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Abstract 

 

Custom genotyping arrays provide a flexible and accurate means of genotyping single nucleotide 

polymorphisms (SNPs) in a large number of individuals of essentially any organism.  However, 

validation rates, defined as the proportion of putative SNPs that are verified to be polymorphic in 

a population, are often very low.  A number of potential causes of assay failure have been 

identified, but none have been explored systematically. In particular, as SNPs are often developed 

from transcriptomes, parameters relating to the genomic context are rarely taken into account.  

Here, we assembled a draft Antarctic fur seal (Arctocephalus gazella) genome (assembly size: 

2.41Gb; scaffold/contig N50: 3.1Mb/27.5kb).  We then used this resource to map the probe 

sequences of 144 putative SNPs genotyped in 480 individuals. The number of probe-to-genome 

mappings and alignment length together explained almost a third of the variation in validation 

success, indicating that sequence uniqueness and proximity to intron-exon boundaries play an 

important role.  The same pattern was found after mapping the probe sequences to the Walrus and 

Weddell seal genomes, suggesting that the genomes of species divergent by as much as 23 

million years can hold information relevant to SNP validation outcomes.  Additionally, re-

analysis of genotyping data from seven previous studies found the same two variables to be 

significantly associated with SNP validation success across a variety of taxa.  Finally, our study 

reveals considerable scope for validation rates to be improved, either by simply filtering for SNPs 

whose flanking sequences align uniquely and completely to a reference genome, or through 

predictive modeling. 
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Introduction 1 

 2 

Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic 3 

variation, with an estimated ten million being present in human populations (Kruglyak & 4 

Nickerson 2001). Around four million of these have been validated (Jorgenson & White 5 

2006), meaning that they can be reliably scored and are polymorphic in a given 6 

population (Conklin et al. 2013, Montes et al. 2013).  SNPs are suitable for addressing 7 

many questions in population genetics given their co-dominant, biallelic nature and well 8 

understood mutation processes (Brumfield et al. 2003; Morin et al. 2004).  Furthermore, 9 

SNPs provide technical advantages compared to other markers such as microsatellites, 10 

including the possibility to genotype them on a large scale (Seeb et al. 2011) and with 11 

minimal error (Hoffman et al. 2012).  Large scale SNP genotyping can now be readily 12 

applied to non-model species, revolutionising many areas of ecology and evolution.  In 13 

particular, applications previously limited by marker number such as the construction of 14 

linkage maps (Kakawami et al. 2014), quantitative trait locus mapping (Schielzeth et al. 15 

2011), genome-wide association studies (Slate et al. 2008), inference of population 16 

demographic history (Shafer et al. 2015) and studies of inbreeding depression (Hoffman 17 

et al. 2014) are increasingly benefiting from the enhanced resolution provided by SNPs. 18 

Moreover, SNP genotyping will increasingly be used to assay a large number of 19 

individuals and populations with high accuracy and low-cost in candidate genomic 20 

regions identified by genome scans from whole genome re-sequencing data. 21 

 22 

A common approach for SNP genotyping is to mine a sequence resource for putative 23 

SNPs, extract the flanking sequences and then use these to develop locus-specific assays.  24 

Several different types of genotyping technology are available, which provide 25 

considerable flexibility in terms of the numbers of SNPs and individuals that can be 26 

typed.  Small to medium throughput technologies include Applied Biosystem’s SNPlexTM 27 

and TaqMan® SNP genotyping assays, Sequenom’s iPlex® assay, Beckman Coulter’s 28 

SNPstream® and LGC’s KASPTM assay.  Until recently, Illumina’s GoldenGate® assay 29 

was also popular, but this has recently been discontinued.  At the opposite end of the 30 

spectrum are high-density arrays, otherwise known as ʻSNP chips’, including the Illumina 31 
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Infinium iSelect® and Affymetrix Axiom® arrays, which can support several thousands 32 

to millions of SNPs.  Owing to the ease with which large volumes of data can be 33 

generated, these high-density arrays are gaining popularity and have already been applied 34 

to species as diverse as house sparrows and polar bears (Hagen et al. 2013; Malenfant et 35 

al. 2014). 36 

 37 

In humans, where large numbers of SNPs have been pre-validated, it is usual for 38 

somewhere in the order of 90% of SNPs to be polymorphic and reliably scored 39 

(Montpetit et al. 2005; García-Closas et al. 2007).  However, validation rates for novel 40 

SNPs in non-model organisms tend to be much lower, falling to as little as 12.5% and 41 

rarely rising above 40% (Chancerel et al. 2011; Helyar et al. 2011). High failure rates are 42 

undesirable both from a financial perspective and due to the loss of data.  Nevertheless, 43 

only a handful of studies have explored the causes of assay failure for their datasets 44 

(Lepoittevin et al. 2010; Van Bers et al. 2010; Milano et al. 2011) and none to our 45 

knowledge have tested for broad patterns across species. Addressing this knowledge gap 46 

should allow identification of the most common causes of assay failure and may be 47 

helpful for improving validation rates in the future. 48 

 49 

Many of the reasons for assay failure in non-model organisms stem from the fact that 50 

SNPs are often derived in silico from a transcriptome or other de novo assembled 51 

sequence resource, and are rarely validated in vitro.  Some studies have shown that SNPs 52 

with low in silico minor allele frequencies (MAF) are less likely to validate, particularly 53 

when sequence depth of coverage is low, implying that sequencing errors can sometimes 54 

be misinterpreted as SNPs (Lepoittevin et al. 2010; Milano et al. 2011).  In principle, this 55 

problem can be mitigated by filtering SNPs based on MAF and depth of coverage, 56 

although this could introduce ascertainment bias.  Another known cause of failure relates 57 

to the physical characteristics of the probe sequences and whether or not these are 58 

suitable for a given hybridisation technology.  In this case, the use of proprietary 59 

algorithms like the Illumina assay design tool (ADT) can identify SNPs that are more 60 

likely to fail based on their flanking sequence characteristics. 61 

 62 
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Variables relating to the genomic context of a SNP are also expected to have a significant 63 

impact on validation success, particularly for transcriptome-derived SNPs. In particular, 64 

calling SNPs within contigs assembled from paralogous genes can result in probe 65 

sequences with multiple target sites in the genome, while another potentially important 66 

cause of failure is designing probes that inadvertently span intron-exon boundaries (Wang 67 

et al. 2008; Helyar et al. 2011; Milano et al. 2011; De Wit et al. 2015).  A handful of 68 

studies have used reference genomes to elucidate certain aspects of the genomic context, 69 

such as proximity to intron-exon boundaries, in order to identify potentially problematic 70 

