resources by both modelers and stakeholders, including policymakers 738 

 739 

Within Europe and beyond, achieving progression in these areas is an undertaking that will require 740 

coherent long-term support from funders, policymakers, and academics across the plethora of 741 

organisations involved in the creation of inter-disciplinary research structures. Modeling can offer 742 

vital insights into the complex interacting relationships between climate change, management and 743 

policy choices, food production and the maintenance of vital ecosystem services. Modelers, 744 

empirical researchers and social scientists need to work together across disciplines, in collaboration 745 

with stakeholders, to develop and make effective use of this potential.  746 

 747 

8. Conclusion 748 

A continuing stream of papers has been published on agricultural modeling over recent years, with 749 

research supported by a range of global initiatives. However, the inherent complexity associated 750 

with ruminant system modeling has meant that it has been less developed than other areas such as 751 

crop modeling. In this context, the aim here has been to provide an overview of ruminant systems 752 

modeling in Europe. Modeling of ruminant production is currently supporting on-farm decisions to 753 

minimise GHG emissions and maximise efficiency, helping to assess and evaluate policy choices in 754 

the context of climate change, and developing our understanding of the likely impacts of global 755 

warming on European food production. It is hoped that the synthesis of modeling presented here 756 
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will help strengthen the basis for constructive and strategic engagement between the European 757 

modelling community, non-European modelers and experimental researchers, through initiatives 758 

such as MACSUR, AgMIP and GRA. 759 
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