SNPs (Milano et al. 2011; Van Bers et al. 2012; Hagen et al. 2013). However, it is still 71 

rare for studies to take into account the genomic context, despite the increasing 72 

availability of related species’ genomes and the falling cost of sequencing. 73 

 74 

An opportunity to explore factors that influence SNP validation success in a non-model 75 

species is provided by a study of Antarctic fur seals (Arctocephalus gazella).  On Bird 76 

Island, South Georgia, a breeding colony of this species has been studied since the 1980s, 77 

with genetic samples having been collected and analysed since the mid 1990s.  To 78 

increase the genetic resolution available for studying reproductive success (Hoffman et 79 

al. 2003), mate choice (Hoffman et al. 2007) and heterozygosity-fitness correlations 80 

(Forcada & Hoffman 2014) we constructed a de novo transcriptome assembly from skin 81 

biopsy samples (Hoffman 2011) as well as internal organs collected at necropsy 82 

(Hoffman et al. 2013b).  In a pilot study, we then genotyped 144 putative transcriptomic 83 

SNPs in 480 individuals using the GoldenGate assay (Hoffman et al. 2012).  The 84 

validation rate was around 70% and, apart from a weak correlation between in silico 85 

MAF and validation success, most of the deviance in SNP validation could not be 86 

explained. 87 

 88 

In this study, we present a draft fur seal genome, the first from within the pinniped family 89 

Otariidae, which we used to elucidate the genomic context of each of the GoldenGate 90 

probe sequences.  Our working hypothesis was that information that can be extracted 91 

from a reference genome should account for a substantial proportion of the unexplained 92 

variation in SNP validation success.  To take this approach a step further, we also 93 
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revisited published studies from a variety of different species for which data on SNP 94 

validation could be analysed together with a genome sequence.  Finally, we focused on a 95 

subset of the larger studies and took a predictive approach to test whether knowledge of 96 

the variables influencing SNP validation success could be helpful in improving validation 97 

rates. 98 

 99 

Materials and methods 100 

 101 

Draft fur seal genome 102 

Liver tissue was collected from an adult female Antarctic fur seal that was accidentally 103 

crushed to death by a territorial bull.  Following digestion with Proteinase K, high 104 

molecular weight DNA was extracted using the Qiagen Genomic-tip 100/G kit.  Five 105 

paired-end libraries with insert sizes ranging from 180–230bp were constructed at the 106 

National Genomics Infrastructure (NGI) in Uppsala, Sweden following Illumina’s 107 

standard TruSeq protocol. Libraries were then paired-end sequenced on an Illumina 108 

HiSeq 2500 machine with 150bp read lengths resulting in 147 gigabase pairs (Gb) of raw 109 

sequence data, 83% of which remained after removing PCR duplicates and filtering for 110 

sequences with a Phred score above 30. 111 

 112 

We supplemented the data with seven mate-pair libraries ranging from 3–15 kilobases 113 

(kb) and one 40kb fosmid library constructed at the National Genomics Infrastructure 114 

(NGI) in Uppsalla, Sweden and the Max-Planck Institute for Developmental Biology, 115 

Tübingen, Germany.  These were prepared using the Illumina Nextera mate-pair protocol 116 

(3–15kb) and the Lucigen NxSeq ® 40kb Mate Pair Cloning Kit (40kb) respectively.  117 

Libraries were indexed with different barcodes and were multiplexed across different 118 

lanes and runs.  These ‘jumping’ libraries yielded an additional 2.26 billion read pairs 119 

(451 Gb) providing longer-distance structural information (Table 1). 120 

 121 

In total, we fed 598 Gb of data (200x depth of coverage over a ~3 Gb genome) into 122 

ALLPATHS-LG version-R50191 with the default parameters, the haploidify option 123 

activated (HAPLOIDIFY=True) and a ploidy value set to two.  ALLPATHS-LG was run 124 
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on a machine equipped with 64 nodes and 2TB RAM memory at the computational 125 

infrastructure in Uppsala, UPPMAX (http://www.uppmax.uu.se).  The assembly program 126 

consists of several modules executed consecutively in an automated fashion. All modules 127 

except “FixLocal”, which rectifies local assembly errors, finished their computations 128 

without showing error messages. The “FixLocal” module was accordingly skipped by 129 

setting “FIX_LOCAL=False” when re-running the assembler. According to our previous 130 

experience with other vertebrate genomes (Poelstra et al. 2014) omission of this module 131 

introduces single base pair errors at a rate of less than one per megabase, thus not bearing 132 

on the analyses performed here. ALLPATHS-LG accepts raw data without prior adapter 133 

removal or trimming and performs its own read correction steps based on read quality 134 

and nucleotide content within each read. The sequencing error rate per base was 135 

estimated to be 0.0018 (Q = 27.4) and 21.85% of the raw reads were marked as 136 

duplicates. After read correction, 8.2% of the raw reads containing errors were rectified 137 

which corresponded to an average of 1.3 corrections per read. Finally, in order to identify 138 

redundant scaffolds, we used BLAT to search for identical hits of the assembly against 139 

itself. 140 

In order to identify and annotate interspersed repeat regions within the genome, we first 141 

generated consensus models of putative repeats for the fur seal using RepeatModeler 142 

1.0.8. The genome was then screened against this database and the vertebrate reference 143 

repeat database using RepeatMasker 4.0.3 (http://www.repeatmasker.org).  To estimate 144 

the status of completeness and contiguity of the fur seal genome, we also used the 145 

program CEGMA 2.4 (Parra et al. 2007, Parra et al. 2009), which uses hidden Markov 146 

models to compare the genome assembly to a set of 248 ultra-conserved eukaryotic 147 

genes.  148 

Variables affecting SNP validation success in fur seals 149 

We aligned the 121bp GoldenGate probe sequences (i.e. the SNP plus 60bp flanking 150 

sequence on either side) of all 144 previously genotyped SNPs to the draft Antarctic fur 151 

seal genome using BLASTn with an e-value threshold of 1e-10.  To identify variables 152 

associated with successful SNP validation success, we constructed a generalized linear 153 

model (GLM).  As the aim of most studies is to generate a panel of polymorphic SNPs, 154 

http://www.uppmax.uu.se/
http://www.repeatmasker.org/
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we modeled SNP validation success as a binary response variable coded as 1 = 155 

polymorphic and 0 = monomorphic / failed (following Conklin et al. 2013 and Montes et 156 

al. 2013).  This may be somewhat conservative, as SNPs that are monomorphic in a given 157 

sample could potentially be polymorphic in a larger or different sample of individuals.  158 

The following predictor variables were fitted: number of mappings to the draft genome, 159 

alignment length, percent identity, bit score, gap opening, mismatches, e-value, Illumina 160 

ADT score, in silico MAF and depth of coverage, and the type of SNP (transition versus 161 

transversion).  Alignment length was included as a proxy for presence of intron-exon 162 

boundaries, as a full and continuous mapping indicates that a SNP and its flanking 163 

sequences lie fully within an exon, whereas a truncated alignment to the genome could 164 

arise if the probe sequence spans an intron-exon boundary.  The minimal adequate model 165 

was chosen based on standard deletion testing procedures (Crawley, 2007) where F-tests 166 

were used to sequentially remove each term unless doing so significantly reduced the 167 

amount of deviance explained. 168 

 169 

To test whether the genomes of related species could provide similar insights into 170 

validation success, we repeated our analysis after blasting the probe sequences to the 171 

genomes of the walrus (Odobenus rosmarus) (Foote et al. 2015), the Weddell seal 172 

(Leptonychotes weddellii) (by courtesy of the Weddell Seal Genome Consortium) and the 173 

dog (Canis lupus familiaris) (Lindblad-Toh et al. 2005). We also estimated overall 174 

percentage sequence divergence directly from the genome sequences. First, we aligned 175 

the draft fur seal genome to both the walrus and the Weddell seal using LASTAL 176 

(Kielbasa et al. 2011). From the resulting maf alignment files we then used MafFilter 177 

(Dutheil et al. 2014) to calculate divergence (percentage of mismatch). 178 

 179 

Variables affecting SNP validation success in other species 180 

To explore the generality of our findings, we modeled validation success for additional 181 

species in which SNP assays have previously been developed and for which draft genome 182 

sequences are available.  To identify these studies, we conducted Google Scholar and ISI 183 

Web of Knowledge searches (on 6th June 2015) using the following keywords: 184 

transcriptome, SNP, GoldenGate, Illumina and RAD.  We retrieved a total of 22 studies, 185 
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of which SNP flanking sequences, assay outcomes and genome sequences were all 186 

available for seven.  Where ADT scores were not available, we generated these from the 187 

SNP flanking sequences using Illumina's assay design tool.  For each study, we took the 188 

final list of SNP flanking sequences submitted for assay design and aligned these to their 189 

respective genomes using BLASTn (e-value 1e-10).  GLMs were then constructed using 190 

the same predictor variables as in the fur seal model, although in most cases data were not 191 

available for in silico MAF, depth of coverage and the type of SNP. 192 

 193 

Predicting SNP validation success 194 

To test whether a subset of SNPs could be used to predict the outcome of a larger 195 

genotyping assay, we focused on five of the above studies that had genotyped at least 196 

8,000 putative SNPs. We then took 1,000 random subsamples of 384 SNPs from each 197 

dataset. This number was chosen as a standard TaqMan® panel that represents a 198 

reasonable balance between affordability and power, although a number of alternative 199 

genotyping technologies are available (see Introduction) that can accommodate custom 200 

SNP panels of varying sizes.  On each subsample, we then performed k-fold cross 201 

validation (5-fold, 100 times) using the bestglm package in R (R Core Team 2014).  This 202 

approach splits the observations into k = 5 non-overlapping subsets of approximately 203 

equal size, uses one subset as a validation sample and the remaining four subsets as 204 

training data in order to generate the best predictive model.  For each species, we took the 205 

1,000 best models from the cross validation exercise and used the predict function in R to 206 

output the probability of each SNP in the full dataset successfully validating given values 207 

of the predictor variables.  A given SNP was predicted as validating successfully if its 208 

associated probability value was above an arbitrary threshold of 0.7. In order to estimate 209 

the improved assay success rate, we took the SNPs that were predicted to successfully 210 

validate, and that would therefore be chosen for inclusion on a SNP assay, and 211 

determined the proportion of these that actually did. 212 

 213 

  214 
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Results 215 

 216 

Draft fur seal genome assembly 217 

The genome assembly (version 1) of the Antarctic fur seal, generated by ALLPATHS-218 

LG, had a total length of 2.3Gbp excluding gaps, similar to the 2.4Gb and 2.2Gb recently 219 

assembled for the walrus and Weddell seal respectively (Table 2).  The assembly 220 

consisted of a total of 144,410 contigs integrated within 8,126 scaffolds such that 50% of 221 

the final assembly was contained within the 233 longest scaffolds. Individual 222 

heterozygosity was estimated to be 6.4 x 10-4, average GC content was 45.2% and repeats 223 

as estimated by k-mer analyses occupied 21.3% of the genome. Explicit repeat annotation 224 

estimated 30.2% of the genome to be repetitive with a strong representation of DNA 225 

transposons, LTR retrotransposons, LINEs and SINEs (Supplementary Table 1). 226 

 227 

Screening the fur seal genome for the presence and integrity of ultra-conserved genes 228 

identified 80.7% of a core set of 248 eukaryotic genes as being complete (i.e. with over 229 

70% of the gene aligning) and 94.4% as partially aligning (over at least 30% of the gene).  230 

This number compares well with several other carnivore genomes (Supplementary Table 231 

2) and indicates that the assembly is of good quality in terms of gene content. 232 

 233 

Variables affecting SNP validation success 234 

To identify variables associated with the propensity of a given SNP to be successfully 235 

validated in the fur seal, we mapped the 121bp probe sequences of 144 putative SNPs 236 

genotyped in 480 individuals (Hoffman et al. 2012) to the draft genome. 141 of these 237 

blasted with an e-value threshold of 1e-10, allowing us to test for associations between 238 

various genomic characteristics and SNP validation success.  The number of mappings, 239 

alignment length and MAF were all retained in the minimum adequate model, which 240 

explained 30.8% of the total deviance in SNP validation success (Table 3a).  Specifically, 241 

we found a strong negative association between the number of mappings and validation 242 

success, together with a weaker positive correlation with alignment length and a negative 243 

association with MAF (Figure 1). 244 

 245 
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To test whether the genomes of related species could also be informative about SNP 246 

validation outcomes, we blasted the fur seal probe sequences to the draft genomes of the 247 

walrus and Weddell seal and to the dog genome.  The two species of seal are thought to 248 

share a common ancestor with the Antarctic fur seal 18 and 23 MYA respectively 249 

(Higdon et al. 2007), corresponding to genomic sequence divergence estimates of 2.9 and 250 

5.1% respectively (this study). The dog is thought to have shared a common ancestor 251 

with the Antarctic fur seal around 44 MYA (Hoffman et al. 2013a). Similar results were 252 

obtained for all three species (Table 3b–d), with the number of mappings in all cases 253 

being strongly negatively associated with validation success.  However, the number of 254 

SNPs mapping to the reference genome declined with phylogenetic distance (fur seal = 255 

99%, walrus =97%, Weddell seal = 92%, and dog = 61%). 256 

 257 

We extended our approach to include previously published datasets from a variety of 258 

different species.  Available data were collated for a total of seven species for which 259 

empirical data on SNP validation success could be analysed in combination with probe 260 

sequences and a reference genome (see Table 4 for details).  These studies differ both in 261 

the number of SNPs genotyped (from 384–286,021) and in the genotyping chemistry 262 

used (GoldenGate, Infinium BeadChip and Affymetrix Axion).  Moreover, the SNPs 263 

themselves were derived either from transcriptomic resources (two studies), genomic 264 

resources including reduced representation libraries (three studies) or from a combination 265 

of the two (two studies).  Genome BLASTs resulted in an average of 96% of probe 266 

sequences mapping to the respective genomes.  As in the fur seal, the number of 267 

mappings was retained in all of the models and alignment length was retained in all but 268 

one of the models (Table 4).  There was also a tendency for studies based on larger 269 

numbers of SNPs to retain more explanatory variables, such as gap opening and bit score.  270 

The explained deviance varied from 0.25% to 9.73% and was significantly higher for 271 

studies incorporating transcriptome-derived SNPs (unpaired t-test, t = -2.74, p = 0.04). 272 

 273 

Predicting SNP validation success 274 

Finally, we investigated whether a subset of randomly selected SNPs can be effective at 275 

predicting the outcome of a larger genotyping assay.  From the studies identified above, 276 
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we selected five that had genotyped at least 8,000 putative SNPs and from these 277 

generated predictive models using k-fold cross validation based on 1,000 randomly 278 

selected subsets of 384 SNPs (see Materials and methods for details).  We then used the 279 

resulting models to predict the outcome for the full dataset, assuming that SNPs with 280 

associated p-values greater than 0.7 would successfully validate.  To explore whether this 281 

approach might be useful for improving overall validation rates, we then compared the 282 

proportion of SNPs correctly identified as validating by the model to the empirical 283 

validation rate. 284 

 285 

For species with high initial validation rates (sunflower = 80%, soybean= 78%, rainbow 286 

trout = 86%), only a fraction of the 1,000 best predictive models retained any predictor 287 

variables and, as a consequence, selecting SNPs with a high validation probability would 288 

only yield an incremental improvement over the empirical validation rate (4%, 2% and 289 

2% respectively, Figure 2, Table 4).  Conversely, for the polar bear and salmon, which 290 

had much lower validation rates, the majority of predictive models contained at least one 291 

predictor variable (71% and 99% respectively).  Using these models to select SNPs with a 292 

70% or greater validation probability would improve the overall validation rate by 16.3% 293 

and 27% respectively, but reduce the number of SNPs to 2,549 and 2,436 respectively 294 

(Figure 2). 295 

 296 

For comparison, we also applied a relatively crude filtering approach in which we 297 

selected only SNPs with uniquely mapping probes that align fully to the reference 298 

genome.  The outcome was similar to that of the predictive approach for the trout, 299 

sunflower and soybean (Figure 2).  However, for the polar bear and salmon, filtering on 300 

the basis of uniqueness and alignment length would not improve the validation rate to the 301 

same extent as predictive modeling. 302 

 303 

Discussion 304 

 305 

SNP assays routinely fail to validate for reasons that in general remain poorly understood.  306 

We therefore used a draft fur seal genome to explore the genomic characteristics of 144 307 
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SNP probe sequences in order to identify variables associated with the observed 308 

genotyping outcomes.  We found that probes mapping multiple times to the fur seal 309 

genome and with incomplete alignments were less likely to be validated, a pattern that 310 

holds up across a variety of species.  Our analyses also suggest that filtering raw SNPs on 311 

the basis of these two factors alone could help to improve validation rates, although 312 

predictive modeling based on pilot SNP data may be desirable when the validation rate is 313 

expected to be low. 314 

 315 

The fur seal genome 316 

An important outcome of this study is a draft Antarctic fur seal genome.  This not only 317 

provides insights into factors that influence SNP validation, but should also be a useful 318 

resource for future studies of this and other pinniped species.  The total scaffold length 319 

without gaps was 2.3Gb, similar to the walrus and Weddell seal assemblies.  This is 320 

somewhat shorter than would be expected from the C-value of the closely related 321 

California sea lion (3.15 pg, Du & Wang 2006) and is consistent with the notion that 322 

genomes assembled using a short-read shotgun approaches lack a significant portion of 323 

highly repetitive genomic regions.  We estimated a repeat content of approximately 30% 324 

for the fur seal, which is slightly lower than in the Weddell seal (40%) and several other 325 

carnivore species (30–43%, http://bit.ly/1X9Vw6z). This difference may arise from the 326 

usage of non-specific repeat databases, and/or because the Antarctic fur seal genome may 327 

lack certain repetitive regions. 328 

 329 

The number of scaffolds assembled was intermediate between the walrus and the 330 

Weddell seal, while the scaffold N50 was the highest of the three seal species.  This 331 

probably reflects the inclusion of numerous 3–15kb jumping mate-paired libraries plus 332 

the long-jump 40kb library.  Unexpectedly, data from the 40kb library contributed little to 333 

the final assembly as the assembler found only 2,634 pairs usable (approx. 0.00001% of 334 

the total library reads). To investigate this further, we mapped the raw reads from the 335 

40kb library to the fur seal, Weddell seal, walrus, dog and panda genomes using BWA-336 

MEM 0.7.12 (Li 2013). 91.4% of the reads mapped to the fur seal assembly and this 337 

proportion decreased with increasing phylogenetic distance (Supplementary Table 3).  338 

http://bit.ly/1X9Vw6z
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This suggests that the 40kb library comprises high quality fur seal sequences, yet 339 

contributes little towards further improving an already high scaffolding length from the 340 

3–15kb libraries. 341 

 342 

Variables affecting SNP validation success 343 

Although relatively few studies have explored the effects of SNP characteristics on 344 

validation success, a number of factors are thought to be important.  First, in silico 345 

parameters such as depth of sequence coverage and MAF can be informative as to 346 

whether or not a SNP is genuine (Sánchez et al. 2009; De Wit et al. 2015).  Second, 347 

assembling paralogous sequences can lead to the identification of false positive SNPs, 348 

particularly for transcriptomic data (Smith et al. 2005; Sánchez et al. 2009; Cahais et al. 349 

2012; Hagen et al. 2013; De Wit et al. 2015).  Third, technical statistics such as the ADT 350 

score provide an indication of how likely a given probe sequence is to work in the assay.  351 

Finally, variables relating to the genomic context, including sequence uniqueness (Wang 352 

et al. 2008; Hagen et al. 2013) and proximity to intron-exon boundaries (Wang et al. 353 

2008; Hoffman et al. 2012; Montes et al. 2013), are also expected to have a significant 354 

impact on validation success.  Our approach attempted to elucidate the importance of the 355 

latter by essentially modeling probe hybridization to a reference genome. 356 

 357 

The results of the fur seal analysis point towards three variables being important: the 358 

number of mappings, alignment length and in silico MAF. We included MAF in the 359 

model as a preliminary analysis found it to be negatively associated with validation 360 

success (Hoffman et al. 2012). The number of mappings was by far the most important 361 

explanatory variable, suggesting that probe sequence uniqueness is a key factor to 362 

consider in SNP development. Alignment length explained a smaller proportion of the 363 

total deviance but was nonetheless highly significant, a positive relationship with 364 

validation success indicating that SNPs with completely mapping probes are more likely 365 

to result in clearly interpretable and polymorphic genotyping assays. Both of these 366 

variables were also significantly associated with SNP validation success in all but one of 367 

the seven additional species examined. By implication, it appears to be commonplace for 368 
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studies to include SNPs with probe sequences that are not unique or which span intron-369 

exon boundaries. 370 

 371 

One reason for this general pattern could be that many of the studies we examined 372 

incorporated transcriptomic SNPs.  These can be problematic due to de novo assembly 373 

artefacts (Gayral et al. 2011) and because intron-exon boundaries cannot usually be 374 

identified without reference to some form of genomic sequence.  However, the same two 375 

variables were also associated with validation success in the Atlantic salmon and the 376 

soybean, species for which SNPs were developed exclusively from genomic resources.  377 

Although the exact reason for this remains unclear, it seems probable that many forms of 378 

genomic data will also be affected to a certain extent by assembly artefacts.  This could 379 

be exacerbated by the fact that both the salmon and the soybean have undergone recent 380 

increases in genome ploidy (Shoemaker et al. 1996; Davidson et al. 2010). 381 

 382 

Explained deviance 383 

The proportion of deviance explained by our models varied considerably among the 384 

seven species, from 0.25 to 9.73%. To explore why, we constructed a GLM of the 385 

proportion of deviance explained, fitting as explanatory variables the overall validation 386 

rate of the assay, the total number of SNPs, the number of variables retained in each 387 

model, and the source of the SNPs (including or excluding transcriptomic resources). We 388 

found a weak tendency for studies with larger numbers of SNPs to retain more variables 389 

in the minimum adequate model (χ2 = 13.76, d.f = 1, p = 0.08), reflecting the greater 390 

power of large datasets to capture relatively subtle effects. In addition, significantly more 391 

deviance could be explained for studies that included SNPs developed from 392 

transcriptomic resources (χ2 = 32.74, d.f = 1, p = 0.02). Taken at face value, this suggests 393 

that particular care should be taken when developing SNPs from transcriptomes. 394 

However, direct comparison is made difficult by the fact that no two studies use the same 395 

SNP discovery pipeline, and the two purely genomic studies both incorporated pre-396 

validated SNPs. 397 

 398 

Predictive power 399 



 17 

We used the five largest SNP datasets to explore whether knowledge of the factors that 400 

influence SNP validation success could be used to improve overall validation rates. Given 401 

that probe uniqueness and alignment length appear to be consistently associated with 402 

validation success across species, we first compared the empirical validation rate of the 403 

full dataset with that of a dataset filtered to contain only uniquely and completely 404 

mapping SNPs. Success rates of the filtered SNPs were consistently higher, suggesting 405 

that even relatively crude filtering based on these two variables alone could help to 406 

improve validation rates.  As expected, the greatest expected improvement was observed 407 

for the salmon, which had the lowest empirical validation rate and hence the greatest 408 

room for improvement. 409 

 410 

Although the number of mappings and alignment length were retained in most of our 411 

models, several other parameters were also found to be important, and these varied from 412 

species to species. To integrate all of the available information for each species into a 413 

predictive framework, we therefore constructed predictive models using a k-fold cross-414 

validation approach. To determine the potential for improvement, we then compared the 415 

proportion of SNPs correctly identified as validating by these models to the empirical 416 

validation rate.  For the trout, soybean and sunflower, selecting SNPs with a validation 417 

probability of 0.7 had a similar outcome to filtering SNPs for unique and complete probe 418 

alignments.  In contrast, for the polar bear and the salmon, which experienced lower 419 

overall validation rates, the predictive approach could increase the validation rate by up 420 

to around 30%. 421 

 422 

Which of these two approaches are best for a particular system will depend on several 423 

considerations. Our results suggest that filtering a collection of 'raw' SNPs based on the 424 

number of mappings and alignment length is likely to improve the validation rate under 425 

most circumstances and this requires minimal effort. In contrast, predictive modeling 426 

requires an investment in generating a pilot SNP dataset, but offers greater scope for 427 

improving the validation rate when this is expected to be low, for instance when many or 428 

all of the SNPs are developed from a transcriptome.  However, higher validation rates 429 

also come at the cost of fewer SNPs being available for genotyping (Figure 2).  How this 430 
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trade-off between SNP quality and quantity is resolved will differ on a case-by-case 431 

basis, although raw SNPs can now be generated in such large numbers that their 432 

availability will in many cases not be limiting. 433 

 434 

Overall, our study reveals considerable differences among species, both in the 435 

explanatory power of different variables and in the potential improvement that could be 436 

achieved by pre-selecting SNPs based on prior knowledge of how different variables 437 

affect SNP validation.  As expected, both explanatory and predictive power correlate 438 

negatively with the overall validation rate, which in turn appears to depend on whether or 439 

not a given study includes transcriptomic SNPs.  This suggests that mapping SNPs to a 440 

reference genome may bring the greatest practical benefits where efforts are underway to 441 

develop SNP arrays primarily from a transcriptome.  However, this is a relatively 442 

common endeavor, as transcriptomes provide a rapid and inexpensive means of SNP 443 

discovery, as well as a convenient route for mining markers within candidate genes. 444 

 445 

Caveats 446 

Genome sequences are not always available and are still challenging or in some cases 447 

impossible to generate due to the requirement for large amounts of high quality DNA 448 

(Ekblom & Wolf 2014).  Nevertheless, our results suggest that, when possible, mapping 449 

probe sequences to the genome of a related species may provide useful information on 450 

the genomic context.  We were able to map most of the fur seal probe sequences to the 451 

walrus and Weddell seal genomes, which are divergent by 2.9 and 5.1% respectively, 452 

generating qualitatively similar model outputs.  Thus, with increasing numbers of non-453 

model species having their genomes sequenced and assembled as part of initiatives like 454 

the Genome 10k project (Genome 10K Community of Scientists 2009), growing numbers 455 

of studies should at least be able to access the genome of a related species.  Failing that, 456 

genomic data, even if unassembled, can also be informative in some respects.  For 457 

instance, a recent study mapped genomic shotgun reads to a transcriptome to help 458 

identify intron-exon boundaries (Montes et al. 2013). 459 

 460 
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Another point to bear in mind is that the GoldenGate assay, which we used to identify the 461 

main factors affecting SNP validation and to populate a predictive model, has recently 462 

been phased out.  However, this does not negate our main finding that the genomic 463 

context of a SNP appears to affect validation success across a range of species.  In 464 

addition, although we used a pilot GoldenGate dataset to build a predictive model, several 465 

alternative technologies are available that allow similar sized custom SNP panels to be 466 

genotyped.  We have no reason to believe that these alternative technologies could not be 467 

used to similar effect, especially given that the predictive approach integrates diverse 468 

information about each SNP, including the genomic context and the likely performance 469 

with a specific genotyping technology. 470 

 471 

Finally, reduced representation approaches such as targeted amplicon resequencing, 472 

Restriction Site Associated (RAD) DNA sequencing (Hohenlohe et al. 2010; Peterson et 473 

al. 2012) and genotyping-by-sequencing (Narum et al. 2013) provide alternatives to 474 

custom SNP arrays.  The method of choice for a given study will depend on a number of 475 

factors including cost, the number and specificity of markers required and ease of 476 

implementation.  RAD sequencing is growing in popularity as it can generate tens of 477 

thousands of randomly distributed SNPs in virtually any organism without the need for 478 

prior genomic information.  However, RAD sequencing is arguably less straightforward 479 

than custom SNP genotyping due to the technical difficulty and cost of library 480 

preparation and the need for extensive post-processing.  Moreover, high-density SNP 481 

arrays have very low rates of genotyping error, can target specific genomic regions, 482 

generate data with high inter-individual concordance, and can be more easily scaled up to 483 

sample sizes of many thousands of individuals.  For these and other reasons, custom SNP 484 

arrays have an important role to play in the future of the field of molecular ecology 485 

(Andrew et al. 2013) and are likely to remain the method of choice for large-scale, 486 

individual-based studies of natural populations for years to come.  Having said that, 487 

reduced representation sequencing approaches are increasingly being used to discover 488 

SNPs for use in custom arrays (Houston et al. 2014; Malenfant et al. 2014; Palti et al. 489 

2014) and our approach has also been applied in this context. 490 

 491 
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Conclusions 492 

We used the Antarctic fur seal as a case study to show that mapping probe sequences to a 493 

draft reference genome can identify variables with a large effect on SNP validation 494 

success. We also demonstrate the potential for filtering and predictive approaches to 495 

improve genotyping outcomes, particularly when some or all of the markers are derived 496 

from a transcriptome.497 
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Figures 

 

Figure 1: Fur seal SNP validation success in relation to the three predictor variables 

retained in the minimal adequate model: a) number of mappings, b) alignment length 

and c) in silico MAF. Circle size is proportional to frequency and the shaded areas 

indicate 95% confidence intervals. 
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Figure 2: Percent and number of successful SNPs for studies where filtering and 

predictive modeling approaches were applied (see Materials and methods for details). 

Light grey bars refer to the observed assay outcomes; dark grey bars refer to assay 

outcomes following filtering on the basis of the number of mappings and alignment 

length; medium grey bars indicate the outcomes after selecting SNPs on the basis of 

predictive models. The studies are ordered from left to right by the observed 

validation rate. 
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Tables 

 

Table 1. Summary statistics for the sequencing libraries used for the Antarctic fur seal 

genome assembly. 

 
Library 
type 

Insert 
size 

Read 
length 
(bp) 

Raw 
data   
(Gb) 

Data        
used    
(%) 

Sequence 
coverage 
(x)  

Physical 
coverage  
(x) 

paired 180 150 29.20 83.4 10.6 6.6 

paired 180 150 27.73 82.1 9.9 6.2 

paired 199  150 48.75 82.4 17.5 12.0 

paired 200 150 12.11 88.9 4.7 3.2 

paired 231 150 29.13 84.4 10.7 8.4 

 Total -- 146.92 83.4 53.5 36.5 

jump 3kb 100 151.16 48.2 31.3 313.3 

jump 4kb 100 21.45 61.5 5.8 75.7 

jump 5kb 100 40.98 46.2 8.3 114.6 

jump 6kb 100 101.00 54.7 24.4 473.8 

jump 8kb 100 56.63 55.2 13.8 373.6 

jump 10kb 100 40.51 61.1 10.9 361.3 

jump 15kb 100 13.38 62.5 3.7 19.1 

long-jump 40kb* 100 26.42 0.0 0.0 0.0 

 Total -- 451.53 52.4 98.2 1731.4 

Further details of the scaffolding with the 40kb library are given in Materials and 
methods and Results sections.  
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Table 2.  Genome assembly statistics for the de novo assembly of the Antarctic fur 

seal and for two previously assembled pinniped species, the walrus and Weddell seal.  
 

 Fur Seal Walrus Weddell Seal 

Total sequence length 

including gaps 

2,405,038,055 2,500,048,309 3,156,902,762 

Total sequence length 

excluding gaps 

2,289,802,102 2,400,150,193 2,223,164,129 

Number of scaffolds 8,126 3,893 16,711 

Scaffold N50 3,169,165 2,616,778 904,031 

Number of contigs 144,410 70,655 169,547 

Contig N50 27,432 89,951 23,644 
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Table 3.  Logistic regressions of fur seal SNP validation success after blasting to fur 

seal, Weddell seal, walrus and dog genomes. Predictor variables retained in the 

minimal adequate models are given together with model estimates, χ2 values for 

goodness of fit tests. 

 

(a) Antarctic fur Seal: n = 142, total deviance = 170.69, residual deviance = 

118.11, explained deviance = 30.80% 
Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, 

alignment length, e-value, mismatches, ADT score, MAF, depth & SNP type 

 Estimate χ2 d.f p 

Number of 

mappings 
-0.86 40.80 1 1.69e-10 *** 

Alignment Length 0.03 6.67 1 0.01 ** 

MAF -7.54 9.46 1 0.002 ** 

(b) Walrus: n = 140, total deviance = 169.31, residual deviance = 114.08, explained 

deviance = 32.62% 
Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, 

alignment length, e-value, mismatches, ADT score, MAF, depth & SNP type 

 Estimate χ2 d.f p 

Number of 

mappings 
-1.01 43.25 1 4.81e-11 *** 

Bit score 0.02 9.83 1 0.0017 ** 

MAF -6.86 7.74 1 0.005 ** 

(c) Weddell Seal: n = 133, total deviance = 159.14, residual deviance = 114.50, 

explained deviance = 28.05% 
Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, 

alignment length, e-value, mismatches, ADT score, MAF, depth & SNP type 

 Estimate χ2 d.f p 

Number of 

mappings 
-0.95 30.67 1 3.06e-08 *** 

Bit score 0.09 6.53 1 0.01 * 
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Alignment length -0.14 4.48 1 0.03 * 

Mismatches 0.57 5.48 1 0.02 * 

MAF -7.27 9.01 1 0.003 ** 

(d) Dog: n = 88, total deviance = 105.03, residual deviance = 70.34, explained 

deviance = 33.01% 
Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, 

alignment length, e-value, mismatches, ADT score, MAF, depth & SNP type 

 Estimate χ2 d.f p 

Number of 

mappings 
-1.17 24.29 1 68.28e-07 *** 

Mismatches 0.25 6.87 1 0.009 ** 

MAF -9.10 9.17 1 0.002 ** 
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Table 4. Logistic regressions of SNP validation, showing the predictor variables retained in the minimal adequate models together with model 

estimates, χ2 values for goodness of fit tests.  The terms fitted in each model, the source of the SNPs and genotyping technology are given for 

each species. Studies are presented in ascending order of the number of SNPs. 

(a) Rainbow Trout (Sánchez et al. 2009): n =347, total deviance = 481.02, residual deviance = 458.16, explained deviance = 

4.75%  
Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, alignment length, e-value, mismatches and 
ADT score. SNP source: genomic; Genotyping technology: Illumina GoldenGate 

Predictor variable Estimate χ2 d.f p 

Gap Opening -4.41e-01 9.17 1 0.002 ** 

Alignment Length 2.55e-02 20.04 1 4.45e-05 *** 

E value 2.52 15.10 1 0.0005 *** 

(b) Pacific Oyster (Lapègue et al. 2014): n = 364, total deviance = 488.63, residual deviance = 441.06, explained deviance = 

9.73% 

Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, alignment length, e-value, mismatches and 
ADT score. SNP source: transcriptomic; Genotyping technology: Illumina GoldenGate 

Predictor variable Estimate χ2 d.f p 

Number of mappings -2.50e-01 3.60 1 0.05 * 
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Bit score 1.03e-02 6.71 1 0.01 ** 

E value -1.69 21.20  4.14e-06 *** 

ADT score 2.52 8.51   1 0.003 ** 

(c) Polar Bear (Malenfant et al. 2014): n = 8,033, total deviance = 10,112.20, residual deviance = 9,656.50, explained deviance 

= 4.50% 
Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, alignment length, e-value and mismatches and 
ADT score. SNP source: genomic and transcriptomic; Genotyping technology: Illumina Infinium BeadChip 

Predictor variable Estimate χ2 d.f p 

Number of mappings -2.62e-05 14.14 1 0.0002 *** 

Bit score -1.24 23.67 1 1.15e-06 *** 

Gap opening -9.64 12.59 1 0.0004 *** 

Alignment length 1.82 5.47 1 0.02 * 

E value -1.11 5.28 1 0.02 * 

Mismatches -7.36 32.56 1 1.16e-08 *** 
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(d) Sunflower (Bachlava et al. 2012): n = 9,198, total deviance = 9,003.40, residual deviance = 8,520.40, explained deviance = 

5.36% 
Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, alignment length, e-value, mismatches and 
ADT score. SNP source: transcriptomic; Genotyping technology: Illumina GoldenGate 

Predictor variable Estimate χ2 d.f p 

Number of mappings -0.01 47.41 1 5.74e-12 *** 

Percent identity 0.11 59.78 1 1.06e-14 *** 

Alignment length 0.03 391.02 1 < 2.2e-16 *** 

ADT score 1.15 4.88 1 0.03 * 

(e) Rainbow Trout (Palti et al. 2014): n = 52,298, total deviance = 40,567.00, residual deviance = 40,336.00, explained 

deviance = 0.25%.  
Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, alignment length, e-value, mismatches and 
ADT score. SNP source: genomic; Genotyping technology: Affymetrix Axion Array 

Predictor variable Estimate χ2 d.f p    

Number of mappings -2.68e-03 130.95 1 < 2.2e-16 ***    

Percent identity 2.72e-01 8.19 1 0.004 **      
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Bit score -4.54e-02 3.57 1 0.05 *    

Gap opening -3.97e-01 15.02 1 0.0001 ***    

Alignment length 8.70 4.19 1 0.04 *    

(f) Soybean (Song et al. 2013): n = 60,406, total deviance = 63,747.00, residual deviance = 62,954.00, explained deviance = 

1.24% 
Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, alignment length, e-value, mismatches and 

ADT score. SNP source: genomic; Genotyping technology: Illumina Infinium BeadChip 

   

Predictor variable Estimate χ2 d.f p    

Number of mappings -0.0002 16.34 1 5.31e-05 ***    

Bit score -0.09 9.93 1 0.002 **    

Gap opening -1.22 22.64 1 1.95e-06 ***    

Alignment length 0.16 10.40 1 0.001 **    

Mismatches -0.60 15.33 1 8.99e-05 ***    

ADT score 1.41 617.97 1 < 2.2e-16 ***    

(g) Atlantic Salmon (Houston et al. 2014): n = 277,363 , total deviance = 384,177, residual deviance = 365,848, explained 
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deviance = 4.77% 
Terms fitted in the full model: Number of mappings, percent identity, bit score, gap opening, alignment length, e-value, mismatches and p-

convert score. SNP source: genomic and transcriptomic; Genotyping technology: Affymetrix Axiom Array 

Predictor variable Estimate χ2 d.f p 

Number of mappings -2.50e-03 1038.9 1 < 2.2e-16 *** 

Percent Identity 5.29e-01 17.63 1 2.69e-05*** 

Bit Score -1.19e-01 20.94 1 4.75e-06 *** 

Gap opening -7.17e-01 34.97 1 3.36e-09 *** 

Alignment length 2.81e-01 38.01 1 7.01e-10 *** 

E value 5.76 21.88 1 2.89e-06 *** 

Mismatches -2.88e-01 13.10 1 0.00030 *** 

P-convert score 2.84 11843 1 < 2.2e-16 *** 
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Supplementary tables 

 

Supplementary Table 1: Classification of annotated repeats. Proportions were 

obtained by dividing the total amount in the class by the total genome size without 

gaps (2,289,802,102 bp). 

 
Class Number Total length (bp) Percentage (%) 

Simple_repeat 942,790 41,152,646 1.8 
LINE 646,619 396,340,460 17.3 
SINE 592,208 109,770,282 4.8 
LTR retrotransposon 205,568 88,740,969 3.9 
Low_complexity 171,170 8,522,988 0.4 
DNA transposon 159,031 43,923,340 1.9 
Unknown 19,307 2,406,853 0.1 
snRNA 1,507 97,062 <0.01 
Satellite 686 187,976 0.01 
RC_Helitron 493 125,994 0.01 
RNA 401 88,086 <0.01 
tRNA 202 13,185 <0.01 
rRNA 140 28,821 <0.01 
srpRNA 21 5,121 <0.01 
scRNA 14 1,322 <0.01 
Retroposon 5 417 <0.01 
Other 2 178 <0.01 
Total 2,739,962 691,405,700 30,20% 
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Supplementary Table 2:  Results of ultra-conserved gene analyses of the Antarctic fur 

seal and four other carnivore genomes using CEGMA (see Materials and methods for 

details).  Shown are the numbers of ultra-conserved genes aligning completely (>70% 

aligned) or partially (>30% aligned) together with percentages in parentheses. 

 
 Fur seal Walrus Weddell seal Panda Dog 

Complete 200 (80.7) 210 (84.7) 188 (75.8) 202 (81.5) 209 (84.3) 

Partial 234 (94.4) 236 (95.2) 241 (97.2) 232 (93.6) 236 (95.2) 

 

 

 

Supplementary Table 3: Number of reads mapping uniquely against various carnivore 

genomes together with percentage (in parentheses), from a total of 264,193,552 raw 

reads from the 40kb library. Results are shown for when both reads within a pair have 

mapped and for when only one read within a pair has mapped. 

 

 Fur seal Walrus Weddell seal Panda Dog 

Both read 

pairs 

172,566,600 

(65.3) 

174,555,600 

(66.1) 

166,934,873 

(63.2) 

127,695,832 

(48.3) 

83,347,011 

(31.5) 

One read 

pair 

137,582,166  

(52.1) 

140,364,378 

(53.1) 

132,708,980 

(50.2) 

84,137,162 

(31.9) 

42,490,638 

(16.1) 

 
 

 


